
PHYSICAL REVIEW C 73, 044317 (2006)

Pair correlation in deformed neutron-drip-line nuclei: The eigenphase
formalism and asymptotic behavior
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The Hartree-Fock-Bogoliubov (HFB) equation for deformed nuclei in a simplified model is solved in coordinate
space with correct asymptotic boundary conditions, in order to study the pair correlation in nuclei close to the
neutron drip line. The eigenphase formalism is applied, when the upper components of HFB radial wave functions
are continuum wave functions. Calculated occupation probabilities of various Nilsson orbits in the HFB ground
state vary smoothly from the region of the upper components being bound wave functions to that of those being
continuum wave functions. It is shown that weakly-bound or resonance-like �π = 1/2+ Nilsson orbits contribute
little to the occupation probability of the HFB ground state, while the contribution by the orbits with a large
value of �, of which the smallest possible orbital-angular-momentum is neither 0 nor 1, may be approximately
estimated using the BCS formula.
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The study of nuclei far from the β stability line has been
providing a challenge to the conventional theory of nuclear
structure. An interesting and important feature unique in the
system with some weakly bound nucleons is the importance
of the coupling to the nearby continuum of unbound states, as
well as the impressive role played by weakly bound nucleons
with low orbital angular momenta �, especially in neutron drip
line nuclei. Since the Fermi level of drip line nuclei in the
mean-field approximation is very close to the continuum, the
many-body correlation in the ground state necessarily receives
contributions by some of the infinite number of one-particle
levels in the continuum.

In the present work we are interested in the many-body
pair correlation in deformed neutron-drip-line nuclei. In
Ref. [1] we have studied the many-body pair correlation
of spherical neutron-drip-line nuclei, while in Ref. [2] one-
particle resonant levels in a quadrupole deformed potential are
investigated in the absence of pair correlation using eigenphase
[3]. One-particle resonant levels defined in a similar way
are used also in the study of proton emission in deformed
nuclei outside the proton drip line [4]. In the absence of pair
correlation in deformed nuclei the eigenphase formalism is
needed only when one considers positive-energy one-particle
levels [2]. In contrast, in the presence of pair correlation the
upper components of the HFB radial wave functions of a
bound system can be continuum wave functions. Then, it is
absolutely preferable to solve the HFB equation in coordinate
space with correct asymptotic boundary conditions instead
of restricting the system to a finite box. The solution of
this problem was shown in Refs. [5,6] for spherical nuclei,
however, to our knowledge it has not been done in deformed
nuclei. The eigenphase formalism in deformed potentials
is a natural extension of the phase shift used in spherical
potentials that is defined for respective (�, j ) values. In
contrast to the case of Ref. [3] where eigenphase is applied

to the study of general positive-energy states in a deformed
potential, we are interested in the HFB upper components that
are strongly coupled to some weakly-bound Nilsson levels.
Extending the simplified HFB model employed in Refs. [1,7,8]
to the deformed nuclei, in which continuum wave functions
are involved, in the present paper we formulate the model,
show numerical solutions, and try to extract the relevant
physics.

We consider the time-reversal invariant and axially sym-
metric quadrupole-deformed system with many-body pair
correlation. Single quasiparticle wave functions are written
as

�i
�(�r) =

∑
�j

Ri
�j�(Eqp, r)Y�j�(r̂), i = 1, 2, (1)

where � expresses the component of one-particle angular
momentum �j along the symmetry axis, which is a good
quantum number, and

Y�j�(r̂) ≡
∑

m�,ms

C

(
�,

1

2
, j ; m�,ms,�

)
Y�m�

(r̂)χms
. (2)

The upper (i = 1) and lower (i = 2) components of the radial
wave functions are introduced as

rRi
�j�(Eqp, r) = u�j�(Eqp, r) and v�j�(Eqp, r). (3)

Assuming that both the Hartree-Fock (HF) and pair potentials
are given by the well-bound core nucleus, our HFB equation
is reduced to the coupled equations for u�j� and v�j�, which
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are written as

(
d2

dr2 − �(�+1)
r2 + 2m

h̄2 (λ + E�
qp − V (r) − Vso(r))

)
u�j�(r) − 2m

h̄2 �0(r)v�j�(r)

