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A comparative study is performed of a deformed mean field theory, represented by the cranked Nilsson-
Strutinsky (CNS) model and the spherical shell model. Energy spectra, occupation numbers, B(E2) values, and
spectroscopic quadrupole moments in the light pf-shell nuclei are calculated in the two models and compared.
The result is also compared to available experimental data which are generally well described by the shell model.
Although the Nilsson-Strutinsky calculation does not include pairing, both the subshell occupation numbers
and quadrupole properties are found to be rather similar in the two models. It is also shown that “unpaired”
shell model calculations produce energies similar to those from the CNS. The role of the pairing energy in the
description of backbending and signature splitting in odd-mass nuclei is also discussed.
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I. INTRODUCTION

A large number of models have been developed to gain
insight into the spectroscopic properties of nuclei. Two of
the most successful models are the spherical shell model and
the deformed shell model. Large-scale spherical shell model
calculations provide excellent agreement with observed data,
but less transparent physics interpretations. The deformed
shell model, on the other hand, is a mean field approach
that is more illustrative but gives less accurate agreement
with data. A parallel study using the two models allows
a better understanding of the underlying nuclear processes.
In this paper, we aim at comparing the predictions of the
spherical shell model (SM) with those of one version of the
deformed shell model, namely, the configuration-dependent
cranked Nilsson-Strutinsky (CNS) approach.

For nuclei in the mass region A ∼ 40–50, with valence
particles occupying pf-shell orbits, well-tested shell model cal-
culations are available, see [1] and references therein. Nuclei
in this region show several interesting collective phenomena,
such as the existence of rotational bands, backbending of
the yrast band, band termination, and the appearance of
superdeformed as well as axially asymmetric shapes (tri-
axiality) [2–4]. Other interesting features which have been
discussed for these nuclei are the role of isoscalar and
isovector pairing [1,5], violation of SU(3) symmetry [6,7]
and appearance of the “quasi-SU(3)” symmetry [8], violation
of isospin symmetry [9,10], angular momentum dependence
of the mirror energy difference [11–13], and Jacobi shapes
[14]. This long but by no means complete list indicates the
significant attention that these nuclei have received in the last
few years.

Though both the spherical shell and the CNS models
provide a microscopic description of a nucleus, they are
basically different. One difference is that the shell model
gives a laboratory frame description, while the CNS provides
a description in the intrinsic frame of reference. Another
difference is in the “model space” and the treatment of the

nuclear interaction. Within the restricted model space of
the spherical shell model, the residual interaction between
the valence particles is completely taken into account. The
deformed shell model uses a virtually unrestricted model
space. However, only specific parts of the nuclear interac-
tion are included, in particular the quadrupole-quadrupole
interaction. Furthermore, the inclusion of this interaction
is made in the mean field approximation, with the self-
consistency condition treated in an approximate way through
the Strutinsky energy theorem [15]. Comparing the two models
allows us to identify, on the one hand, the missing parts of the
nuclear interaction as well as correlations beyond the mean
field in the deformed shell model and, on the other hand,
model space limitations in the spherical shell model.

The development of the shell model computer code
ANTOINE [16] led to extensive and rather systematic theo-
retical investigations of the lower part of the pf shell, see
Refs. [1,2] for a review. These calculations resulted in a
detailed understanding of the spectroscopy in this region
of nuclei and have inspired much experimental work. The
(unpaired) cranked Nilsson-Strutinsky model [17,18] has been
applied to nearly all nuclei in the periodic table for which
high-spin states have been studied. The model successfully
describes terminating rotational bands, superdeformed bands,
and the phenomenon of shape coexistence, see Refs. [18–20]
and references therein. This model has also been used to
describe a few nuclei in the region of the present study. The
interpretation of selected high-spin data in 47,48,49Cr and 47V
was discussed in Refs. [18,21], while the odd-odd nuclei 46V
and 50Mn were investigated in Ref. [22].

The spherical shell model was previously compared to the
mean field models for some nuclei in the A ≈ 40 region
[2,21–24], and a striking similarity in the predictions was
found. In this paper we make additional comparisons between
the CNS and the shell model. Backbending, the role of pairing,
and its contribution to signature splitting are stressed. We shall
concentrate on the pf-shell nuclei close to the N = Z line
with mass numbers between A = 44 and 49. By making a
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more systematic comparison of the two models, we want to
improve our understanding of the deformed mean field model,
test its validity for fairly light nuclei, and, in particular, to
gain a better understanding of the physical picture behind
observed properties in the region. This will allow us to
assess the reliability of the CNS approach in heavier nuclei,
where spherical shell model calculations are not feasible at
present.

The paper is organized in the following way. First, we
describe the models in Sec. II. Predictions of the two models
are confronted and compared in Sec. III. The study is
summarized in Sec. IV.

II. MODELS

A. The shell model and the cranked Nilsson-Strutinsky model

Shell model results are calculated using the computer code
ANTOINE [16]. Valence particles, occupying orbits in the full
pf shell, interact via the residual interaction KB3 [25]. For
quadrupole properties, effective charges ep = 1.5 e, en = 0.5 e

are used. Most of the results obtained with a “complete”
interaction have already appeared in the publications by the
Madrid-Strasbourg group (for a recent review see Ref. [1]).
Here we will also present “unpaired” calculations which have
not been presented before. The nucleus 48Cr has been discussed
using different values of the pairing strength [26].

