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We discuss methods used in mean-field theories to treat pairing correlations within the local density
approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed
nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability
of the regularization procedure make it a method of choice for future applications.
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I. INTRODUCTION

One of the main goals of low energy nuclear theory is
to build a comprehensive microscopic framework in which
nuclear bulk properties, excitations, and low energy reactions
can be described. For medium-mass and heavy nuclei, self-
consistent methods based on the density functional theory
(DFT) [1,2] have already achieved a level of precision
that allows for analysis of experimental data for a wide
range of properties of nuclei throughout the nuclide chart.
For example, the self-consistent Hartree-Fock-Bogoliubov
(HFB) models based on the Skyrme energy functionals [3–5]
can reproduce nuclear masses with an rms error of about
700 keV [6,7]. The development of a universal nuclear density
functional, however, still requires a better understanding
and improved description of density dependence, isospin
effects, pairing force, many-body correlations, and symmetry
restoration.

Nuclear pairing is an important ingredient of the nuclear
density functional, and it becomes crucial for open shell nuclei,
in particular weakly bound systems, where the effects of
coupling to continuum become significant [8,9]. In this case,
the BCS model is not adequate [8] and the fully self-consistent
HFB approach must be used.

In most HFB applications, pairing interaction is assumed
to be either in the form of the finite-range Gogny force [10]
or the zero-range, possibly density-dependent, delta force
[8,9,11]. Gogny interaction in the pairing channel can be
viewed as a regularized contact interaction, with regularization
fixed through the finite range. The resulting pairing field is,
however, nonlocal.

Calculations using the contact interaction are numerically
simpler, but one has to apply a cutoff procedure within a
given space of single-particle (s.p.) states [8,12]. When the
dimension of this space increases, the pairing gap diverges for
any given strength of the interaction. Therefore, the pairing
strength has to be readjusted for each s.p. space. Thus,
the energy cutoff and pairing strength together define the
pairing interaction, and this definition can be understood as

a phenomenological introduction of finite range [8,13]. Such
a procedure is usually referred to as the renormalization of
the contact pairing force. It is performed in the spirit of
the effective field theory, whereupon contact interactions are
used to describe low energy phenomena while the coupling
constants are readjusted for any given energy cutoff to take
into account neglected high energy effects.

The renormalization procedure for the zero-range pairing
interactions has been explored in Ref. [8] using the numerical
solutions of the HFB equations. It has been shown that by
renormalizing the pairing strength for each value of the cutoff
energy one practically eliminates the dependence of the HFB
energy on the cutoff parameter.

Recently, the issue of contact pairing force has been
addressed in Refs. [14–23], suggesting that the renormaliza-
tion procedure can be replaced by a regularization scheme
which removes the cutoff energy dependence of the pairing
strength. In particular, pairing regularization has been applied
to properties of infinite nuclear matter [19], spherical nuclei
[21,23,24], and trapped fermionic atoms [16,25]. Different
pairing schemes and regularization recipes were discussed in
Ref. [23].

In this study, we investigate the stability of the regular-
ization scheme with respect to the cutoff energy for both
spherical and deformed nuclei. Differences between the HFB
results emerging from the pairing renormalization and pairing
regularization procedures are analyzed.

The HFB and Skyrme HFB formalisms have been explained
in great detail in many papers (see, e.g., Refs. [12,26]). The
notation used in the present paper is consistent with that of
Refs. [8,12,27]. This work is organized as follows. Section II
gives a brief introduction to the pairing renormalization
and regularization schemes. In Sec. III, we explain the
numerical framework used. The comparison between pairing
regularization and renormalization techniques, studied for a
large set of spherical and deformed nuclei, is discussed in
Sec. IV. Finally, the summary and conclusions are given in
Sec. V.
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II. CUTOFF PROCEDURES

A. Pairing renormalization procedure

Within the HFB theory, the energy cutoff can be applied to
either the s.p. or the quasiparticle spectrum. The first option is
used when the HFB equations are solved within a restricted s.p.
space. However, the s.p. energies play only an auxiliary role
in the HFB method, and the cutoff applied to the quasiparticle
spectrum is more justified. This is done by using the so-called
equivalent s.p. spectrum [12]

ēn = (1 − 2Pn)En + µ, (2.1)

where En is the quasiparticle energy and Pn denotes the norm
of the lower component of the HFB wave function.

