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Covariant theory of particle-vibrational coupling and its effect on the single-particle spectrum
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The relativistic mean field (RMF) approach describing the motion of independent particles in effective meson
fields is extended by a microscopic theory of particle vibrational coupling. It leads to an energy dependence of
the relativistic mass operator in the Dyson equation for the single-particle propagator. This equation is solved
in the shell-model of Dirac states. As a result of the dynamics of particle-vibrational coupling we observe a
noticeable increase of the level density near the Fermi surface. The shifts of the single-particle levels in the odd
nuclei surrounding 208Pb and the corresponding distributions of the single-particle strength are discussed and
compared with experimental data.
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I. INTRODUCTION

New experimental facilities with radioactive nuclear beams
make it possible to investigate the nuclear chart not only along
the narrow line of stable isotopes but also in areas of large
neutron and proton excess far from the valley β-stability. This
situation has stimulated enhanced efforts on the theoretical side
to understand the dynamics of the nuclear many-body problem
by microscopic methods. Very light nuclei with A � 12 are
studied by an abinitio approach utilizing bare nucleon-nucleon
interactions of two- and three-body character and modern
shell-model calculations based on large scale diagonalization
techniques and truncation schemes show considerable success
in predicting properties of somewhat heavier nuclei. For the
large majority of nuclei, however, a quantitative microscopic
description is only possible by density functional theory. These
methods are based on mean-field theory. Although density
functional theory can, in principle, provide an exact description
of the many-body dynamics, if the exact density functional
is known, in nuclear physics one is far from a microscopic
derivation of this functional. The most successful schemes use
a phenomenological ansatz incorporating as many symmetries
of the system as possible and adjust the parameters of these
functionals to ground state properties of characteristic nuclei
all over the periodic table. Considerable progress has been
reported recently in constructing such functionals. For a recent
review see Ref. [1].

Of particular interest are covariant density functionals [2,3]
because they are based on Lorentz invariance. This symmetry
not only allows to describe the spin-orbit coupling, which
has an essential influence on the underlying shell structure,
in a consistent way, but it also put stringent considerable
restrictions on the number of parameters in the corresponding
functionals without reducing the quality of the agreement with
experimental data. A very successful example is the relativistic
Hartree-Bogoliubov model [4]. It combines a density depen-
dence through a nonlinear coupling between the meson fields
[5] with pairing correlations based on an effective interaction

of finite range. A large variety of nuclear phenomena have been
described over the years within this model: the equation of state
in symmetric nuclear matter, ground state properties of finite
spherical and deformed nuclei all over the periodic table [6]
from light nuclei [7] to super-heavy elements [8], from the
neutron drip line, where halo phenomena are observed [9]
to the proton drip line [10] with nuclei unstable against
the emission of protons [11]. Recently this model has been
also applied very successfully for the description of excited
states, such as rotational bands in normal and super-deformed
nuclei [12,13] and collective vibrations [14]. Rotations are
treated in the cranking approximation, which provides a
quasistatic description of the nuclear dynamics in a rotating
frame and for the description of vibrations a time-dependent
mean field approximation is used by assuming independent
particle motion in time-dependent average fields [15]. In the
small amplitude limit one obtains the relativistic random
phase approximation (RRPA) [16]. This method provides a
natural framework to investigate collective and non-collective
excitations of ph-character. It is successful in particular for the
understanding of the position of giant resonances and spin-
or/and isospin-excitations as the Gamow-Teller resonance
(GTR) or the isobaric analog resonance (IAR). Recently it
has been also used for a theoretical interpretation of low-lying
E1-strengths observed in neutron rich isotopes (pygmy modes)
[17] and for low-lying collective quadrupole excitations [18].

Of course the density functional theory based on the mean
field framework cannot provide an exact treatment of the full
nuclear dynamics. It is known to break down not only in
transitional nuclei, where one has to include correlations going
beyond the mean field approximation by treating quantum
fluctuations through a superposition of several mean field
solutions, as for instance in the generator coordinate method
(GCM) [19], but already in ideal shell model nuclei such
as 208Pb with closed protons and neutron shells one finds in
self-consistent mean field calculations usually a single particle
spectrum with a considerably enhanced Hartree-Fock gap in
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the spectrum and a reduced level density at the Fermi surface
as compared with the experiment. It is well known that this
fact is connected with the relatively small effective mass in
such models.

Mahaux and collaborators [20] have shown that the ef-
fective mass in nuclear matter is roughly m∗/m ≈ 0.8. In
finite nuclei it should be modified by the coupling of the single
particle motion to low-lying collective surface vibrations. This
leads, in the vicinity of the Fermi surface, to an enhancement
of m∗/m ≈ 1. Non-self-consistent models with the bare mass
(m∗/m ≈ 1) show indeed a single particle spectrum with a
level density close to the experiment.

Using the quasiparticle concept of Landau theory and
Green’s function techniques, one can derive a one-body
equation for the single-particle Green’s function, which is in
principle exact, the Dyson equation [21]. It contains a nonlocal
and energy dependent self-energy, also called mass-operator.
The energy independent part of this operator can be described
very well in mean field theory. The most important origin of
an energy dependence is given by the coupling of the single
particle motion to low-lying collective vibrations.