CNS calculations are performed utilizing the modified
oscillator potential and a standard set of parameters [17,18].
The implementation allows us to minimize the energy for
a fixed configuration at a given value of the total angu-
lar momentum with configurations defined as explained in
Refs. [18,27]. The total energy is minimized by varying
three degrees of freedom: Two quadrupole parameters, ε

(deformation) and γ (nonaxiality), and one hexadecapole
parameter ε4 [17]. Since all kinds of pairing interactions are
neglected, the CNS results are mainly valid at high spin, and
it becomes natural to normalize experimental and calculated
energies at some high spin value. However, since some pairing
may also remain at the highest spin states, we normalize the
unpaired CNS energies to the calculated unpaired shell model
energies at high spins. This is contrary to the spherical shell
model where the corresponding normalization to experiment
is generally done at the ground state. The same normalization
energy is also subtracted from the unpaired shell model
energies.

The calculated energies are often plotted with a subtracted
rotational reference Eref = 32.32A−5/3I (I + 1) MeV [18]
in order to facilitate reading the figures and to highlight
differences relative to this smooth rotational behavior. The
reference corresponds to the rotation-energy of a rigid rotor
for a prolate nucleus with a radius constant r0 = 1.20 fm and
a deformation ε ≈ 0.23.

B. Moments

A translation between the intrinsic frame of reference
and the laboratory frame of reference can be obtained using

the rotor model, where those two frames can be related,
see [28]. Thus, having values of the quadrupole deformation
parameters ε and γ , it is possible to estimate the strength of the
E2 transition between the two states, B(E2), and the spec-
troscopic quadrupole moment of a state Qspec. And vice
versa, using the values of B(E2) and Qspec, the quadrupole
deformation of a nucleus can be derived. Formally, this
identification is valid only for fixed, axially symmetric
shapes.

In the CNS approach, we calculate the intrinsic quadrupole
moments from proton single-particle wave functions at appro-
priate equilibrium deformations. Neutrons have no contribu-
tion to this moment. Since the rotor model assumes an axially
symmetric shape, while the calculated triaxiality parameter
is usually sizable, we use an approximate relation between
the intrinsic moments and the laboratory-frame observables
[21]. If a nucleus has a rather flat energy surface, quantum
fluctuations may become important. To show their effect,
we utilize an approximative method [21] in a few selected
cases to add the effect of quantum fluctuations on calculated
quadrupole properties.

C. Occupation numbers

Single j-shell occupation numbers are readily obtained from
the shell model wave-function. In the CNS calculations, the
eigenstates are expanded in a stretched basis. It is, however,
straightforward to make a transformation into a spherical basis
and then to add up the fractions of the spherical subshells of
the eigenstates at the equilibrium deformations. The method
is outlined in Ref. [29].

D. Pairing

The shell model includes all kinds of correlations, an
important part of which is pairing. To investigate the effect
of the pairing interaction, we perform two calculations:
One using the complete interaction, and another using the
interaction with the pairing force subtracted. As defined in
Ref. [26], the pairing energy is the difference between the
energies obtained in these two calculations. We consider
both the isoscalar (np; J = 1, T = 0) and the isovector
(nn + pp + np; J = 0, T = 1) L = 0 pairing [26,30]. Thus
three kinds of pairing energy are discussed: T = 0 pairing
energy, which is deduced from the interaction with a subtracted
T = 0 pairing force; T = 1 pairing energy, which is deduced
from the interaction with a subtracted T = 1 pairing force;
and the total pairing energy, which is deduced from the
interaction with both pairing forces subtracted. The normalized
pairing force is defined as [30]Hpair = GpairP̄

†P̄ . Using the
values from Table I in Ref. [30] and h̄ω0 = 9 MeV, the
following strengths are obtained: GT =0 = −(h̄ω/h̄ω0)|E10| =
−0.51h̄ω and GT =1 = −(h̄ω/h̄ω0)|E01| = −0.32h̄ω, where
h̄ω = 40A−1/3 MeV. Since the CNS approach does not
include the pairing interaction, it is reasonable to compare
its predictions to the unpaired energies of the shell model.
Note, however, that the unpaired shell model contains other
types of correlations beyond the mean field approximation
that underlies the CNS approach.
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III. RESULTS

We compare the two models for even-even systems in
Sec. III A, where the nuclei 44,46

22Ti and 48
24Cr are discussed.

For 48Cr, the negative-parity band is discussed in addition to
the ground-state band. This band has the largest negative γ

deformation in the region. A few selected odd-even nuclei
(namely, 45

22Ti, 47
23V, and 49

24Cr) are discussed in Sec. III B.

A. Even-even nuclei

1. Positive-parity band in 48Cr

The nucleus 48Cr has a half-filled f7/2 shell of protons and
neutrons, resulting in the largest ground-state deformation in
the f7/2 region. The yrast band shows an interesting behavior,
being rotorlike with a backbend and a well-established
termination at I = 16+. It has been interpreted as having a
triaxial shape [21,23]. The pairing energy along the band as
well as quadrupole properties have been studied extensively
[6,23,26,31–35]. This band is, therefore, a good example with
which to start this broader comparison between the CNS and
the shell model.