Because of the similarity between ēn and the s.p. energies,
one takes into account only those quasiparticle states for which
ēn is less than the assumed cutoff energy εcut.

It was shown [8] that for a fixed pairing strength the pairing
energies depend significantly on the energy cutoff. Within the
renormalization scheme employed in this work, we use the
prescription of adjusting the pairing strength to obtain a fixed
average neutron pairing gap [12],

�̄ = − 1

N

∫
d3rd3r′ ∑

σσ ′
h̃(rσ, r′σ ′)ρ(r′σ ′, rσ ), (2.2)

in 120Sn equal to the experimental value of 1.245 MeV. In
Eq. (2.2), N is the number of particles, ρ is the particle density,
and h̃ is the pairing Hamiltonian (see the Appendix).

Such a procedure almost eliminates the dependence of the
HFB energy on the cutoff [8].

B. Pairing regularization procedure

Using the HFB equations and properties of the Bogoliubov
transformation (see Appendix for details), one concludes that
the local abnormal density ρ̃ has a singular behavior when
εcut → ∞. The standard regularization technique is to remove
the divergent part and define the regularized local abnormal
density ρ̃r (r) as

ρ̃r (r) = lim
x→0

[ρ̃(r − x/2, r + x/2) − f (r, x)] , (2.3)

where f is a regulator which removes the divergence at x = 0.

For cutoff energies high enough, one can explicitly identify
[17–19] components generating divergence in the abnormal
density [see, e.g., Eq. (21) of Ref. [18]],

f (r, x) = ih̃(r)M∗(r)kF (r)

4πh̄2 + h̃(r)

2
Gµ(r + x/2, r − x/2),

(2.4)

where Gµ is the s.p. Green’s function at the Fermi level µ in
the truncated space, M∗ is the effective mass, and the Fermi
momentum is

kF (r) =
√

2M∗(r)

h̄

√
µ − U (r), (2.5)

with U being the self-consistent mean-field potential.
The first term in Eq. (2.4) comes from the MacLaurin

expansion with respect to x; it guarantees that the regular-
ization procedure does not introduce any constant term to
the abnormal density and that f (r, x) solely represents the
divergent part of ρ̃.

Using the Thomas-Fermi approximation, the local s.p.
Green’s function Gµ(r) := Gµ(r, r) becomes [18,19]

Gµ(r) = 1

2π2
lim
γ→0

∫ kcut(r)

0

k2dk

µ − h̄2k2

2M∗(r) − U (r) + iγ
, (2.6)

where the cutoff momentum is given by

kcut(r) =
√

2M∗(r)

h̄

√
εcut + µ − U (r). (2.7)

The regularized pairing Hamiltonian and the pairing energy
density may be written, respectively, as [18]

h̃(r) = g(r)ρ̃r (r) = geff(r)ρ̃(r) (2.8)

Hpair(r) = 1
2geff(r)ρ̃(r)2, (2.9)

where the effective pairing strength [17–19],

geff(r) =
(

1

g(r)
+ Gµ(r)

2
+ iM∗(r)kF (r)

4πh̄2

)−1

, (2.10)

after calculating integral (2.6), can be expressed in the form

geff(r) =




[
1

g(r)
− M∗(r)kcut(r)

2π2h̄2

(
1 − kF (r)

2kcut(r)
ln

kcut(r) + kF (r)

kcut(r) − kF (r)

)]−1

kF (r)2 � 0,

[
1

g(r)
− M∗(r)kcut(r)

2π2h̄2

(
1 + |kF (r)|

kcut(r)
arctan

|kF (r)|
kcut(r)

)]−1

kF (r)2 < 0.

(2.11)

In this regularization scheme, only Green’s function is
calculated using the Thomas-Fermi approximation. The den-
sities, potentials, and chemical potential are determined self-
consistently within the HFB theory. Consequently, the Fermi

momentum (2.5) depends on microscopic HFB quantities. Ac-
cording to the sign of k2

F , one of the expressions (2.11) is used.
In Ref. [20], a different regularization scheme has been

proposed that involves truncation below and above the Fermi
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level. However, the HFB calculations in the quasiparticle basis
should be performed for a high cutoff energy of 50 MeV and
higher [8]. Since the magnitude of the self-consistent mean-
field U is also about 50 MeV, for such a high cutoff energy both
methods are equivalent. The Thomas-Fermi approximation
requires that in order to obtain results independent of εcut,
its value should be high enough for kcut to be real everywhere.