II. THE ENERGY DEPENDENT PART OF
THE MASS OPERATOR

A. One-nucleon motion in the relativistic mean field

In the relativistic nuclear theory the motion of the nucleons
is described by the Dirac equation

(γ µPµ − m∗)|ψ〉 = 0, (1)

where the effective mass is given by

m∗ = m + �s (2)

with the scalar part �s of the mass operator and where the
generalized four-vector momentum operator has the form

Pµ = pµ − �µ =
(

i
∂

∂t
− �0, i∇ + �

)
(3)

with the vector part �µ of the mass operator

�µ = (�0,�), (4)

where bold-faced letters indicate vectors in three-dimensional
space. The index “s” in Eq. (2) denotes that the effective mass is
described by the scalar σ -meson field. In order to characterize
ground state properties the stationary Dirac equation has to be
solved:

(α(p − �) + βm∗ + �0)|ψ〉 = ε|ψ〉. (5)

In the general case the full mass operator is non-local in the
space coordinates and also in time. This non-locality means
that its Fourier transform has both momentum and energy
dependence. Let us assume the components of mean field to
be sums of the stationary local and energy dependent nonlocal
terms:

�(r, r′; ω) = �̃(r)δ(r − r′) + �e(r, r′; ω), (6)

where all the components of the mass operator are
involved:

� = (�s,�
µ)

�̃ = (�̃s, �̃
µ

)

�e = (
�e

s ,�
eµ

) (7)

and index “e” indicates the energy dependence.
The scalar component of the energy-independent mass

operator is proportional to the σ -meson field:

�̃s(r) = gσσ (r). (8)

Time-like and space-like components of the local and energy-
independent part of the mass operator (�̃

µ
) are generated by

the isoscalar ω-meson and isovector ρ-meson fields ωµ, �ρµ

and Coulomb field Aµ:

�̃
µ

(r) = gωωµ(r) + gρ �τ �ρµ(r) + e
(1 − τ3)

2
Aµ(r), (9)

where arrows denote isovectors. These fields satisfy the
inhomogeneous Klein-Gordon equations:(−� + m2

σ

)
σ (r) = −gσρs(r) − g2σ

2(r) − g3σ
3(r) (10)

(−� + m2
ω

)
ωµ(r) = gωjµ(r) (11)

(−� + m2
ρ

) �ρµ(r) = gρ
�jµ

(r) (12)

−�Aµ(r) = ejµ
p (r), (13)

where the sources are determined by the respective density
and current distributions in a system of A nucleons: the scalar
density for σ -field

ρs(r) =
A∑

i=1

ψ̄ i(r)ψi(r), (14)

the baryon current for the ω-field

jµ(r) =
A∑

i=1

ψ̄ i(r)γ µψi(r), (15)

the isovector current for the ρ-field

�jµ
(r) =

A∑
i=1

ψ̄ i(r)γ µ�τψi(r), (16)

and the charge current for the photon-field

jµ
p (r) =

A∑
i=1

ψ̄ i(r)γ µ (1 − τ3)

2
ψi(r). (17)

The summation in Eqs. (14)–(16) is performed over occupied
states in the Fermi sea, in accordance with no-sea approxima-
tion, so that the contribution of the negative-energy states to
the densities and currents is neglected.
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B. The single-particle Green’s function

In the present work we assume time-reversal symmetry
that means the absence of currents in the nucleus and, thus,
vanishing space-like components of �. The equation of the
one-nucleon motion has the form(

hD + β�e
s (ε) + �e

0(ε)
) |ψ〉 = ε|ψ〉 (18)

or, in the language of Green’s functions(
ε − hD − β�e

s (ε) − �e
0(ε)

)
G(ε) = 1, (19)

where hD denotes the Dirac Hamiltonian with the energy-
independent mean field:

hD = αp + β(m + �̃s) + �̃0. (20)

We now work in the shell-model Dirac basis {|ψk〉} which di-
agonalizes the energy-independent part of the Dirac equation:

hD|ψk〉 = εk|ψk〉. (21)

In addition we assume in the present work spherical symmetry.
In this case the spinor |ψk〉 is characterized by the set
of single-particle quantum numbers k = {(k),mk}, (k) =
{tk, πk, nk, jk, lk} with the radial quantum number nk , angular
momentum quantum numbers jk,mk , parity πk and isospin tk:

ψk(r, s, t) =
(

f(k)(r)�lkjkmk
(ϑ, ϕ, s)

ig(k)(r)�l̃kjkmk
(ϑ, ϕ, s)

)
χtk (t), (22)

where the orbital angular momenta lk and l̃k of the large and
small components are determined by the parity of the state k:{

lk = jk + 1
2 , l̃k = jk − 1

2 for πk = (−1)jk+ 1
2

lk = jk − 1
2 , l̃k = jk + 1

2 for πk = (−1)jk− 1
2 ,

(23)

f(k)(r) and g(k)(r) are radial wave functions and �ljm is a
two-dimensional spinor:

�ljm(ϑ, ϕ, s) =
∑
msml

(
1

2
mslml|jm

)
Ylml

(ϑ, ϕ)χms
(s). (24)

In this basis one can rewrite Eq. (19) as follows:∑
l

{
(ε − εk)δkl − �e

kl(ε)
}
Glk′(ε) = δkk′, (25)

where the letter indices k, k′, l denote full sets of the spherical
quantum numbers mentioned above.