An exploratory study of 48Cr using the CNS and shell model
approaches [21] suggested that the predicted quadrupole
properties are similar, although energies are rather different,
see Fig. 1. (A similar conclusion was reached using the cranked
Hartree-Fock-Bogolyubov (CHFB) method [7,23].) We con-
tinue this comparison particularly emphasizing the role of the
pairing interaction. As in previous studies, we concentrate
on the yrast positive-parity even-spin states between I = 0
and 16.

Since pairing is neglected in the CNS calculation, Fig. 1(a)
also shows energies of two unpaired shell model calculations.
The change in the smoothness of excitation energies suggests
that the backbending behavior is mainly caused by the T = 1
pairing (as pointed out in Ref. [26] and further discussed in
Ref. [33]), while the T = 0 pairing is generally smaller than
the T = 1 pairing and decreases smoothly with spin. Small
irregularities in the spin dependence of the T = 0 pairing
energy enhance the trends in the T = 1 pairing energy. To
see the backbending behavior better, we show the angular
momentum vs the rotational frequency, h̄ω(I ) = [E(I ) −
E(I − 2)]/2, in Fig. 1(b). The complete shell model energies
(as well as the experimental energies) show a rather strong
backbending at I ≈ 12. It becomes smaller if the T = 1
pairing is subtracted. The upbending is also seen in the CNS
calculation. It is caused by the deformation change, see Fig. 2.

When the CNS energies are normalized to match the shell
model excitation energy of a fully aligned state at I = 16+,
they fall between the two unpaired shell model energies: With
only the T = 1 pairing subtracted and the pairing interaction
removed completely [Fig. 1(a)]. However, they come much
closer to the shell model results without the T = 1 pairing. A
similar behavior was noted in Ref. [23], where the shell model
and CHFB calculations were compared. This deviation of the
CHFB results from experiment was attributed to the improper
treatment of the proton-neutron pairing by the latter mean field
method [7,23].
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FIG. 1. (Color online) Energies in the 48Cr yrast band plotted
(a) relative to a rotational reference and (b) as the total angular mo-
mentum vs the rotational frequency (backbending plot). Experimental
values [32] are shown by triangles. Results of four calculations are
also shown: CNS, complete shell model, and two unpaired shell model
cases, one without the T = 1 pairing and one without both the T = 0
and the T = 1 pairing. Calculated CNS energies in (a) are matched
to the shell model excitation energy of the fully aligned 16+ state.

We already noted the similarity of the quadrupole properties
as described by the two approaches [21] and will discuss them
more below. Here we would like to point out that a more
detailed investigation of the results shows that the calculated
wave functions are similar as well. The spherical j shells are
occupied almost identically, see Fig. 3. In particular, there is
a very good agreement in the occupation of the f7/2, p3/2 and
p1/2 shells, despite the fact that the two models treat the model
space in a different manner; moreover, pairing as well as other
correlations beyond the mean field are completely neglected
in the CNS. The effects of the T = 1 pairing interaction
are visible in the increased occupation of the f5/2 shell and
the decreased occupation of the f7/2 shell. This is easily
understood in the BCS picture of the T = 1 pairing. The
pairing causes occupations of orbitals around the Fermi surface
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FIG. 2. (Color online) CNS calculated equilibrium deformations
along the yrast bands in three even-even nuclei. Deformation change
between the I = 0 and I = 2 states is negligible in all these nuclei.

to be smeared out; the Fermi surface in the nucleus 48Cr is in
the middle of the f7/2 shell and below the f5/2 shell.

The CNS predicts a much lower occupation of the f5/2 shell
(0.06 particles in the ground state as compared to 0.56 particles
predicted by the shell model); in addition, some occupation is
found outside the pf shell. The contents of excitations outside
the spherical pf-shell model space decrease smoothly with
spin from 0.28 particles in the ground state to zero in the
band-terminating state. The general agreement in occupation
numbers between the two models is remarkable, since partial
occupancies of the spherical j shells have different origins in
the two models. The two-body interaction between valence
particles causes configuration mixing in the shell model. On
the other hand, the mixing of spherical j shells is determined
by the deformation and rotation in the CNS approach.

Equilibrium deformations calculated in the CNS model at
different spin values are shown in Fig. 2 (note that a comparison
with the CHFB results [23] is presented in Fig. 3 of Ref. [21]).
The quadrupole deformation of the ground state, ε ≈ 0.23,
implies a fairly large mixing of the spherical f7/2 and p3/2

shells, see the Nilsson diagram in Fig. 4. Since all four positive
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FIG. 4. (Color online) Nilsson diagram for single-neutron states
in the modified oscillator potential. Arrows symbolize particles; their
direction indicates whether mj is positive (arrow up) or negative
(arrow down). The ground state as well as the band-terminating state
with all particles in the f7/2 shell are shown for 48Cr and 44Ti.

m states of the f7/2 subshell are occupied for protons as well
as for neutrons in the band-terminating state 16+ (cf. Fig. 3),
the nucleus obtains a spherical shape. A gradual change in
deformation, as spin increases from the ground state to the
16+ state (Fig. 2), explains the main changes in the occupation
numbers of the f7/2 and p3/2 shells, seen in Fig. 3. When the
deformation decreases, the spherical j shells are less mixed.