Through the density dependence of geff, kcut, and kF , there
appear rearrangement terms in the self-consistent mean-field
potential:

δHpair

δρ
= δgeff

δρ
ρ̃2

= ρ̃2

(
∂geff

∂g

δg

δρ
+ ∂geff

∂kF

δkF

δρ
+ ∂geff

∂kcut

δkcut

δρ

)
. (2.12)

The first term in Eq. (2.12) is similar to the usual rearrangement
term, while the other two terms associated with the regular-
ization procedure are entirely new. It is easy to check that
all the terms appearing in Eq. (2.12) are continuous at the
classical turning point kF (r) = 0.

In Eq. (2.9), the pairing energy density is divergent with
respect to the cutoff energy. However, the pairing energy
itself is not an observable, and in order for the energy density
functional to be independent of the cutoff, other terms have to
cancel out this divergence. As discussed in Refs. [14,15,17,18],
the kinetic energy density τ has the same type of divergence
as the abnormal density ρ̃, and the sum

Hkin+pair(r) = − h̄2

2M∗(r)
τ + 1

2
geff(r)ρ̃2(r) (2.13)

does converge.
Various contributions to the total HFB energy as functions

of the cutoff energy are shown in Fig. 1. The total energy
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FIG. 1. Various contributions to the HFB energy for 120Sn as a
function of εcut. Calculations used the SLy4 Skyrme functional and
mixed pairing interaction (3.1).

is stable with respect to εcut, although some of the com-
ponents of the total energy vary significantly. As expected
from Eq. (2.13), two terms exhibiting large fluctuations
are the kinetic term (with variations of about 2 MeV) and
the pairing term (with variations of about 1.3 MeV). Also, the
momentum-dependent spin-orbit term, ES.O., has significant
variations of about 1 MeV. On the other hand, Skyrme and
Coulomb energies are fairly stable with respect to εcut.

III. NUMERICAL IMPLEMENTATION

A. Numerical framework

As the pairing renormalization and regularization proce-
dures remove the divergent part of the abnormal density in
a different way, one can expect some numerical differences
between both methods. In order to compare their results, we
have performed numerical calculations using two numerical
codes solving the HFB equations:

HFBRAD [28] – solves the HFB equations in the spherically
symmetric coordinate basis. The maximum angular momenta
used in calculations were jmax = 39/2 for neutrons and jmax =
25/2 for protons.

HFBTHO [27] – diagonalizes the HFB problem in the axially
symmetric transformed harmonic oscillator (HO) basis. Unless
stated otherwise, we use Nosc = 20 HO shells in the basis.

In our calculations, we use the SLy4 [29] and SkP
[12] Skyrme density functionals in the p-h channel. These
parametrizations are commonly used in realistic HFB calcu-
lations. While SLy4 and SkP have rather different effective
masses, this does not influence the regularization procedure
as the effective mass enters the formalism explicitly, see,
e.g., Eq. (2.11). In the p-p channel, we use the contact
density-dependent force, which leads to the pairing energy
density of the form

Hpair(r) = 1

2
g(r)ρ̃(r)2

= 1

2
V0

[
1 − V1

ρ(r)

ρ0

]
ρ̃(r)2, (3.1)

where ρ0 = 0.16 fm−3. For V1 = 0, the resulting pairing inter-
action is called volume pairing, while V1 = 1/2 corresponds
to the so-called mixed pairing prescription (Ref. [30] and
references therein).

B. Pairing renormalization

Figure 2 illustrates the importance of the pairing renormal-
ization procedure in the case of 120Sn. Due to the constraint
(2.2) on the pairing strength, the neutron average pairing gap
stays by definition constant, while the resulting total energy
changes with the cutoff energy by a few hundred keV. On
the other hand, without pairing renormalization applied, the
total energy and average neutron gap vary significantly with
increasing dimension of the quasiparticle space. In this case,
the total energy changes by several MeV.
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FIG. 2. Total energy (top) and neutron pairing gap (bottom) in
120Sn without (left) and with (right) pairing renormalization applied.
Results are shown for volume (gray) and mixed (black) pairing. Total
energy is plotted relative to values obtained for cutoff energy εcut =
60 MeV.

