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A collective Hamiltonian for the rotation-vibration motion of nuclei is considered in which the axial quadrupole
and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system
depends on the two deformation variables β2 and β3. The system is considered to oscillate between positive and
negative β3 values by rounding an infinite potential core in the (β2, β3) plane with β2 > 0. By assuming a coherent
contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is
derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways
in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the
energy levels and electric transition probabilities in alternating parity spectra of the nuclei 150Nd, 152Sm, 154Gd,
and 156Dy is presented.
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I. INTRODUCTION

Shape deformations and surface oscillations in atomic
nuclei determine from a geometric point of view the main
features of nuclear collective dynamics [1]. The leading
quadrupole mode manifests itself in all regions of collectivity
providing vibrational, rotational, and transitional structures of
the spectra. In addition, in some regions the manifestation of
octupole degrees of freedom is superposed, leading to more
complicated shape properties and parity effects in the spectrum
of the system [2,3]. A variety of microscopic, geometric,
and algebraic model approaches have been applied in nuclear
regions where the quadrupole and octupole degrees of freedom
coexist [3].

In general, the problem of quadrupole-octupole collectivity
is not easy to solve neither microscopically, mainly because
of the breaking of reflection symmetry, nor geometrically,
because of the difficulty in determining the total inertia tensor
of the system. It is, however, simplified considerably if the axial
symmetry is still preserved and if the octupole deformations
are fixed appropriately with respect to the principal axes of
the quadrupole shape. Further simplification is achieved if
both degrees of freedom are separated adiabatically. It allows
one to examine the manifestation of the octupole mode for
fixed values of quadrupole parameters. In such a case the
collective motion can be associated to the oscillations of
the reflection asymmetric shape with respect to an octupole
variable β3 in a double-well potential [4,5]. Then the parity
shift effect observed in nuclear alternating parity bands can be
explained as the result of the tunneling through the potential
barrier [6,7]. This concept has been generalized for the case of
simultaneously contributing quadrupole and octupole modes
[8], as well as for the case of higher multipole degrees of
freedom [9]. In both cases the double-well potential was
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defined in terms of a variable carrying the relative contribution
of the different degrees of freedom and not the absolute
values of the respective deformation variables. In such a way
the explicit form of the original potential in terms of the
quadrupole β2 and octupole β3 deformation variables was not
given. As a consequence, some basic characteristics of the
quadrupole and octupole modes and their interaction remain
outside of consideration. Such is the behavior of the system in
dependence on the quadrupole and octupole stiffness, as well
as the limiting case of a frozen quadrupole variable. Another
interesting question is if and to what extent one may consider
the presence of a tunneling effect in the space of the octupole
variable β3 after the quadrupole coordinate β2 is let to vary.
Some limiting cases in the shape evolution and the angular
momentum properties of the system are also of interest in
respect with the above.

The purpose of the present work is to clarify the above
questions by applying a simple explicit form of the collective
energy potential as a function of the quadrupole and octupole
axial deformation variables β2 and β3. We examine the
evolution of the potential shape in dependence on both degrees
of freedom, as well as on the collective angular momentum.
The geometric analysis suggests that the oscillations of the
system in the two-dimensional case of simultaneous manifes-
tation of the quadrupole and octupole modes are performed
in a different way, compared to the one-dimensional case of a
reflection asymmetric shape with a frozen quadrupole variable.
We study the physical consequences of the two-dimensional
oscillations and demonstrate their role in the rotation-vibration
motion of the system.

In particular, the explicit geometric analysis of the
quadrupole-octupole potential suggests a possibility for a
coherent interplay between both collective modes. This allows
the derivation of explicit analytic expressions for the energy
levels and electromagnetic transition probabilities applicable
to nuclei in which an “equal” (coherent) manifestation of
quadrupole and octupole degrees of freedom is considered.
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As a result, one is able to study in detail the respective effects
in the structure of the spectrum. Below it will be shown that
such a consideration can be applied reasonably to some nuclei
in the rare-earth region, such as the N = 90 isotones 150Nd,
152Sm, 154Gd, and 156Dy. These nuclei are also a subject of
interest [10,11] from the point of view of the X(5) critical point
symmetry [12] between quadrupole vibrations [U(5)] and axial
quadrupole deformation [SU(3)]. In the present work we shall,
however, mainly consider the common quadrupole-octupole
collective properties, which, in principle, can take place in
various nuclear regions.