The particular importance of the f7/2-p3/2 mixing in
creating rotational motion, an example of “quasi-SU(3)”
symmetry, was discussed by Zuker et al. [8]. This mixing
originates from the quadrupole force that is a key part of
the CNS. It is most interesting to note [8] that expectation
values of the full shell model Hamiltonian in eigenstates of a
pure QQ force give a backbending behavior of energies, i.e.,
they include the pairing features, while corresponding energies
from the QQ force do not show backbending. This indicates,
as found also in Fig. 3, that the wave functions of the CNS
model are similar to those of the full shell model.
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2. Negative-parity band in 48Cr

A negative-parity band in the pf-shell nuclei can be obtained
by exciting one particle (a proton or a neutron) from a d3/2 orbit
to an unoccupied f7/2 orbit, forming a configuration d−1

3/2f
9
7/2.

Depending on the signatures of the d3/2 hole and the odd
f7/2 particle, eight configurations can be formed. Since the
Coulomb interaction has a small effect, mirror configurations
are almost identical. Out of the remaining four different bands,
the lowest band in the CNS calculation has odd spins, and the
bandhead is Kπ = 4− (excitation d−1

3/2,3/2f7/2,5/2). The two
even-spin bands, having αtot = 0, are nearly degenerate and
their equilibrium deformations are slightly different. Thus, we
present only the bands with α(d−1

3/2) = −1/2.
The measured and the CNS energies of the negative-parity

band in 48Cr are shown in Fig. 5. Brandolini et al. [32] reported
a shell model calculation with a d3/2 hole included. The lower
part of the spectrum could be well described, while higher
spins were described poorly. These energies are not included
in Fig. 5.

CNS predicts a slightly bigger moment of inertia than
observed experimentally. This could be expected from the
absence of pairing correlations in the model. The amount of
pairing energy can be estimated, assuming that it originates
from the pf-shell particles only. In this case, it would have a
spin dependence similar to that in 49Cr (see later in Fig. 16).
The thus obtained approximate prediction of the unobserved
energies in the negative-parity band is not shown in the figure.
We note, however, that the contribution from the pairing
correlations is expected to approximately double the signature
splitting predicted by the CNS calculations shown in Fig. 5.

Calculated equilibrium deformations for the negative-parity
bands are shown in Fig. 6. The 4− bandhead has a similar
deformation as the 0+ ground state, in agreement with the
measured B(E2) values [32,36]. However, already this state
is triaxial. Nonaxiality gets stronger as spin increases, and the
band terminates in a noncollective prolate shape (γ = −120◦).
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48Cr. Experimental data are from Ref. [32]. Filled and empty symbols
differentiate between the α = 1 and α = 0 bands respectively. CNS
energies are normalized in the same way as for the ground-state band
in Fig. 1.
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in the 48Cr negative-parity band. The odd particle in f7/2 has α =
+1/2 for the even-spin states (αtot = 0) and α = −1/2 for the odd
spins (αtot = 1), while the d3/2 hole has α = −1/2.

In fact, this negative-parity band in 48Cr exhibits the largest
calculated negative-γ deformation in the region of pf-shell
nuclei. This can be understood by analyzing single-particle
Routhians, see later in Fig. 11. A hole in the N = 2, α = +1/2
orbital, shown in the figure by a solid line, has a strong
polarization effect toward negative γ values. The excited
particle will occupy either the 25th or 26th orbital, which
are both essentially γ independent. Thus, the net effect is
a large negative-γ deformation of the bands. Since at high
spins the spectroscopic quadrupole moment is proportional to
sin(γ + 30◦) [37], we expect it to be small in this band. The
gradual decrease in ε deformation also causes the stretched
B(E2) values to decrease with increasing spin toward the
band-terminating states at 16− and 17−.

3. The nuclei 44Ti and 46Ti

Calculated and experimental energies of the yrast states in
44Ti and 46Ti are compared in Fig. 7. These two nuclei have
several measured bands (see Refs. [38] and [39], respectively)
but we restrict ourselves to the yrast bands only. As expected
from the neglect of pairing, the CNS energies deviate from
experimental data at low spins. The shell model does not
reproduce the 44Ti spectrum excellently because excitations
out of the sd shell play an important role in this nucleus [38].

In addition to the complete results, Fig. 7 shows two
other shell model calculations: with only the T = 1 pairing
subtracted, and with both pairings subtracted. Pairing does not
contribute much at I > 6. This is particularly true for 44Ti,
where both the T = 0 and T = 1 pairing energy contributions
are approximately zero. The CNS energies compare well with
those unpaired calculations, especially with the one where
only the T = 1 pairing is removed. This pairing is the main
cause of backbending at I ≈ 10 in both nuclei, since the energy
contribution from the T = 0 pairing has a smooth dependence,
decreasing with spin. All these features are similar to those in
48Cr (Fig. 1).
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FIG. 7. (Color online) Excitation energies of the yrast states in
44Ti and 46Ti plotted relative to a rotational reference. Experimental
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Having half-filled f7/2 shells for both protons and neutrons,
the 48Cr nucleus is the most collective nucleus in the region.
Since the lower f7/2 orbitals are deformation-driving (see the
Nilsson diagram in Fig. 4), subsequent removals of a pair
of protons (giving 46Ti) and a pair of neutrons (44Ti) reduce
collectivity. The quadrupole deformations ε = 0.23, 0.19, and
0.15 are predicted for the ground states of the nuclei 48Cr,
46Ti, and 44Ti, respectively, see the calculated equilibrium
deformations shown in Fig. 2.