C. Pairing regularization

The total energy and the average neutron pairing gap
in 120Sn are shown in Fig. 3 after applying the pairing
regularization procedure. The pairing strength V0 is kept
constant; it reproduces the neutron pairing gap for 120Sn at
the cutoff energy of εcut =60 MeV.

In the left panels of Fig. 3, we show results obtained in
the HO basis, while the results from the solution of the HFB
equations in coordinate space are displayed in the right panels.
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FIG. 3. Total energy (top) and neutron pairing gap (bottom) in
120Sn for two values of Nosc (left) or two box sizes (right). Calculations
used the mixed pairing interaction.

One can correlate the coordinate-space and HO representations
by introducing an “effective box size” R ≈ √

2Nosch̄/mω [8].
Using this formula, the basis of 20 HO shells corresponds
to a box radius of about 14.5 fm. Figure 3 demonstrates
that the regularization procedure is stable with respect to
the cutoff energy. Moreover, one obtains reasonable results
already for fairly low cutoff energies of about 40 MeV. The
variations in the total energy in coordinate-space calculations
do not exceed 40 keV, while they are about 150 keV in the HO
expansion. The latter number does not decrease significantly
with Nosc.

The differences in applying the pairing regularization
procedure in the coordinate-space and HO calculations can
be explained by the different way the quasiparticle space is
expanded in both approaches. The particle density ρ is defined
by the lower components of the quasiparticle wave functions,
which are localized within the nuclear interior. On the other
hand, the abnormal density is defined by the products of
the upper and lower components of the quasiparticle wave
function. For the quasiparticle energies that are greater than
the modulus of the chemical potential, the upper components
of the quasiparticle wave function are not localized. Therefore,
contrary to the normal density, the abnormal density strongly
depends on the completeness of the s.p. basis outside the
nuclear interior.

In the coordinate-space calculations, the box boundary
conditions provide discretization of the spectrum for the
quasiparticle continuum states that are not localized. On the
other hand, all the HO basis states are localized. Results of
stability with respect to the cutoff energy for the coordinate-
space and HO calculations are, therefore, different. As far
as the description of nonlocalized states is concerned, the
coordinate-space method is superior to the HO expansion
method.

Fluctuations in the total energy shown in Fig. 3 coincide
with 2j+1-folded degenerate angular-momentum multiplets
of states in spherical nuclei that enter the pairing window with
increasing cutoff energy. This can be confirmed by performing
a similar analysis for a deformed nucleus where the magnetic
degeneracy is lifted. Such results are shown in Fig. 4 for
deformed 110Zr in comparison with spherical 120Sn. One can
see that the fluctuations of the total energy in 110Zr are down
to about 40 keV.

The steep increase in total energy at the cutoff energies
below 30 MeV results from neglecting quasiparticle states
with significant occupation probability. This effect is more
severe for mixed pairing than for volume pairing calculations
because of the surface-peaked character of mixed pairing
fields. On the other hand, the stability with respect to the
cutoff energy is similar in both cases.

We also tested the importance of the rearrangement terms
arising as a result of the regularization procedure. The gray
lines in Fig. 4 show results obtained without taking into
account the second and third term of Eq. (2.12). These terms
lead to changes in the total energy of a few keV and can be
safely neglected.

Finally, we tested the Thomas-Fermi approximation used in
the pairing regularization procedure. Instead of adopting the
Thomas-Fermi ansatz, one can perform regularization using
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the free particle Green’s function [13]. As illustrated in Fig. 5,
the convergence of the latter method is very slow; the Thomas-
Fermi method is clearly superior.

D. A link between the pairing renormalization and
regularization procedures

The renormalized and regularized pairing calculations are
based, in fact, on two different effective interactions. Conse-
quently, their results should be comparable only as much as
their effective pairing strengths geff are similar. By expanding
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FIG. 5. Two pairing regularization schemes applied to the case
of 120Sn: the Thomas-Fermi approximation [19] (black line) and
the free particle Green’s function [13] (gray line). Coordinate-space
calculations were performed in a 15 fm box.