In Sec. II the Hamiltonian of the coupled quadrupole and
octupole modes is presented, together with the geometric
analysis of the quadrupole-octupole potential. In Sec. III the
Schrödinger equation is considered in the case of a coherent
interplay between the two degrees of freedom. The analytic
solutions for several particular forms of the potential and the
respective schematic spectra are given in Sec. IV. In addition,
results of the model description of alternating parity spectra
in 150Nd, 152Sm, 154Gd, and 156Dy are presented. The electric
transition probabilities are considered in Sec. V, whereas in
Sec. VI a brief discusssion of the influence of the γ degree
of freedom on the present results is given. Finally, a summary
and concluding remarks are given in Sec. VII.

II. HAMILTONIAN FOR THE COUPLED QUADRUPOLE
AND OCTUPOLE MODES

We assume that the system is allowed to oscillate with
respect to the quadrupole β2 and octupole β3 axial defor-
mation variables. In addition, both degrees of freedom are
coupled through a centrifugal (rotation-vibration) interaction
depending on the collective angular momentum I. The energy
potential represents a two-dimensional surface determined by
the variables β2 and β3.

The quadrupole-octupole Hamiltonian describing the col-
lective motion under the above assumptions has the form

Hqo = − h̄2

2B2

∂2

∂β2
2

− h̄2

2B3

∂2

∂β2
3

+ U (β2, β3, I ), (1)

where the potential is

U (β2, β3, I ) = 1

2
C2β2

2 + 1

2
C3β3

2 + X(I )

d2β
2
2 + d3β

2
3

, (2)

with X(I ) = I (I + 1)/2. Here B2 and B3 are the effective
quadrupole and octupole mass parameters and C2 and C3 are
the stiffness parameters for the respective oscillation modes.

The last term in Eq. (2) provides a coupling between
quadrupole and octupole degrees of freedom. Its denominator
can be associated to the moment of inertia of an axially sym-
metric quadrupole-octupole deformed shape, J (quad+oct) =
3B2β

2
2 + 6B3β

2
3 [13]. Therefore, the constants d2, d3 > 0 can

be related to the mass parameters as d2 = 3B2 and d3 = 6B3.
However, in the present study we do not impose this relation
and below a more general correlation between d2, B2 and
d3, B3 is considered. The quantities d2 and d3 determine
the contributions of the quadrupole and octupole modes,
respectively, to the moment of inertia. Also, we remark that

if the ground state of the system is considered (I = 0), the
potential U (β2, β3, I ) should be taken by replacing X(I ) →
d0 + X(I ), with d0 being a constant.

The Hamiltonian [Eq. (1)] represents a two-dimensional
generalization of the soft octupole oscillator Hamiltonian
introduced in Ref. [14], as well as of the one-dimensional
octupole Hamiltonian derived in Ref. [15]. In the latter
two approaches the quadrupole mode is assumed frozen as
mentioned in Sec. I. In this respect, Eq. (1) corresponds to an
extension in which the quadrupole coordinate is let to vary.
Also, it corresponds to the quadrupole-octupole Hamiltonian
in Refs. [8,9]. However, in the present work the potential
energy [Eq. (2)] is taken in an explicit form depending on
β2 and β3 (including the harmonic oscillator part), whereas
in Refs. [8,9] a double-oscillator potential is defined in the
space of polar coordinates. In this way, the explicit form of
Eq. (2) allows one to examine in detail the potential surface
and its dependence on the model parameters and the collective
angular momentum.