Available experimental information and the calculated
B(E2) values for the two titanium isotopes are shown in Fig. 8.
Both the shell model and the CNS suggest a gradual decrease in
collectivity as the angular momentum increases. The transition
strengths are very similar in the two models, especially if the
CNS results are corrected for quantum fluctuations around the
equilibrium. Yrast bands terminate at I = 12+ and 14+ with
some remaining collectivity: B(E2; exp) ≈ 4 W.u.

B. Odd-even nuclei

In this section, we discuss odd-even mass nuclei with
N = Z ± 1. The nuclei having A = 45 and 47 are presented in

Sec. III B1, while the results for 49Cr are presented in
Sec. III B2. The role of pairing in backbending as well as in
signature splitting is discussed in Sec. III B3.

1. A = 45 and A = 47 nuclei

The mirror nuclei 45
22Ti23-45

23V22 and 47
24Cr23-47

23V24 have
identical spectra in the shell model since the Coulomb and
other isospin-nonconserving interactions are neglected in favor
of a good isospin. In CNS, where protons and neutrons have
different single-particle spectra because of the Coulomb inter-
action, the predicted properties of mirror nuclei are still very
similar, because the effect of isospin-violating interactions
is relatively small in this mass region: experimental mirror
energy difference is below 100 keV [9,10,13]. Because of this
similarity in spectra, we present the calculated results only for
45Ti and 47V.

Experimental and calculated energies of the yrast states in
45Ti and 47V are compared in Fig. 9. The signature α = +1/2
levels in 45Ti are known up to Iπ = 17/2−, and the energy
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FIG. 8. (Color online) Strength of the stretched E2 transitions
along the yrast bands of 44Ti and 46Ti. Measured values from
Refs. [40,41] and [3], respectively. Empty circles show the CNS
predictions taking into account quantum fluctuations around the
equilibrium shape.
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FIG. 9. (Color online) Energies of yrast states in 45Ti and 47V.
Experimental data from Refs. [42] and [43], respectively. Levels
21/2− and 25/2− in 45Ti and the 17/2− state in 47V are not
known. Filled and empty symbols distinguish between α = +1/2
and α = −1/2 bands, respectively.

of the 17/2− level in 47V is not measured. These missing
levels inhibit discussion of the pair-alignment process in
the backbending region, since the mirror energy difference
cannot be extracted. Therefore, we discuss the behavior of the
signature partners in a different way.

The ground states of 45Ti and 47V are described in the
CNS with an odd particle occupying the � = 3/2 state of the
f7/2 shell, see Fig. 4. This gives rise to a fairly large rotation-
induced signature splitting which varies smoothly with angular
momentum. The different character of the signature partners,
observed experimentally in both nuclei, is thus expected to
originate from the pairing force. This conclusion is supported
by the good agreement between the unpaired shell model
and the CNS energies (Fig. 9). Although the unpaired shell
model energies show more structure than the CNS energies, the
moments of inertia and the signature splittings are essentially
the same in the two models. We expand the discussion of the
role of pairing for the signature splitting in Sec. III B3.

Calculated equilibrium deformations for the two signature-
partner bands in 45Ti and 47V are shown in Fig. 10. An
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FIG. 10. (Color online) Equilibrium deformations along the yrast
bands in odd-even nuclei 45Ti and 47V calculated in the CNS.
Similar deformations are predicted for the mirror nuclei 45V and
47Cr, respectively.

interesting staggering of the shape is seen. The α = +1/2 band
has positive γ values, while its signature partner, the α = −1/2
band, has negative γ values. The different γ deformations
of the two signature bands affect the quadrupole properties,
while energies are less sensitive to the small changes of the
triaxiality parameter. The equilibrium deformations change
smoothly from ε = 0.17 (0.21) in the ground state of 45Ti
(47V) to ε ≈ 0.07 (0.03) in the band-terminating state, having
noncollective oblate shape (γ = 60◦). The values of the
γ parameter do not exceed 10◦ for most of the states prior
to termination.

This different γ preference may be understood from the
single-particle Routhians plotted at fixed rotational frequen-
cies in Fig. 11. The encircled numbers show the number of
particles below that point. The 23rd single-particle orbital
prefers either a positive or negative γ value, depending on
whether the α = +1/2 or −1/2 branch is occupied. This
single-particle orbital is crucial to both 45

22Ti23 and 47
24Cr23,

because neither the 22 protons in 45Ti nor the 24 neutrons
in 47V have any strong preference in γ , as we discuss below.
Since the single-neutron and single-proton level schemes are
very similar, the same arguments apply for the 45