Eq. (2.11) at very high cutoff energies (kF /kcut � 1), one
obtains

geff(r) ≈
(

1 − M∗(r)g(r)

2π2h̄2 kcut(r)

)−1

g(r), (3.2)

which has the form of geff = αg. For the volume pairing, the
proportionality factor α is ρ dependent only through the weak
density dependence of the effective mass M∗. On the other
hand, for the mixed pairing, it also depends on ρ through the
density dependence of g. Therefore, while for volume pairing
the renormalization procedure may be considered as a fair
approximation to the regularization scheme, this is not the
case for mixed pairing or – more generally – for any density-
dependent pairing. Still, this approximate equality of the effec-
tive pairing strengths for the pairing regularization and renor-
malization explains the remarkable stability of the total energy
in phenomenological pairing renormalization treatment (see
Fig. 2), and it also explains why results obtained for volume
pairing are more stable than those in the mixed pairing variant.

This effect can be clearly seen in Fig. 6. The ratio
between the effective pairing strengths in the regularization
and renormalization methods is much closer to unity for
volume pairing than for mixed pairing in the region of space
where the pairing energy density is maximal.

IV. COMPARISON BETWEEN PAIRING
RENORMALIZATION AND REGULARIZATION

PROCEDURES

In this section, we present a comparison between pairing
renormalization and regularization procedures applied to a
large number of nuclei. As representative results, we discuss
those obtained for the drip-to-drip line isotopic chains of
spherical Sn nuclei as well as for deformed Dy nuclei.
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(a) (b)

(c)

FIG. 7. Differences between pairing renor-
malization (RN) and regularization (RG) proce-
dures for (a) total and neutron pairing energies,
(b) two-neutron separation energies, and (c)
average neutron gaps. The HFB+THO calcula-
tions were performed for the spherical Sn isotope
chain using the SkP Skyrme parametrization.

Calculations are performed for volume and/or mixed pairing
interactions by using the HFB+THO approach. The isotopic
chains include all particle-bound even-even nuclei, including
the drip line systems. The stability of the regularization
procedure is primarily determined by equivalent energies
around the cutoff energy. Therefore, the quality of results is
comparable for stable nuclei and weakly bound systems.

A. Spherical nuclei

Figure 7 displays differences between the pairing renor-
malization and regularization procedures for the Sn isotopes.
Calculations are performed with both volume and mixed
pairing interactions. For the two-neutron separation energies,
the maximum difference between the renormalization and
regularization schemes is about 100 (300) keV for the vol-
ume (mixed) pairing. In the neutron gap, the correspond-
ing difference is about 50 (100) keV, and in nuclear radii
(not displayed) it is practically negligible (about 0.01 fm).
The largest differences show up in pairing energies—about

1 (3) MeV for the volume (mixed) pairing. However, total
energy differences are much smaller—about 400 (800) keV.

Analyzing the total energies obtained in both methods,
in Fig. 7(a), one can see that the pairing renormalization
procedure gives systematically more binding. The differences
are negligible for stable nuclei and nuclei near the proton drip
line. They increase in midshell nuclei near the two-neutron
drip line where the pairing effects are the largest, and then
decrease toward the closed-shell nucleus 176Sn located just at
the two-neutron drip line. In general, both procedures give
more similar results in the case of volume pairing than in the
case of mixed pairing.

Recently, the pairing regularization procedure has been
analyzed in the context of relativistic mean-field approxima-
tion [24]. In order to simulate the finite-range contribution to
the nuclear matter pairing gap coming from the Gogny pairing
force, it was necessary to introduce strong density dependence
in the pairing strength of the contact interaction.

Using the regularization procedure and calculating the
Sn chain with both volume and newly constructed (surface)

(a)

(c) (d)

(b)

FIG. 8. Similar to Fig. 7, but for deformed
Dy isotopes. Quadrupole deformations are dis-
played in panel (c). Mixed pairing interaction
was used.
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contact interaction, the authors of Ref. [24] found differences
in pairing energies of the order of 20 MeV in the neutron-rich
nuclei around 148Sn. In our work, for the same nuclei, the
differences in pairing energies between volume and mixed
pairing variants do not exceed 2.6 MeV. This comparison
shows that the density-dependent contact interaction proposed
in Ref. [24] is questionable for finite nuclei, despite its
agreement with the finite-range Gogny pairing force in the
infinite nuclear matter.

B. Deformed nuclei

We applied the pairing renormalization and regularization
procedures to the chain of deformed Dy isotopes. Differences
between both sets of results are shown in Fig. 8. We show only
the results with mixed pairing, since, as in the spherical nuclei,
the differences between both procedures are larger in this case.