In the next step we represent the exact single-particle
Green’s function entering Eq. (19) in the Lehmann expansion.
In contrast to the nonrelativistic case, where one has occupied
states below the Fermi surface (hole states h) and empty
states above the Fermi surface (particle states p) we now have
according to the no-sea approximation in addition empty states
with negative energies (antiparticle states α). For a detailed
discussion of this point see also Ref. [16]. Therefore the
Lehmann representation of the Green’s function has the form

Gkl(ε) =
∑

h

χh0
k χh0∗

l

ε − εh − iη
+

∑
p

χ
0p

k χ
0p∗
l

ε − εp + iη

+
∑

α

χ0α
k χ0α∗

l

ε − εα + iη
, (26)

where η → +0 and the matrix elements are defined as

χh0
k = 〈h|ψ̂k|0〉,

χ
0p

k = 〈0|ψ̂k|p〉, (27)

χ0α
k = 〈0|ψ̂k|α〉.

Here ψ̂k is the Dirac field annihilation operator of the state k.
|0〉 denotes the ground state of the subsystem of N particles
in the even-even nucleus in no-sea approximation, i.e., the
negative energy states are essentially empty. The states |h〉
correspond to the ground state and to excited states of the
subsystem of (N − 1) particles and |p〉 are the ground and
excited states of the system of (N + 1) particles, respectively.
Because of the no-sea approximation the negative energy states
|α〉 are not occupied in |0〉 and therefore there exist also states
|α〉 in the (N + 1) particle system where levels with negative
energy are occupied.

C. The pole structure of the mass operator

Let us now define the energy-dependent part of the mass
operator (simply called “mass operator“ in the following). Its
matrix elements have the form

�e
kl(ε) =

∫
d3rd3r ′ψ+

k (r)
(
β�e

s (r, r ′; ε)

+�e
0(r, r ′; ε)

)
ψl(r ′). (28)

Obviously, on this stage one needs some model assumptions.
In the present work we choose a rather simple particle-phonon
coupling model [22] to describe the energy dependence of �e.
Within this model �e is a convolution of the particle-phonon
coupling amplitude � and the exact single-particle Green’s
function [23]:

�e
kl(ε) =

∑
k′l′

∫ +∞

−∞

dω

2πi
�kl′lk′(ω)Gk′l′(ε + ω), (29)

where the amplitude � has the following spectral expansion:

�kl
′
lk

′ (ω) = −
∑

µ

(
γ

µ∗
k

′
k
γ

µ

l
′
l

ω − �µ + iη
− γ

µ

kk
′ γ

µ∗
ll

′

ω + �µ − iη

)
(30)

in terms of phonon vertexes γ µ and their frequencies �µ. They
are determined by the following relation:

γ
µ

kl =
∑
k

′
l
′
Vkl

′
lk

′ δρ
µ

k
′
l
′ . (31)

Vkl
′
lk

′ denotes the relativistic matrix element of the residual
interaction and δρ is the transition density. In the present work
we use the linearized version of the model which assumes
that δρ is not influenced by the particle-phonon coupling
and can be computed within relativistic RPA. The linearized
version implies also that the energy-dependent part of the
mass operator (29) contains the mean field Green’s function
G̃(ε) = (ε − hD)−1 instead of the exact Green’s function G.
So, Eq. (25) becomes linear with respect to G. Since the mean
field Green’s function is

G̃kl(ε) = δkl

ε − εk + iσkη
, (32)
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FIG. 1. The particle �e

p
′
p

′′ and the hole �e

h
′
h

′′

components of the relativistic mass operator
in the graphical representation. p, α, h are
the particle, antiparticle, and hole types of the
intermediate states. See text for the detailed
explanation.

where σk = +1 if k is an unoccupied state of p- or α-types and
σk = −1 for an occupied k states of h-type, the mass operator
�e takes the form:

�e
kl(ε) = δjkjl

δlk ll

2jk + 1

∑
µ,n

〈k‖ γ µ(σn) ‖n〉〈l‖ γ µ(σn) ‖n〉∗
ε − εn − σn(�µ − iη)

. (33)

Here we use the notation

〈k‖ γ µ(σn) ‖n〉 = δσn,1〈k‖ γ µ ‖n〉 + δσn,−1〈n‖ γ µ ‖k〉∗.
(34)

Since the indexes k, l, and n run through the whole Dirac
basis, each state in Eq. (33) can be a particle above the Fermi
surface, a hole below the Fermi surface or a particle in a
state with negative energy (antiparticle state). The graphical
representation of the mass operator is given in Fig. 1. We
draw the particle and the hole components assuming all the
possible types of intermediate states. Solid line with arrow
denotes a particle (hole) in the Fermi sea, dashed line means
a particle in the empty Dirac sea, weavy line is a phonon
propagator, and small circle denotes a phonon vertex (31).
Time direction is from the left to the right. One can see from
Eq. (33) that the matrix �e

kl contains a small number of the off-
diagonal elements with relatively large energy denominators.
Additionally, it was shown by explicit calculations within the
nonrelativistic approach [24] that it is justified to use the
diagonal approximation:

�e
kl(ε) = δkl�

e
k(ε) (35)

with

�e
k(ε) = 1

2jk + 1

∑
µ,n

|〈k‖ γ µ(σn) ‖n〉|2
ε − εn − σn(�µ − iη)

. (36)

In analogy with the conventional terminology of nonrelativistic
approaches, let us call the intermediate term n “polarization
term” if σn = σk and “correlation term’ if σn = −σk .
The correlation term describes, obviously, the backwards
going diagrams in Feynman’s language and corresponds to
the ground state correlations caused by the particle-vibration
coupling.