23V22 and 47
23V24

nuclei as well.
The Routhians of Fig. 11 can also be used to illuminate

the triaxial properties of nuclei with N or Z equal to either
22 or 24. The summed effect of the two lowest f7/2 orbitals
(dashed and dash-dotted lines below particle number 22 in
Fig. 11) gives no strong preference in the γ direction. The 23rd
and 24th orbitals have forces driving in different γ directions,
leading to opposite γ deformations which results in no γ sign
preference for 24 particles. This is reflected in nearly axial
deformation of the ground-state band in 48Cr at low spins [21].
The highest N = 2, α = +1/2 orbital has a strong γ driving
force, which explains large negative-γ deformations in the 1p-
1h bands, as in the case of the negative-parity band in 48Cr, see
Sec. III A2.
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2. The nucleus 49Cr

Calculated and experimental yrast energies for 49Cr are
shown in Fig. 12. The observed splitting of the signature
partners is small at low spins. However, at spin I = 15/2 the
α = −1/2 band changes its smooth behavior in a backbending.
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FIG. 12. (Color online) Experimental [43] and calculated ener-
gies of yrast states in 49Cr.
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FIG. 13. CNS-predicted equilibrium deformations along the yrast
band in 49Cr.

The other signature band depends on angular momentum in
a smoother way up to the band termination. This behavior
of the two signature partner bands is well reproduced by the
shell model [44], although there is a systematic deviation at
higher spins. The CNS calculations show large deviations,
particularly for low spins, as is expected from the lack of
pairing correlations in this model. A rather small signature
splitting originates from the odd neutron occupying the � =
5/2 orbital of the f7/2 shell. Similarly, as in the case of 45Ti
and 47V, the shell model signature splitting reduces if the
pairing interaction is removed. These energy values agree very
well with the CNS calculation. The next section is devoted to
exploring this observation.

Calculated equilibrium deformations in the lowest α =
+1/2 and −1/2 bands in 49Cr are shown in Fig. 13. The spin
dependence of the quadrupole deformation parameter ε was
briefly discussed in Ref. [11]. Here we present a more detailed
study. Both signature bands prefer negative γ values already
at low spins. They terminate in noncollective prolate states
(γ = −120◦) at spins Iπ = 29/2− and 31/2−, respectively.

Based on the equilibrium deformations, the B(E2) values
and the spectroscopic moments Qspec were calculated. They
are shown in Fig. 14 together with experimental data on B(E2)
[43] and the shell model results. (No experimental information
on spectroscopic quadrupole moments is available.) The
agreement between the two model predictions is good. As spin
increases, the nuclear shape gradually changes from axially
symmetric prolate to triaxial shapes with negative γ values,
see Fig. 13. Simultaneously, the quadrupole parameter ε gets
smaller, which explains the gradual decrease of the B(E2)
values for both signatures. The Qspec values are additionally
reduced by γ approaching −30◦. It is interesting to note that the
quadrupole properties along the signature bands are similar,
although the energies in one of them show a backbending
behavior.

As discussed above, the shapes of both signatures in 49Cr
change with increasing spin and become clearly triaxial after
spin I > 17/2, where the rotation takes place around the
intermediate axis (indicated by a negative value of γ in the
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FIG. 14. (Color online) Quadrupole properties of yrast states in
49Cr. Upper plot shows B(E2) values for the stretched E2 transitions
along the two signature bands. Experimental B(E2) values are
taken from Ref. [43]. Lower plot shows calculated spectroscopic
quadrupole moments.

Lund convention). A signature of nuclear triaxiality in an
odd-mass nucleus is the staggering of B(E2; �I = 1) values,
as discussed by Hamamoto and Mottelson [37]. We plot them
[43,45] in Fig. 15. It is clearly seen that the staggering in the
shell model values of B(E2; �I = 1) indeed appears above
the angular momentum I = 17/2, when the shapes calculated
in the CNS become triaxial (Fig. 13).

3. Pairing, Backbending and Signature Splitting

Pairing correlations are the leading term beyond the mean
field description. By removing either the T = 1 pairing force or
both the T = 0 and T = 1 pairing forces from the shell model
interaction, unpaired shell model energies could be obtained.
Remarkably, these energies agreed very well with the energies
calculated within the unpaired CNS model. This leads us to
a more detailed study of the shell model pairing energy, its
role in causing backbending of the ground-state band, and its
contribution to the signature splitting.

In Fig. 16, we show separately the T = 0 and T = 1
pairing energies and their sum as a function of angular
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FIG. 15. (Color online) Unstretched B(E2) values in 49Cr:
experimental data [45] and shell model predictions [43]. Staggering
at higher spins indicates nonaxiality of the nuclear shape [37], as
suggested by the CNS calculation (Fig. 13).

momentum for the three odd-even nuclei 45Ti, 47V, and 49Cr.
The T = 0 pairing energy behaves smoothly in a way similar
to its behavior in the even-even nucleus 48Cr (see Fig. 4 in
Ref. [26]). Its contribution decreases from 1–2 MeV in the
ground state to a small or zero contribution in the spin-aligned
state (the highest angular momentum state shown in the figure).
The T = 1 pairing shows a pronounced odd-even effect, see
Fig. 17. The odd nucleon in the three studied odd-even nuclei
implies a blocking effect that weakens the isovector pairing
energy by about 1 MeV in the ground state, as compared to
the neighboring even-even nuclei. The isoscalar pairing energy
has a much smoother mass dependence. Note that the isoscalar
pairing contributions seem to follow the same trend along the
yrast band as the isovector pairing, although the irregularities
are much smoother (Fig. 16).