= 2m

h̄2

∑
�′j ′ 〈Y�j�|Vcoupl|Y�′j ′�〉u�′j ′�(r) + 2m

h̄2

∑
�′j ′ 〈Y�j�|�20|Y�′j ′�〉v�′j ′�(r),(

d2

dr2 − �(�+1)
r2 + 2m

h̄2 (λ − E�
qp − V (r) − Vso(r))

)
v�j�(r) + 2m

h̄2 �0(r)u�j�(r)

= 2m

h̄2

∑
�′j ′ 〈Y�j�|Vcoupl|Y�′j ′�〉v�′j ′�(r) − 2m

h̄2

∑
�′j ′ 〈Y�j�|�20|Y�′j ′�〉u�′j ′�(r)




. (4)

Since the model Hamiltonian and Eq. (4) are the same as
those used in Ref. [8], where Eq. (4) was solved in the case
that continuum wave functions are not involved, here we do
not repeat the detailed description of all terms. We use the
Woods-Saxon potential as a replacement of the HF potential,
and some quantities appearing in Eq. (4) are

V (r) = VWSf (r),

Vcoupl(�r) = −βk(r)Y20(r̂),
(5)

f (r) = 1

1 + exp
(

r−R
a

) ,

k(r) = rVWS

df (r)

dr
.

We fix the parameters to be a = 0.67 fm and VWS = −51 MeV,
which are the standard parameters used in β stable nuclei [9].
The strength of the one-body potential is varied by changing
the radius of the potential R in units of r0 = 1.27 fm. We
present the numerical results obtained by using the functional
form of the volume-type pairing, �0(r) ∝ f (r), and �20 ∝
d�0(r)/dr . The averaged strength of the pair field defined by

�̄ ≡
∫ ∞

0 r2dr�0(r)f (r)∫ ∞
0 r2drf (r)

(6)

is an input of numerical calculations expressing the strength
of the pair field. The way of solving the coupled equations (4)
is taken from Ref. [10].

For (λ + E�
qp) < 0 Eq. (4) is an eigenvalue problem and the

asymptotic behavior of HFB wave functions for r → ∞ is

u�j�

(
E�

qp, r
) ∝ rh�(αur)

v�j�

(
E�

qp, r
) ∝ rh�(αvr)


 , (7)

where h�(−iz) ≡ j�(z) + in�(z), in which j� and n� are
spherical Bessel and Neumann functions, respectively, and

α2
u ≡ − 2m

h̄2

(
λ + E�

qp

)
α2

v ≡ − 2m

h̄2

(
λ − E�

qp

)

 . (8)

The normalization of the wave functions is written as∑
�j

∫ ∞

0

(∣∣u�j�

(
E�

qp, r
)∣∣2 + ∣∣v�j�

(
E�

qp, r
)∣∣2)

dr = 1 (9)

and the quantity

∑
�j

∫ ∞

0

∣∣v�j�

(
E�

qp, r
)∣∣2

dr for
(
λ + E�

qp

)
< 0 (10)

describes the occupation probability of the discrete one-
particle level in the deformed HF potential, for which E�

qp

is the eigenvalue of the HFB equation (4).
For (λ + E�

qp) > 0 the solution of Eq. (4) exists for any
values of Eqp and is looked for, of which the wave functions
for r → ∞ are written as

u�j�(E�
qp, r) ∝ (cos(δ�)rj�(αcr) − sin(δ�)rn�(αcr))

v�j�(E�
qp, r) ∝ rh�(αvr)

}
,

(11)
where

α2
c ≡ 2m

h̄2

(
λ + E�

qp

)
. (12)

For a given set of potential parameters and E�
qp the coupled

equations (4) are integrated both outward from r = 0 and
inward from a large r value. Then, we look for the eigenphase
δ�, which is common to all channels (�, j ), so that at r = Rm

we can match inward-integrated u�j�(E�
qp, r) and v�j�(E�

qp, r)
and those of their derivatives with the outward-integrated
u�j�(E�

qp, r) and v�j�(E�
qp, r) and those of their derivatives,

respectively. We obtain several solutions of δ�, the number
of which is equal to that of wave function components with
different (�, j ) values. The value of δ� determines the relative
amplitudes of different (�, j ) components. It is found that the
only upper components u�j�(E�

qp, r) which can appreciably
couple to v�j�(E�

qp, r) of a given Nilsson level are those
with a particular one of δ�. The continuum wave function
u�j�(E�

qp, r) in Eq. (11) is normalized to the Dirac δ function
of energy,∫ ∞

0
dr

∑
�j

u�j�(Eqp, r)u�j�(E′
qp, r) = δ(Eqp − E′

qp).