Thus, within the diagonal approximation of the mass
operator (35) the exact Green’s function G is also diagonal
in the Dirac basis and the Dyson equation forms for each k a
nonlinear eigenvalue equation(

ε − εk − �e
k(ε)

)
Gk(ε) = 1. (37)

The poles of the Green’s function Gk(ε) correspond to the
zeros of the function

f (ε) = ε − εk − �e
k(ε). (38)

For each quantum number k there exist several solutions ε
(λ)
k

characterized by the index λ. Because of the coupling to the
collective vibrations the single particle state k is fragmented.
In the vicinity of the pole ε

(λ)
k the Green’s function can be

represented as follows:

G
(λ)
k (ε) ≈ S

(λ)
k

ε − ε
(λ)
k + iσkη

, (39)

where the residuum S
(λ)
k has a meaning of the single-particle

(hole) strength of the state λ with single-particle quantum
numbers k. Differentiation of Eq. (37) with respect to ε

provides the expression for the residuum:

S
(λ)
k =

(
1 − d�e

k (ε)

dε

∣∣∣∣
ε=ε

(λ)
k

)−1

. (40)

There are several ways to solve Eq. (37). In the present work
we employ the method which has been used in Ref. [24] to
solve the similar problem in the nonrelativistic framework.
Since the mass operator of the form of Eq. (33) has a simple-
pole structure, it is convenient to reduce the Eq. (37) to a
diagonalization problem of the following matrix:


εk η

µ1
kn1

η
µ1
kn2

. . .

η
µ1∗
kn1

σn1�
µ1 + εn1 0 0

η
µ1∗
kn2

0 σn2�
µ1 + εn2 0

... 0 0
. . .


 , (41)

where

η
µ

kni
= 〈k‖ γ µ(σni

) ‖ni〉√
2jk + 1

. (42)

The eigenvalues of the matrix (41) are the desired poles ε
(λ)
k

of the exact Green’s function. The structure of the solution
is well known: these eigenvalues lie between the poles of the
mass operator. Eventually, the spectroscopic factors have to be
calculated at the points of these poles according to Eq. (40):

S
(λ)
k =

(
1 + 1

2jk + 1

∑
µ,n

|〈k‖ γ µ(σn) ‖n〉|2(
ε

(λ)
k − εn − σn�µ

)2

)−1

.

(43)
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TABLE I. Energies ε
(d)
k and spectroscopic factors S

(d)
k of the dominant neutron levels in 208Pb calculated in the

strongly restricted particle-phonon space. phα denotes full the calculation, pα (h) is the version without backwards
going terms, and ph is the version without contribution of the antiparticle states in the mass operator (see text for details).

State k εk , MeV ε
(d)
k , MeV S

(d)
k

Particle phα pα ph phα pα ph
2g9/2 −2.50 −2.85 −3.14 −2.88 0.89 0.92 0.89
1i11/2 −2.97 −2.82 −3.20 −2.90 0.94 0.97 0.94
1j15/2 −0.48 −1.16 −1.33 −1.21 0.70 0.74 0.70
3d5/2 −0.63 −0.96 −1.05 −0.98 0.93 0.94 0.93
4s1/2 −0.36 −0.88 −0.92 −0.89 0.93 0.93 0.93
2g7/2 −0.56 −0.71 −0.90 −0.76 0.92 0.94 0.92
3d3/2 −0.02 −0.35 −0.42 −0.37 0.93 0.93 0.93

Hole phα h ph phα h ph
3p1/2 −7.66 −7.67 −7.40 −7.70 0.96 0.98 0.96
2f 5/2 −9.09 −8.97 −8.71 −9.02 0.93 0.96 0.93
3p3/2 −8.40 −8.20 −7.87 −8.22 0.90 0.94 0.90
1i13/2 −9.59 −9.30 −9.07 −9.36 0.90 0.92 0.89
2f 7/2 −11.11 −10.20 −9.98 −10.22 0.72 0.76 0.72
(1h9/2)1 −13.38 −13.32 −13.23 −13.34 0.52 0.47 0.53
(1h9/2)2 −12.48 −12.42 −12.49 0.31 0.39 0.29

III. DETAILS OF THE CALCULATIONS AND DISCUSSION

The matrices (41) have been diagonalized for the single-
particle states ki of both neutron and proton subsystems
belonging to the four major shells around N = 126 and
Z = 82. Thus, the eigenvalues with the largest spectroscopic
factors correspond to the single-particle excitations of the
nuclei 207Pb, 209Pb, 207Tl, and 209Bi. In Sec. III A we discuss
the effect of states with negative energies in the Dirac sea on the
mass operator relying on results obtained within the restricted
particle-phonon space. More realistic results for energies and
spectroscopic factors obtained in an enlarged particle-phonon
space are presented and discussed in Sec. III B. In Sec. III C
we compare the present method with other approaches.