The behavior of the isovector T = 1 pairing is easy to
understand in terms of the seniority. To highlight the change
of these pairing energies, we plot them separately in Fig. 18.
The irregularities, seen in the α = −1/2 signature band of the
nucleus 47V at I = 7/2−, 19/2−, and 27/2−, correspond to
the maximum spin states in the single f7/2 shell for seniorities
v = 1, 3, and 5, respectively. These irregularities are more
prominent in the α = +1/2 band. However, they are shifted
downward by one unit of angular momentum. Similar features
are seen in the other nuclei, while the collectivity affects them
and can even make them disappear.

As we shall see, the changes of the pairing energy with
increasing spin causes backbending. Backbending of the yrast
band in the nucleus 48Cr has received a great deal of attention,
and the usual explanation in terms of a band crossing is
only partly supported by the experimental data. Another
important suggestion to explain the observed behavior [3] is
the dominance of the seniority v = 4 configuration at spin
12+ [21]. Studies of the spectra of the neighboring nuclei with
one proton or neutron either added or removed show energy
irregularities along the yrast band. However, it seems to be
overseen that this irregularity occurs only in one signature
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FIG. 16. (Color online) Pairing energy in the ground-state rota-
tional bands of the nuclei 45Ti, 47V, and 49Cr. Filled and open symbols
distinguish between different signature bands: α = +1/2 and −1/2,
respectively.

partner, and not in the other. This is seen in Fig. 19, where
we show the total angular momentum as a function of the
rotational frequency h̄ω = [Eγ (I ) − Eγ (I − 2)]/2. Cameron
et al. [46] showed the two signatures in 49Cr, but incorrect spin
assignments of the high spin states led to a wrong similarity
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FIG. 17. (Color online) Ground-state pairing energy calculated
in the shell model.

between the bands. Martı́nez-Pinedo et al. [44] stated that
the backbending behavior would be seen if the energies were
plotted as spin vs the rotational frequency. However, they did
not discuss that in any detail nor mention the different behavior
of the signature bands.

In a backbending plot, Fig. 19(a), we compare the two
signature bands in 49Cr with the yrast band in 48Cr. The lowest
signature, α = −1/2, band in 49Cr (shown as open squares)
has a very similar behavior to that of the yrast band in
48Cr with the difference being that the backbend occurs
at a lower spin value, I = 19/2. The other signature band
depends differently on frequency and exhibits no backbending
around I = 10. The change in the last transition is rather an
effect of a band termination [33] than a standard backbend.
A similar difference in the signature partners is also observed
in 47V, see Fig. 19(b). A difference from 49Cr is that the back-
bending occurs in the other signature band, α = +1/2 (filled
squares). Due to the unmeasured 17/2− state in 47V, only the
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FIG. 18. (Color online) J = 0, T = 1 pairing energy, calculated
in the shell model for odd-A nuclei 45Ti, 47V, and 49Cr.
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summed energy of the two transitions, 21/2− → 17/2− and
17/2− → 13/2−, is known. If, however, we assume that the
excitation energy of this state is close to the value measured
in the mirror nucleus 47Cr [47] (as we did in the figure), the
backbend is clearly seen. Note that independent of the exact
value of the 17/2− energy, this band will show a backbending.

As we saw in previous sections, the sum of the T = 0
and T = 1 pairing energies (calculated in the shell model and
shown in Fig. 16) seems to describe quite well the missing
pairing energy in the CNS calculation for odd-A nuclei, see
Figs. 9 and 12. When the pairing force is subtracted from the
shell model interaction, backbending is reduced, and the two
signature bands behave in a similar way. This implies that
pairing is the main cause of backbending.

The conclusion is supported by the fact that different values
of the pairing strength parameters produce similar results. In
our study, we use the normalized form of the pairing interaction
[30]. Poves and Martı́nez-Pinedo used fixed values G01 =
−2.95 MeV and G10 = −4.59 MeV [26], and the strengths
derived for the KB3 interaction are G01 = −4.75 MeV and
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Plots show 48Cr and 47V. For 47V signature α = +1/2 band is in
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pairing interaction is removed from the Hamiltonian.

G10 = −4.46 MeV (Table II in Ref. [1]). If we subtract these
pairing interactions from the Hamiltonian, the main features,
related to the unpaired shell model energies, are not changed:
The backbending gets smaller, and the agreement with the
CNS results is good for the noted cases (no T = 1 pairing for
even-even nuclei, and no pairing at all for odd-even nuclei).
We illustrate this in Fig. 20 for 48Cr and 47V.

In addition to causing the backbend, pairing increases the
signature splitting. A part of the splitting is already present
because of a rotational coupling which is well described in
the CNS model. Let us discuss how pairing contributes to
signature splitting. This also reveals the different backbending
behavior in the two signature bands.