As seen in Fig. 8(c), most of the nuclei considered are well
deformed, and the deformations are practically the same within
both procedures. Despite the fact that the maximum difference
in the pairing energy is around 3 MeV (not shown), other
quantities are very similar. The maximum difference in the
total energy is about 360 keV; in the two-neutron separation
energy, 160 keV; in the pairing gaps, 110 keV; and in the rms
radii (not shown), less than 0.005 fm.

V. SUMMARY AND CONCLUSIONS

In this work, we investigated the pairing regularization
method using the s.p. Green’s function in the Thomas-Fermi
approximation and found it to be very suitable for describing
spherical and deformed nuclei. We checked the stability of the
method with respect to the cutoff energy and found fluctuations
in the total energy below 200 keV. Fluctuations coming from
the method itself do not exceed 50 keV for the cutoff energy
as low as 30 MeV. However, if a still lower cutoff energy is
assumed, the Thomas-Fermi approximation to the s.p. Green’s
function may no longer be valid.

We found that the differences between pairing renormal-
ization and regularization procedures for volume and mixed
pairing are rather small. Therefore, we conclude that physical
conclusions previously obtained within the pairing renormal-
ization scheme remain valid. Nevertheless, we believe that
the theoretical motivation and simplicity of the regularization
method is preferred to a phenomenological renormalization
scheme.
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APPENDIX: DIVERGENCE IN ABNORMAL DENSITY

In the DFT-HFB approach, the starting point is the energy
density functional (EDF) H[ρ, ρ̃], where ρ is the particle
density and ρ̃ is the abnormal density

ρ(r2σ2τ2, r1σ1τ1) = 〈�|a†
r1σ1τ1

ar2σ2τ2 |�〉, (A1)

ρ̃(r2σ2τ2, r1σ1τ1) = −2σ1〈�|ar1−σ1τ1ar2σ2τ2 |�〉, (A2)

where a and a† are the particle annihilation and creation
operators, respectively, and |�〉 is the HFB state. In the
following, we assume that |�〉 is a product of the neutron
and proton states, |�ν〉|�π 〉. Therefore, the neutron and
proton wave functions are not coupled, and in the notation
below we can, for simplicity, omit the isospin index with
the understanding that all equations are separately valid for
neutrons and protons.

For the HFB state |�〉, the particle and abnormal densities
can be written as [12]

ρ(r2σ2, r1σ1) =
∑
Ei>0

ϕ2i(r2σ2)ϕ∗
2i(r1σ1), (A3)

ρ̃(r2σ2, r1σ1) = −
∑
Ei>0

ϕ2i(r2σ2)ϕ∗
1i(r1σ1), (A4)

where the two-component quasiparticle wave function ϕ is the
solution of the HFB equation

∑
σ1

∫
d3r1

[
hµ(r2σ2, r1σ1) h̃(r2σ2, r1σ1)

h̃(r2σ2, r1σ1) −hµ(r2σ2, r1σ1)

]

×
[

ϕ1i(r1σ1)
ϕ2i(r1σ1)

]
= Ei

[
ϕ1i(r2σ2)
ϕ2i(r2σ2)

]
, (A5)

for a given quasiparticle energy Ei .
The HFB equations are a result of variational minimization

of the energy density functional H[ρ, ρ̃] with the constraint of
the mean value of particles kept constant:

δH|〈N̂〉=N = 0. (A6)

This condition defines the s.p. Hamiltonian hµ and the pairing
Hamiltonian h̃ in the HFB equations (A5) as

hµ(r2σ2, r1σ1) = δH[ρ, ρ̃]

δρ(r1σ1, r2σ2)
− µ

= −∇r2

h̄2

2M∗(r2σ2, r1σ1)
∇r1

+U (r2σ2, r1σ1) − µ, (A7)

h̃(r2σ2, r1σ1) = δH[ρ, ρ̃]

δρ̃(r1σ2, r2σ2)
, (A8)

where M∗ is the effective mass and U is the self-consistent
mean-field potential. In the following derivations, the spin-
orbit term is omitted as unimportant in the regularization
scheme, although it is, of course, always included in calcu-
lations.