A. Relativistic effects: illustrative calculations

The main interest of the present work is to describe
the effects of complex configurations within the relativistic
scheme. Therefore, first we investigate the contributions of
pure relativistic terms to the mass operator and, hence, their
influence on the single-particle spectrum of odd nuclei. In order
to keep the numerical effort within a reasonable limit we used
a restricted particle-phonon space taking into account only the
most collective phonons with spin and parity Jπ = 2+, 3−,

4+, 5−, 6+ below the neutron separation energy and a reduced
number of single particle states with positive energy (particles
or holes). This enables one to reduce strongly the number
of poles in the mass operator (36) as well as the dimension
of the matrix (41). Notice, that since in the Green’s function
formalism we stay in the single-particle basis, it is always
possible to vary the number of phonons, and the problem of
the completeness of the phonon basis does not arise at all. In
all these calculations we use the parameter set NL3 [25] for
the Lagrangian.

The numerical results obtained in these investigations are
compiled in Table I. For the first shell of neutron levels above
(‘particle’) and below (‘hole’) the Fermi level three versions
are given: in the version phα the index n in Eq. (36) includes
all contributions from intermediate states above the Fermi
level (p, with σn = +1), below the Fermi level (h, with
σn = −1) and in the Dirac sea (α, with σn = +1). Version
pα (for particles) or h (for holes) excludes the backward
going diagrams (i.e., only states with σn = σk are taken into
account), and the third version ph does not contain antiparticle
intermediate states in Eq. (36). In this way, one can see that
the effects of ground state correlations (GSC) caused by the
particle-phonon coupling and neglected in the second version
are significant and it is essential to take them into account in
a realistic calculation. On the other hand, the contribution of
the antiparticle subspace to the mass operator is quantitatively
not of great importance. This can be understood by the fact
that these configurations provide large values for the energy
denominators in Eq. (36). Thus it is justified to disregard them
in the full calculation. Notice, however, that version ph does
not eliminate the effects of the Dirac sea completely since
the phonon vertices still contain this contribution. As it has
been discussed in Ref. [16] these terms play an important role
in a proper treatment of relativistic RPA. Otherwise it is not
possible to obtain reasonable properties for the isoscalar modes
within RRPA.

B. Realistic calculations in an enlarged space

In this section we neglect the effects of the Dirac sea,
i.e., the intermediate index n in Eq. (36) runs only over
particle states above the Fermi level and holes below the
Fermi level. It has been found in Sec. III A that this is a very
reasonable approximation. Since we do not have to include
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these contributions, we are now able to enlarge the particle-
hole basis considerably by taking into account particle-hole
configurations far away from the Fermi surface. In this case
we increase the collectivity of the phonons and, consequently,
the strength of the particle-vibrational coupling. The phonon
basis was also enriched by including higher-lying modes up
to 35 MeV, although these modes are not so important as
the low-lying ones. Vibrations with the quantum numbers of
spin and parity Jπ = 2+, 3−, 4+, 5−, 6+ were included in
the phonon space. One should keep in mind, however, that
in the solution of the RRPA-equations for the vibrational
states besides the usual ph-components a large number of
αh-components of the Dirac sea was included. Of course, as it
is usually done in the RRPA calculations, both Fermi and Dirac
subspaces were truncated at energies far away from the Fermi
surface: in the present work we fix the limits εph<100 MeV
and εαh > −1800 MeV with respect to the positive continuum.
The energies and B(EL)↑ values of the most collective phonon
modes calculated with the parameter set NL3 are displayed in
Table II together with some experimental data.

As one can see from the Table II, the characteristics of
low-lying modes obtained in RRPA with the parameter set
NL3 are, in general, in accordance with experimental data.
For the lowest 2+, 4+ vibrations the B(EL)↑ values are in a
good agreement with experimental ones, only the energies are
slighty too high, whereas for the lowest 3−, 5− their energies
are reproduced rather well and the B(E3)↑ value is to some
extent overestimated, and the first 6+ state is more collective
within RRPA then the observed one.

In the present calculations the phonon space was confined
also by a criterion for the B(EL)↑ values: all modes with
B(EL)↑ values less than 10% of the maximal one were
neglected for 2+, 3−, 4+, and less than 20% for higher
multipolarities. Nevertheless, the mass operator (36) has been
calculated in a rather wide particle-phonon space and therefore
the single-particle strength is distributed over many states. The
typical dimension of the matrix (41) is about two thousand and
it varies depending on the state k. As was mentioned above,
contributions of antiparticle states [n = α in the intermediate
sum over n in the mass operator (36)] were excluded because
they provide large values of the energy denominators in
Eq. (36). On the other hand, the contributions of the correlation
terms [i.e., the terms with σn = −σk in the intermediate
sum over n in the mass operator (36)] have been fully
taken into account since they are found to be quantitatively
important and they compensate to some extent the polarization
terms.

The final results of these calculations are compiled in
Table III. All the energies are related to the experimental

ground states of the respective odd nuclei surrounding the
doubly magic nucleus 208Pb. The numbers εk denote the RMF
single particle energies, ε(d)th

k are the eigenvalues of the matrix
(41) with the maximal spectroscopic factor, and ε

(d)exp
k are

the experimentally observed excitation energies. We display
here only the results for one major shell below and one shell
above the Fermi surface because in the next shells almost all
the single-particle levels turn out to be strongly fragmented due
to phonon coupling and it is no longer possible to determine the
dominant levels in these shells, in other words, the concept of

TABLE II. Energies and reduced transition probabilities of the
most collective vibrations in 208Pb obtained within RRPA and
experimental data from Ref. [19].

J π RRPA Exp.