In a simple f7/2 shell model for the odd-even nuclei 45Ti,
47V, and 49Cr with only T = 1 pairing force considered, the
pairing energy in both signature partners is the same. However,
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the values are shifted by 1 unit of angular momentum. For
example, the amount of pairing in 5/2− and 7/2− states in 49Cr
is the same, because there is no difference in the seniorities
of protons and neutrons in these two states: vp = 0, vn = 1.
To gain angular momentum, one needs to break pairs, and
it is energetically favored to do that in a similar way in
both signature partners. Since the f7/2 shell is dominant in a
complete shell model calculation, this similarity is seen in the
pairing energy of states with the spins I (starting from I = 5/2
in the α = +1/2 band) and I + 1 (α = −1/2 band), see
Fig. 18. The curve that describes the pairing energy con-
tribution to the α = −1/2 band is approximately the same
as that for the α = +1/2 band, but it is moved to the
right by one unit of angular momentum. This �I = 1 spin
shift gives a contribution to the signature splitting, since the
latter is defined as the energy difference between the two
signature partner bands calculated at a fixed value of angular
momentum.

The summed contribution from the T = 0 and T = 1
pairings to the signature splitting is studied in Fig. 21
for the considered odd-even nuclei. The figure shows the
experimental energy difference between the α = +1/2 and
α = −1/2 bands, and the corresponding differences in the
pairing contributions, �Epair. The trends agree, although some
deviations are expected because the pairing contributions do
not account for all effects (e.g., coming from the rotational
coupling). The signature splitting from the T = 0 pairing
behaves smoothly (not separated in the figure), while the
irregular behavior comes from the T = 1 part. This can
be explained to some extent by a trivial shift by one unit

of angular momentum between the two signature partners,
as discussed above. The change of slope of �Epair around
I = 25/2 in 47V and I = 17/2 in 49Cr causes the radically
different rotational behavior observed for these nuclei, namely,
that one signature band shows a backbending and the other
does not.

IV. SUMMARY AND CONCLUSIONS

A comparison was made between the unpaired cranked
Nilsson-Strutinsky model and the spherical shell model with
the KB3 interaction. It was found that quadrupole properties
predicted by the two models agree well. Furthermore, the
moment of inertia given by the CNS is close to that from
the shell model when either only the T = 1 pairing is
removed (even-even nuclei) or both T = 1 and T = 0 pairings
are removed (odd-even nuclei). In our study, we used the
normalized form of the pairing interaction, but the conclusions
do not change if fixed values of the strength parameters are
used.

In general, the shell model gives an excellent description
of observed signature splittings. It was found that the pair-
ing interaction gives a strong contribution to this splitting.
Furthermore, the different spin dependence of the pairing
energy for the signature partners in 47V and 49Cr explains why
backbending is observed in one but not in the other signature.
This behavior comes mainly from the T = 1 pairing but is
strengthened by the T = 0 pairing.

Equilibrium deformations calculated in the CNS model
show that some nuclei in the region have noticeably nonaxial
shapes with negative γ values, corresponding to rotation
around the intermediate axis. These deformations can be traced
back to contributions from specific orbitals. The nonaxial
deformations are supported by the calculated B(E2) values
and spectroscopic quadrupole moments, which agree well with
experiment and with those predicted by the shell model. For
44Ti and 46Ti, the contributions from quantum fluctuations
around the equilibrium shape led to an improved agreement
with experimental B(E2) transition strengths.

The negative-parity band in 48Cr was discussed. This band
has the largest calculated negative γ values in this region.

It was also noted that the B(E2) values predicted by the
shell model for the unstretched transitions in 49Cr have the
expected staggering behavior as a sign of triaxiality.

From this extended comparative study, we conclude that the
CNS model gives an adequate description of the quadrupole
properties as well as the occupation numbers of the spherical
j shells. Furthermore, if the pairing energy calculated from the
shell model is added to the unpaired CNS energies, improved
agreement to experimental energies is obtained. This is quite
a remarkable observation since the shell model with pairing
interaction subtracted contains correlations beyond the mean
field level, of which CNS is an approximation. It would be
most interesting to try to phenomenologically include in the
CNS model a pairing force that mimics the pairing energy
calculated in the shell model. Such a model, which might be
applied to all regions of nuclei, could naturally be tested on
the pf-shell nuclei studied here.

044327-12



CRANKED NILSSON-STRUTINSKY VS THE SPHERICAL . . . PHYSICAL REVIEW C 73, 044327 (2006)

ACKNOWLEDGMENTS

We thank E. Caurier and F. Nowacki for access to
the shell model code ANTOINE [16]. I.R. and S.Å. thank
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66 (2000).
[22] B.-G. Dong and H.-Ch. Guo, Eur. Phys. J. A 17, 25 (2003).
[23] E. Caurier, J. L. Egido, G. Martı́nez-Pinedo, A. Poves,

J. Retamosa, L. M. Robledo, and A. P. Zuker, Phys. Rev. Lett.
75, 2466 (1995).

[24] C. E. Svensson et al., Phys. Rev. Lett. 85, 2693 (2000).
[25] A. Poves and A. P. Zuker, Phys. Rep. 70, 235 (1981).

[26] A. Poves and G. Martı́nez-Pinedo, Phys. Lett. B430, 203 (1998).
[27] A. V. Afanasjev and I. Ragnarsson, Nucl. Phys. A591, 387

(1995).
[28] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

New York, 1975), Vol. 2.
[29] R. K. Sheline, I. Ragnarsson, S. Åberg, and A. Watt, J. Phys. G:
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