By multiplying the HFB equations (A5) by vector
[ϕ∗

2i ,−ϕ∗
1i], integrating over coordinates, and summing over
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all the positive energy HFB solutions, one obtains∑
Ei>0,σ2

Ei

∫
d3r2

[
ϕ∗

2i(r2σ2), −ϕ∗
1i(r2σ2)

] [
ϕ1i(r2σ2)
ϕ2i(r2σ2)

]

=
∑

Ei>0,σ1σ2

∫ ∫
d3r1d

3r2
[
ϕ∗

2i(r2σ2), −ϕ∗
1i(r2σ2)

]

×
[

hµ(r2σ2, r1σ1) h̃(r2σ2, r1σ1)

h̃(r2σ2, r1σ1) −hµ(r2σ2, r1σ1)

] [
ϕ1i(r1σ1)

ϕ2i(r1σ1)

]
(A9)

i.e.,∑
Ei>0,σ1

Ei

∫
d3r1{ϕ∗

2i(r1σ1)ϕ1i(r1σ1) − ϕ∗
1i(r1σ1)ϕ2i(r1σ1)}

=
∑

Ei>0,σ1σ2

∫ ∫
d3r1d

3r2{ϕ∗
2i(r2σ2)hµ(r2σ2, r1σ1)ϕ1i(r1σ1)

+ϕ∗
2i(r2σ2)h̃(r2σ2, r1σ1)ϕ2i(r1σ1)

+ϕ∗
1i(r2σ2)hµ(r2σ2, r1σ1)ϕ2i(r1σ1)

−ϕ∗
1i(r2σ2)h̃(r2σ2, r1σ1)ϕ1i(r1σ1)}. (A10)

Since for every HFB solution ([ϕ1i , ϕ2i], Ei) there exists also
an orthogonal solution ([ϕ2i ,−ϕ1i],−Ei), the left-hand side of
Eq. (A10) vanishes as a sum over scalar products of orthogonal
wave functions.

For local and spin-independent Hamiltonians hµ and h̃,
Eqs. (A7) and (A8) read

hµ(r2σ2, r1σ1) = −∇r2

h̄2

2M∗(r2)
δ(r2 − r1)δσ2,σ1∇r1

+ (U (r2) − µ)δ(r2 − r1)δσ2,σ1 , (A11)

h̃(r2σ2, r1σ1) = h̃(r2)δ(r2 − r1)δσ2,σ1 . (A12)

Note that for an attractive pairing force, the local pairing
potential h̃(r) = −�(r) is negative, where �(r) is the standard
position-dependent pairing gap. By defining function Fεcut as∑
Ei>0,σ

[ϕ1i(r2σ )ϕ∗
1i(r1σ ) + ϕ2i(r2σ )ϕ∗

2i(r1σ )] =Fεcut (r2 − r1)

(A13)

and using expression (A4) for the abnormal density,
one obtains after integrating the kinetic energy term by

parts

0 = −
∫

d3r1d
3r2δ(r2 − r1)

[
h̃(r2)[Fεcut (r2 − r1)

− 2ρ(r2, r1)] +
(

h̄2

2M∗ ∇r2∇r1 + U (r2) − µ

)
2ρ̃(r1, r2)

]

= −
∫

d3rd3xδ(x)
[
h̃(r)[Fεcut (x) − 2ρ(r, r)]

+
(

h̄2

2M∗

(
1

4
∇2

r − ∇2
x

)
+ U (r) − µ

)

× 2ρ̃(r − x/2, r + x/2)
]
, (A14)

where

r = r1 + r2

2
, (A15)

x = r2 − r1, (A16)
and

ρ(r2, r1) =
∑

σ

ρ(r2σ, r1σ ), (A17)

ρ̃(r2, r1) =
∑

σ

ρ̃(r2σ, r1σ ). (A18)

When the summation over positive quasiparticle energies
is extended to infinity, the completeness relation implies
that

Fεcut (r2 − r1) = δ(r2 − r1), (A19)

and the only term in Eq. (A14) capable of canceling out this
singularity is ∇2

x ρ̃(r − x/2, r + x/2). Therefore, the Laplacian
of the abnormal density ∇2

x ρ̃(r − x/2, r + x/2) must be
singular at x = 0. Moreover, using the expression

∇2 1

|r| = −4πδ(r), (A20)

it is clear that because of the zero-range pairing interaction,
abnormal density ρ̃ has an ultraviolet 1/x divergence:

ρ̃(r − x/2, r + x/2) ∼ − h̃(r)M∗(r)

4πh̄2|x|

∣∣∣∣
x→0

. (A21)
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