ω B(EL)↑ ω B(EL)↑
(MeV) (e2 fm2L) (MeV) (e2 fm2L)

2+ 4.98 2.69 × 103 4.07 2.97 × 103

5.84 5.82 × 102

8.38 1.22 × 103

12.40 4.08 × 103

22.96 1.08 × 103

3− 2.74 7.46 × 105 2.61 5.40(30) × 105

4.95 5.81 × 104

7.29 5.90 × 104

22.27 6.12 × 104

4+ 4.96 1.39 × 107 4.32 1.29 × 107

6.14 5.49 × 106

8.01 1.08 × 107

9.10 2.67 × 106

11.69 3.88 × 106

13.67 2.93 × 106

14.26 3.45 × 106

18.90 2.62 × 106

5− 3.14 5.16 × 108 3.19 4.62(55) × 108

4.31 3.01 × 108 3.71 3.30 × 108

5.73 1.69 × 108

7.26 5.13 × 108

11.14 3.39 × 108

15.26 1.30 × 108

17.29 4.58 × 108

22.87 2.32 × 108

6+ 4.96 4.15 × 1010 4.42 2.30 × 1010

6.19 2.09 × 1010

6.74 1.22 × 1010

9.72 8.65 × 109

11.88 1.10 × 1010

27.53 1.14 × 1010

33.85 9.45 × 109

34.85 9.27 × 109

Landau quasi-particles breaks down at energies far away from
the Fermi level.

The difference between εk and ε
(d)th
k is the shift of the

single-particle level k caused by the coupling to collective
surface vibrations. Notice, that almost all the levels are moving
downwards providing thus a considerably better agreement
with experimental energies then the pure RMF states. One can
see also from this table that the dominant neutron and proton
levels obtained in these calculations have large spectroscopic
factors and are therefore rather good single-particle states.
This is in agreement with experiment. Nonetheless the single-
particle strength is distributed over many levels. One can easily
understand the origin of these large spectroscopic factors from
the structure of solutions of the Eq. (37). Since each root lies
between the two neighboring poles of the mass operator, only
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TABLE III. Energies ε
(d)
k and spectroscopic factors S

(d)
k of the dominant single-particle

levels in odd nuclei of the 208Pb surroundings calculated in the wide particle-phonon space.
The experimental data are taken from Ref. [24].

Nucleus State k Energy (MeV) Spectroscopic factor

εk ε
(d)th
k ε

(d)exp
k S

(d)th
k S

(d)exp
k

209Pb 2g9/2 1.44 0.65 0.00 0.84 0.78 ± 0.1
1i11/2 0.97 0.66 0.78 0.88 0.96 ± 0.2
1j15/2 3.46 2.10 1.42 0.66 0.53 ± 0.1
3d5/2 3.31 2.55 1.56 0.88 0.88 ± 0.1
4s1/2 3.58 3.02 2.03 0.92 0.88 ± 0.1
2g7/2 3.38 2.80 2.49 0.86 0.72 ± 0.1
3d3/2 3.92 3.31 2.54 0.89 0.88 ± 0.1

209Bi 1h9/2 −0.79 −1.24 0.00 0.88 1.17
2f 7/2 2.37 0.93 0.89 0.77 0.78
1i13/2 2.78 1.31 1.60 0.61 0.56
2f 5/2 4.36 2.73 2.81 0.60 0.88
3p3/2 5.64 3.64 3.11 0.56 0.67
3p1/2 6.39 4.89 3.62 0.37 0.49

207Pb 3p1/2 0.29 0.31 0.00 0.90 1.07
2f 5/2 1.72 1.39 0.57 0.86 1.13
3p3/2 1.03 0.89 0.89 0.86 1.00
1i13/2 2.22 1.73 1.63 0.81 1.04
2f 7/2 3.74 2.34 2.34 0.64 0.88
1h9/2 6.01 4.59 3.41 0.36 1.10

207Tl 3s1/2 0.13 0.40 0.00 0.84 0.95
2d3/2 1.23 1.32 0.35 0.85 1.15
1h11/2 2.19 1.91 1.34 0.78 0.89
2d5/2 2.86 2.04 1.67 0.68 0.62
1g7/2 7.02 5.73 3.47 0.22 0.40

one root can be found in the rather wide window

ε
(max)
h − �µ(min) � ω � ε(min)

p + �µ(min), (44)

i.e., −10.11 MeV � ω � −1.20 MeV for neutron and
−10.75 MeV � ω � −1.06 MeV for proton subsystems,
respectively. Therefore, for the single-particle state k near the
Fermi surface other roots turn out to be far away because the
lowest 3−

1 phonon has rather high energy in magic nuclei,
therefore the mixing is weak and the respective spectroscopic
factor (43) is close to one. On the contrary, if the state is near
the limits or outside of the window, there are many other roots
in the vicinity, and a strong mixing leads to the appearance
of several levels with comparable strength. It can be easily
understood why in open-shell nuclei such a mixing is much
stronger near the Fermi surface: the window (44) is noticeably
smaller due to both the smaller gap between the last occupied
and the first unoccupied levels, and much the lower energy of
the first 2+ phonons (see, for instance, Ref. [26].