Having in mind that the quadrupole deformation has
the leading role in the rotation mode, we assume that
its contribution to the moment of inertia is larger than
the octupole contribution. This assumption corresponds to
the condition d2 > d3, e.g., we can take d2 = 0.1h̄2 MeV−1

and d3 = 0.01h̄2 MeV−1. Then, for comparable values of
the deformation variables β2 and β3, the input of the
quadrupole mode in the denominator of the centrifugal term
will be larger than the octupole one. However, as shown in
Sec. III, this circumstance does not restrict the possibility of
equal (coherent) contributions of both degrees of freedom in
the mixed quadrupole-octupole oscillation mode. Moreover,
because the rotation and vibration modes are coupled, the
above condition might be not strictly imposed. In this meaning
the considered values of d2 and d3 provide only a schematic
geometric analysis of the potential [Eq. (2)].

Let us now examine the minimum of the potential energy
in dependence on the model parameters. The set of extremum
conditions for the coordinates of the two-dimensional mini-
mum (β2 min, β3 min) is

∂

∂β2
U (β2, β3, I )

∣∣∣∣
(β2 min,β3 min)

= 0 and

(3)
∂

∂β3
U (β2, β3, I )

∣∣∣∣
(β2 min,β3 min)

= 0;

∂2

∂β2
2

U (β2, β3, I )

∣∣∣∣
(β2 min,β3 min)

> 0 and

(4)
∂2

∂β2
3

U (β2, β3, I )

∣∣∣∣
(β2 min,β3 min)

> 0.

It determines the following possible cases for the bottom of
the potential:

(i) β3 min = 0; β2 min = ± [2X(I )/(d2C2)]1/4;
(ii) β2 min = 0; β3 min = ± [2X(I )/(d3C3)]1/4;
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FIG. 1. (Color online) Schematic 3D plot of the potential
U (β2, β3, I ), Eq. (2), in MeV, for I = 5, as a function of β2 and β3.
The parameter values are C2 = C3 = 100 MeV, d2 = 0.1h̄2 MeV−1,
and d3 = 0.01h̄2 MeV−1.

(iii) β2 min �= 0 and β3 min �= 0 with the condition

C2 = 2X(I )d2(
d2β

2
2 min + d3β

2
3 min

)2

and (5)

C3 = 2X(I )d3(
d2β

2
2 min + d3β

2
3 min

)2 .

The shape of the potential corresponding to case (i)
is illustrated in Fig. 1. It is characterized by two energy
minima for β2 > 0 and β2 < 0 separated by a well-determined
potential barrier. For given sign of β2 (we consider β2 > 0) the
bottom of the potential is not separated in the β3 direction, al-
lowing oscillations of the system between β3 > 0 and β3 < 0.
This situation is illustrated in Fig. 2. We see that for a
fixed physically typical value of β3 [Fig. 2(a)] the barrier in
the quadrupole space of β2 is very large. Thus it restricts
the values of the quadrupole deformation within the half
space β2 > 0. For a fixed typical β2 value [Fig. 2(b)] the barrier
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FIG. 3. (Color online) Schematic 3D plot of the potential
U (β2, β3, I ), Eq. (2), in MeV, for I = 5, as a function of β2 and
β3. The parameter values are C2 = 100 MeV, C3 = 10 MeV, d2 =
0.1h̄2 MeV−1, and d3 = 0.01h̄2MeV−1.

in the octupole space of β3 is relatively small. From Fig. 1 it
is seen that for some higher β2 values this barrier is reduced,
and for β2 � β2 min it disappears (β3 min = 0).

In case (ii) the potential shape is the same as in Fig. 1, but
the coordinates β2 and β3 are exchanged. As far as the system
is not considered to oscillate between positive and negative β2

deformations, this case is not of interest in the context of the
present analysis.