(13)

Then, the quantity

∑
�j

∫ ∞

0

∣∣v�j�

(
E�

qp, r
)∣∣2

dr for
(
λ + E�

qp

)
> 0 (14)
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represents the occupation number probability density per unit
energy interval, while the quantity

∑
�j

∫ Emax
qp

−λ

dE�
qp

∫ ∞

0

∣∣v�j�

(
E�

qp, r
)∣∣2

dr, (15)

can be interpreted as the occupation probability of a given
Nilsson level.

For convenience, we choose to show numerical results of
the Nilsson orbits, of which both the bound and resonant
levels in the absence of the many-body pair correlation
are already presented in detail in Ref. [2]. Taking λ =
−1.0 MeV, �̄ = −1.0 MeV and β = 0.5, in Fig. 1(a) the
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FIG. 1. (a) Calculated occupation probability of the [211 1/2],
[202 3/2] and [330 1/2] Nilsson orbits in the HFB ground state
as a function of one-particle bound (εWS < 0) or resonant energy
(εWS > 0) of the Woods-Saxon potentials. The radius of the Woods-
Saxon potential is varied for respective orbits, in order to vary
respective values of εWS . The occupation probabilities obtained
from the solution with (λ + Eqp) > 0 are denoted by open symbols,
while those with (λ + Eqp) < 0 by filled symbols. (b) Calculated
occupation probability for the same parameters as those in (a), except
setting �20 = 0. For the [202 3/2] orbit in the case of �20 = 0 with
the present parameters no solution with (λ + Eqp) < 0 exists for any
value of εWS , due to the effectively larger pair gap. The thin dashed
curve shows the occupation probability in the BCS approximation
with � = 1 MeV.

calculated occupation probabilities of three representative
Nilsson orbits, which are defined by Eq. (10) for (λ + Eqp) < 0
and Eq. (15) for (λ + Eqp) > 0, respectively, are plotted as
a function of one-particle bound (εWS < 0) and resonant
(εWS > 0) energies of respective Woods-Saxon potentials.
Though εWS does not appear in the HFB equation (4), we have
separately calculated it for respective Woods-Saxon potentials.
The value of Emax

qp in Eq. (15) is set equal to 5 MeV, at which the
contribution to the integral is already negligible in the present
numerical examples. The distance between the one-particle
levels with a given �π in a deformed potential is shorter than
that with a given (�, j ) in a spherical potential, especially
for small � values. Thus, if we take a larger value such
as Emax

qp =10 MeV, there is a risk to include the occupation
probability of other Nilsson levels with the same �π than
the specified level. In the absence of pair correlation it is
shown [2] that no one-particle resonant states are found as
a continuation of the bound [211 1/2] level, while the [330
1/2] level has a short continuation for εWS > 0 and the [211
3/2] level continues up to several MeV as a one-particle
resonant level.

For reference, in Fig. 1(b) we show the calculated occu-
pation probabilities of the same Nilsson orbits as those in
Fig. 1(a), which are obtained by setting �20 = 0 in Eq. (4). The
inclusion of the �20 term increases (decreases) the effective
pair gap of the [330 1/2] ([202 3/2]) orbit since the quadrupole
deformation with β > 0 is favored (disfavored) by the [330
1/2] ([202 3/2]) orbit, while it hardly affects that of the [211
1/2] orbit. Correspondingly, the occupation probability of the
[330 1/2] ([202 3/2]) orbit in Fig. 1(a) decreases less (more)
rapidly than in Fig. 1(b), as εWS increases from −1.0 MeV.
Due to the effectively larger pair gap in the [202 3/2] orbit
in the absence of the �20 term, no HFB discrete solution
exists for any value of εWS in contrast to the case shown in
Fig. 1(a). In Fig. 1(b) the occupation probability in the BCS
approximation is plotted by a thin dashed curve, where � =
1 MeV and λ = −1 MeV are used. It is seen that the
occupation probability of the [202 3/2] level obtained
by using the present formalism follows closely the BCS
value.