Nevertheless, some dominant levels near the Fermi surface
have noticeably reduced strength because of the particle-
phonon coupling. This is also confirmed by experiment. One
can see such a situation, for instance, for the 1j15/2 and the
2f7/2 neutron states in 209Pb and 207Pb, respectively. Only for
the state 1h9/2 in the 207Pb we do not find good agreement:

the spectroscopic factor is less then a half of the experimental
value. One also should keep in mind that the experimental
spectroscopic factors depend considerably on the parameters
used in the DWBA analysis. The proton states are found to be
somewhat more fragmented then the neutron states while the
dominant levels for the protons above the Fermi surface are
more strongly shifted relatively to the RMF values then in
the those of the neutrons. The distributions of the single-
particle strength for selected levels in 209Pb, 209Bi, 207Pb, and
207Tl are represented in the Figs. 2, 3, 4, 5, respectively.

To illustrate the results of these calculations we chose one
state of pronounced single-particle nature (left panels) and one
noticeably fragmented state (right panels) for each nucleus,
both from the first major shell above and below the Fermi
surface. As in Table III all the energies are related to the
ground state energy of the corresponding odd nucleus. As
was already mentioned, in the present calculations the single-
particle strength is distributed over about two thousand states
but most of them are vanishingly small, so only the states
with the strength exceeding 10−3 are drown. The experimental
strength of the dominant levels are shown with dashed lines.
Some examples of the strongly fragmented states from the
second major shells above and below the Fermi surface are
shown in Fig. 6.
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FIG. 2. Single-particle strength distribution for the 3d3/2 (left
panel) and 1j15/2 (right panel) states in 209Pb obtained in the
calculations (solid lines) and the experimental strengths of the
respective dominant levels (dashed lines).

To illustrate the shifts in the level schemes we show in
Figs. 7 and 8 the single-particle spectra for neutrons and
protons. The spectra calculated with the energy-dependent
correction (RMF+PVC) demonstrate a pronounced increase
of the level density around the Fermi surface of 208Pb both for
neutron and proton subsystems comparatively the pure RMF
spectra.

In some cases it turned out to be possible to invert the
order of levels and reproduce the observed sequence as one
can see for the1j15/2 and the 3d5/2 neutron states. Another and
more important example is the inversion of the 2g9/2 and 1i11/2

neutron states (in Fig. 7 they look coincided) which enables
one to reproduce the spin of the 209Pb ground state.

In order to quantify these results we calculated the average
distance between two levels in the spectrum shown in Figs. 7
and 8 (1h9/2 and 1g7/2 states with small spectroscopic factors
were excluded from the estimation of the neutron and proton
spectrum, respectively). We obtain for the neutrons 1.0 (RMF),
0.83 (RMF+PCV) and 0.76 (EXP) in units of MeV. This

FIG. 3. The same as in Fig. 2 but for the 2f7/2 (left panel) and
1i13/2 (right panel) states in 209Bi.

FIG. 4. The same as in Fig. 2 but for the 1i13/2 (left panel) and
2f7/2 (right panel) states in 207Pb.

corresponds to a level density of 1.0 (RMF), 1.20 (RMF+PCV)
and 1.31 (EXP) in units of MeV−1. The level density in
the neighborhood of the Fermi surface is therefore in RMF-
calculations by a factor 0.76 smaller than the experimental
value. Taking into account particle-vibrational coupling we
find only a reduction of 0.92. Assuming an effective mass
close to 1 for the experiment, and taking into account that the
level density at the Fermi surface is proportional to m∗/m,
this correspond to an effective mass m∗/m ≈ 0.76 for the
RMF and m∗/m ≈ 0.92 for the RMF+PCV calculations. For
the protons the situation is similar. From Fig. 8 we obtain for
the average level distance 1.50 (RMF), 1.24 (RMF+PCV)
and 1.06 (EXP) in units of MeV, i.e., the level density is
0.67 (RMF), 0.81 (RMF+PCV) and 0.94 (EXP) in units
of MeV−1. This corresponds to an effective mass m∗/m ≈
0.71 for the RMF and m∗/m ≈ 0.85 for the RMF+PCV
calculations. We observe that the values for the effective
masses of the protons are slightly smaller than those of the
neutrons.

Jaminon and Mahaux [27,28] have discussed in great detail
the concept of the effective mass in the case of RMF theory.

FIG. 5. The same as in Fig. 2 but for the 1h11/2 (left panel) and
2d5/2 (right panel) states in 207Tl.
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FIG. 6. The typical strongly fragmented states far from the Fermi surface in the odd mass nuclei surrounding 208Pb calculated within RMF
with allowance for the particle-vibration coupling.

On one side one has the well known Dirac mass

mD = m + �̃s(r), (45)

which is determined by the scalar field �̃s . Since we do
not use an iso-vector scalar field for the present parameter
set NL3 the Dirac mass is in these calculations identical for
protons and neutrons. However, this quantitiy should not be

FIG. 7. Neutron single-particle states in Pb208: the pure RMF
spectrum (left column), the levels computed within RMF with
allowance for the particle-vibration coupling (center) and the ex-
perimental spectrum (right).

compared with the effective mass determined empirically form
a nonrelativistic analysis of scattering data and of bound states.
From a nonrelativistic approximation of the Dirac equations
one finds that the mass

meff = m − �̃0 (46)

should be used for this purpose. Here �̃0 is the time-like
component of the Lorentz vector field determined by the
exchange of ω- and ρ-mesons.