In the case (iii) of nonzero β2 min and β3 min, Eq. (6) imposes
the relation

d2

C2
= d3

C3
. (6)

It determines an elliptic form of the bottom of
the two-dimensional potential surface given by β2

2 min/√
2X(I )/(d2C2) + β2

3 min/
√

2X(I )/(d3C3) = 1. The shape of
the potential corresponding to case (iii) is illustrated in Fig. 3.
It suggests that the system moves in the two-dimensional
space of the deformation variables β2 and β3 by rounding the

(a) (b)

FIG. 2. Schematic numerical behavior of the potential U (β2, β3, I ), Eq. (2), in MeV, for I = 1, as a function of (a) β2 at fixed β3 = 0.1 and
(b) β3 at fixed β2 = 0.25. The parameter values are C2 = C3 = 100 MeV, d2 = 0.1h̄2 MeV−1, and d3 = 0.01h̄2 MeV−1.
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FIG. 4. (Color online) Schematic picture of the tunneling and the
rounding way in the β3 variable. See Sec. II for further discussion.

internal potential core. If a prolate quadrupole deformation
is considered, the rounding is performed between positive
and negative β3 values in the space of β2 > 0. This situation
can be considered as the two-dimensional extension of the
one-dimensional case in which the β2 coordinate is frozen. To
explain this in detail, we consider a horizontal (equipotential)
intersection of the shape in Fig. 3, which is illustrated schemat-
ically in Fig. 4. We see that if the quadrupole coordinate is fixed
at some value of β2 > 0, the motion in the octupole coordinate
between positive and negative β3 values is characterized by the
tunneling through a potential barrier (a vertical intersection of
the core). When β2 is let to vary, the tunneling is replaced
by a motion along the curved way rounding the potential
core.

The above case (iii) is of particular interest, because of the
simultaneous presence of nonzero coordinates of the potential
minimum in both degrees of freedom. It suggests that the
oscillations in the quadrupole and octupole coordinates are
involved in the collective motion on the same footing. As it
will be seen below, such a situation appears to take place
in certain nuclear regions. Moreover, it will be seen that the
ellipsoidal symmetry in the potential bottom allows, under
some additional conditions, a complete analytic determination
of the energy spectrum. This is why in the following we imply
this case, unless something different is indicated. Also, we
assume only the presence of prolate quadrupole deformations.
This is why hereafter we consider only the β2 > 0 part of the
space.

Further, we examine the evolution of the potential shape
with the angular momentum I. We consider the following two
cases:

(a) The potential minimum (the two-dimensional bottom) is
allowed to change with I for fixed values of the stiffness
parameters C2 and C3.

(b) The minimum is fixed, so that the values β2 min and β3 min

determine an ellipse which does not change with the
angular momentum.

It is clear that in the case of fixed stiffness parameters,
case (a) the quadrupole and the octupole deformations corre-
sponding to the potential minimum should exhibit an overall
increase in the denominator of Eqs. (6) with increasing I.

In the case of fixed minima, case (b) the stiffness parameters
C2 ≡ C2(I ) and C3 ≡ C3(I ) increase quadratically with I
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FIG. 5. (Color online) 3D plot of the potential UI (β2, β3), Eq. (8),
in MeV, for I = 5, as a function of β2 and β3, with β2 min =
0.25, β3 min = 0.1, d2 = 0.1h̄2 MeV−1, and d3 = 0.01h̄2 MeV−1.

according to the right-hand sides of (6). Then the substitution
of Eqs. (6) into (2), leads to the following form of the
quadrupole-octupole potential

U (β2,β3,I ) = X(I )

[
d2β

2
2 + d3β

2
3(

d2β
2
2 min + d3β

2
3 min

)2 + 1

d2β
2
2 + d3β

2
3

]
.

(7)

If the origin of the energy scale is fixed at the potential
minimum, one has

UI (β2, β3) = U (β2, β3, I ) − U (β2 min, β3 min, I )

= X(I )
[
d2

(
β2

2 − β2
2 min

) + d3
(
β2

3 − β2
3 min

)]2(
d2β

2
2 min + d3β

2
3 min

)2(
d2β

2
2 + d3β

2
3

) . (8)

We remark that Eq. (7) includes the rotational contribution
of the centrifugal term, which moves up the energy with
increasing angular momentum I. However, in Eq. (8) the
explicit contribution of the rotational degree of freedom
is diminished, so that the energy term keeps mainly the
vibrational component. The shape of Eq. (8) with β2 > 0 is
illustrated in Fig. 5.