It is seen that both [211 1/2] and [330 1/2] levels lose
drastically the occupation probability in the HFB ground state
or the contribution to the many-body pair correlation, already
when εWS(< 0) approaches zero. For a given �π value it
depends somewhat on the structure of each orbits how quickly
their occupation probabilities decrease. When the calculated
occupation probability becomes very small for (λ + Eqp) > 0,
there is some small numerical ambiguity in the calculated
occupation probabilities due to the Emax

qp values chosen in
Eq. (15). Furthermore, when the eigenvalue Eqp approaches
−λ for (λ + Eqp) < 0, there is a very small contribution to
the occupation probability also from the region of Eqp > −λ,
as shown in Ref. [1]. This contribution is not included in the
filled symbols of Fig. 1.

In Fig. 2 we plot the occupation number probability
densities per unit energy of various (�, j ) components

∫ ∞

0

∣∣v�j�

(
E�

qp, r
)∣∣2

dr (16)

044317-3



IKUKO HAMAMOTO PHYSICAL REVIEW C 73, 044317 (2006)

p1/2 

p3/2 

f5/2 

f7/2 

Occupation number probability density per MeV of [330 1/2] 

volume pairing including ∆20       ∆ = 1.0 MeV 
( R/r0 )

3 = 16     β = 0.5     εWS = − 0.0146 MeV 

λ = − 1.0 MeV     VWS = − 51 MeV      

(λ + Eqp ) > 0 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eqp (MeV) 

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 (

M
eV

-1
) 

FIG. 2. Occupation number probability density per unit energy
of various (�, j ) components of the [330 1/2] level, Eq. (16), as
a function of quasiparticle energy Eqp . No discrete HFB solution
exists for the present potential parameters, which produce εWS =
−0.0146 MeV.

as a function of Eqp, taking the [330 1/2] level with the
potential which gives εWS = −0.0146 MeV. Though for a
well-bound [330 1/2] level the f7/2 component is predominant
[11], in Fig. 2 it is seen that p3/2 is the major component.
See also Fig. 4 of Ref. [7]. The peak of the occupation
number probability densities occurs at Eqp = 1.119 MeV,
which is only slightly different from Eqp = 1.1252 MeV
where δ� = 1

2π for u�j�(E�
qp, r) is obtained.

Taking the value of Eqp = 1.1252 MeV, in Fig. 3 the HFB
radial wave functions of the [330 1/2] level are exhibited
for the two major components, p3/2 and f7/2. For this small
positive value of (λ + Eqp)= +0.1252 MeV, the continuum
wave function uf 7/2(r) does not show any violent behavior
in the plotted range of r, while up3/2(r) clearly exhibits the
structure of a continuum wave function.

In conclusion, applying the eigenphase formalism to the
asymptotic boundary conditions of the upper components of
radial wave functions for (λ + Eqp) > 0, the HFB equation for
deformed nuclei in a simplified model is solved in coordinate
space. Though there are several solutions of eigenphase for a
given set of potential parameters and E�

qp, it is found that the
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FIG. 3. HFB radial wave functions of the [330 1/2] level as
a function of radial variable. At the chosen value of Eqp =
1.1252 MeV the eigenphase δ� of the upper component of HFB
radial wave functions, u�j�(Eqp, r), increases through 1

2 π .

lower components of radial wave functions, v�j�(r), of a
given Nilsson level couple appreciably only to the upper
components with a particular solution of eigenphase. Those
u�j�(r) with other values of eigenphase may strongly couple
to v�j�(r) of other Nilsson levels than the present one and,
thus, may become important, for example, when excitation
modes are considered. It is shown that weakly-bound or
resonance-like �π = 1/2+ and 1/2− Nilsson orbits contribute
little to the occupation probability of the HFB ground state.
Combining this finding together with their considerably small
effective pair gaps exhibited in Ref. [8], those orbits may
contribute little to the many-body pair correlation of the
HFB ground state. On the other hand, the contribution by
the orbits with a large value of �, of which the smallest
possible orbital-angular momentum is larger than 1, may be
approximately estimated using the BCS approximation. It
remains to see how quantitatively the fully self-consistent HFB
calculations solved in coordinate space with correct asymp-
totic boundary conditions support the results of the present
work.
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