FIG. 8. The same as in Fig. 7, but for proton single-particle states.
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In symmetric nuclear matter we find for NL3: mD/m =
0.60 and meff/m = 0.67. The latter value is smaller then
the values m∗/m ≈ 0.71 for protons and m∗/m ≈ 0.76
for neutrons deduced from the calculated spectrum around
the Fermi surface in simple RMF theory in Figs. 7 and 8.
Following similar arguments we would obtain for RMF+PVC
calculations an average effective mass of 0.89. This is
obviously still too low as compared to the experimental
value.

From the other hand, around the Fermi surface where rela-
tivistic kinematic effects are not significant our RMF+PVC
spectrum can be characterized by the effective mass de-
duced from the Schrödinger equation which is a nonrela-
tivistic limit of the Dirac equation (5). In this approxima-
tion one can calculate the state-dependent E-mass m̄/mRMF

which is the inverted spectroscopic factor of the dominant
level λ:

m̄k

mRMF
= [

S
(λ)
k

]−1
. (47)

For the calculated RMF+PVC spectrum the averaged E-
masses are 1.26 for neutrons and 1.41 for protons if one takes
into account all the states given in Table III with spectroscopic
factors more then 0.5, i.e., good single-particle states. Thus,
the energy dependence of the mass operator increases the RMF
neutron and proton effective masses up to the values 0.96 and
1.0, respectively.

C. Comparison with other approaches

Although the problem of particle-vibration coupling in
nuclei has a long history and it was considered in a number of
works, most of them are based on a nonrelativistic treatment
of the nuclear many-body problem. Only in a relatively recent
investigation in Ref. [29] a correction of the RMF single-
particle spectrum was undertaken in a phenomenological way
assuming a linear dependence of the mass operator near
the Fermi surface. The corresponding coupling constants
were determined by a fit to nuclear ground state properties.
Despite the fact that the present approach is fully microscopic
without any additional parameter adjusted to experiment, we
find good agreement with the results of Ref. [29] for the
spectrum of 208Pb. The shift caused by the phenomenological
particle-vibrational coupling in Ref. [29] is only slightly larger
than in the present investigation.

Nonrelativistic microscopic investigations of particle-
vibrational coupling can be divided into two major groups.
The first group [23,24,30,31] uses a phenomenological single-
particle input to reproduce the experimental spectrum and
has therefore to exclude the contribution of the particle-
vibration coupling from the full mass operator to find the
‘bare’ spectrum. Usually these older approaches take into
consideration only a relatively small number of collective
low-lying phonons and use a particle-vibration coupling model
[22]. This restriction to only low-lying modes produces shifts
less then 1 MeV. However, as it was shown in Ref. [31],

enlarging of the phonon space with high-lying vibrations leads
to very strong shifts of the single-particle levels up to 4 MeV,
and no saturation is observed with respect to the dimension of
the phonon space.

The second group of approaches (see, for instance
Refs. [32,33]) starts from a self-consistent Hartree-Fock
description and applies perturbation theory to calculate the
particle-vibration contribution to the full mass operator. In
such self-consistent methods it is more justified to enlarge
the phonon space. It was shown, for instance, in Ref. [33]
that the contribution of the isovector modes is noticeably
smaller than the isoscalar ones. The detailed investigation
of the relative importance of the high multipole states was
performed in Ref. [32]. Because of the larger phonon space
the typical shifts of the single-particle levels in 208Pb are about
1–2 MeV.

As for the spectroscopic factors, all the approaches predict
similar values because these factors are not very sensitive to
the details of the calculational schemes.

Thus one can see that the results of the present work are in
a good agreement with the results of earlier approaches.

IV. SUMMARY

The problem of the particle-vibration coupling is con-
sidered on the foundation of the relativistic mean field
approach. The Dyson equation for the exact single-particle
Green’s function is solved in the Dirac basis by taking into
account the energy-dependent part of the fully relativistic mass
operator. This energy-dependent part is treated in terms of the
particle-vibration coupling model that has been applied for the
relativistic approach.

The particle-phonon coupling amplitudes have been com-
puted within self-consistent RRPA using the parameter set
NL3 for the Lagrangian. A rather large number of collective
vibrational modes has been taken into account. Relativistic
effects of the Dirac sea on the mass operator have been
analyzed in the usual no-sea approximation. They have been
found to be small as compared to the contribution of the
states with positive energy. Nontheless the the Dirac sea
contributions are crucial for the description of the RRPA
vibrations (Ref. [16]) and are therefore fully taken into
account.

Noticeable increase of the single-particle level density near
the Fermi surface relatively the pure RMF spectrum is obtained
for 208Pb that improves the agreement of the single-particle
level scheme with experimental data considerably. For four
odd mass nuclei surrounding 208Pb the distribution of the
single-particle strength has been calculated and compared
with experiment as well as with the results obtained within
several nonrelativistic approaches. The major result of the
present work is a consistent description of nuclear many-
body dynamics including complex configurations within an
approach which is (i) fully self-consistent, (ii) based on
relativistic dynamics, (iii) universally valid for nuclei all over
the periodic table, and (iv) based on a modern covariant density
functional, which has been applied with great success of
many nuclear properties all over the periodic table. Complex
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configurations play an important role in our understanding of
the dynamics of the nuclear many-body problem. Here we
have discussed the single particle motion and its coupling to
collective vibrations. Such configurations are also of great
importance in the description of damping phenomena in
even-even nuclei. Thus, it is also interesting to investigate
how the coupling to vibrational states produces the spreading
width within an extended relativistic RPA approach. Work in
this direction is in progress.
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