III. MODEL POTENTIALS AND THE SCHRÖDINGER
EQUATION IN POLAR VARIABLES

Further, it is convenient to introduce polar variables η and
φ by taking

β2 = η√
d2/d

cos φ; β3 = η√
d3/d

sin φ, (9)

with d = (d2 + d3)/2. Considering β2 > 0, we have

η = 1√
d

√
d2β

2
2 + d3β

2
3 ; φ = arctan

(
β3

β2

√
d3

d2

)
, (10)

where the “effective” deformation variable η is defined with
positive values η > 0, whereas the relative (“angular”) variable
φ is defined in the interval −π/2 � φ � π/2. We remark that
the negative φ values correspond to negative β3. (The variable
β3 takes both positive and negative values.)
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Then the quadrupole-octupole Hamiltonian (1) can be
written in the form

Hqo = − h̄2 d2

2dB2

[
cos2 φ

∂2

∂η2
+ 1

η
sin2 φ

∂

∂η
+ 1

η2
sin2 φ

∂2

∂φ2

+ 2
1

η2
sin φ cos φ

∂

∂φ
− 2

1

η
sin φ cos φ

∂2

∂η∂φ

]
− h̄2d3

2dB3

[
sin2 φ

∂2

∂η2
+ 1

η
cos2 φ

∂

∂η

+ 1

η2
cos2 φ

∂2

∂φ2
− 2

1

η2
sin φ cos φ

∂

∂φ

+ 2
1

η
sin φ cos φ

∂2

∂η∂φ

]
+ UI (η). (11)

Under Eq. (6), the potential energy depends only on the
effective deformation variable η and on the angular momentum
I and not on the relative (angular) variable φ. Then in case (a)
of fixed stiffness parameters one has

UI (η) = 1

2
Cη2 + X(I )

dη2
[case(a)], (12)

where C is defined according to Eq. (6) as 1/C = d2/(dC2) =
d3/dC3.

In case (b) of fixed minima the potential term appears in
the following two forms

UI (η) = X(I )
η4 + η4

min

dη4
minη

2
[case(b1)] (13)

UI (η) = X(I )

[
η2 − η2

min

]2

dη4
minη

2
[case(b2)], (14)

where Eq. (13) corresponds to the rotation-dependent potential
(7), whereas Eq. (14) represents the essentially vibrational
term (8). The quantity ηmin = (1/

√
d)(d2β

2
2 min + d3β

2
3 min)1/2

is the value of the variable η in the potential minimum. In the
following we refer to Eq. (13) as case (b1) and to Eq. (14) as
case (b2).

Using the effective deformation variable η we also examine
a third case (c) of an infinite square well with an infinite core
at zero defined as

UI
w(η) =

{
X(I )
dη2 η � ηw

∞ η > ηw
[case(c)], (15)

where ηw is a parameter determining the width of the well.
Now we assume the following relation between the

quadrupole and octupole mass and inertia parameters

d2

dB2
= d3

dB3
= 1

B
. (16)

This leads to the following form of the model Hamiltonian

Hqo = − h̄2

2B

[
∂2

∂η2
+ 1

η

∂

∂η
+ 1

η2

∂2

∂φ2

]
+ UI (η). (17)

The assumption (16), which much simplifies the problem,
suggests that d2 and d3 are related to the mass parameters
B2 and B3, respectively, through the same coefficient d/B. By
comparing Eq. (16) and Eq. (6), we obtain C2/B2 = C3/B3 or
ω2

2 = ω2
3, i.e., Eq. (16) implies that both degrees of freedom,

quadrupole and octupole, are characterized by equal angular
frequencies ω2 and ω3, respectively. This means that a coherent
interplay between the two collective modes is assumed.
In other words, the Eq. (16) suggests that the oscillations in
the quadrupole and octupole coordinates are represented in
the collective motion on the same footing. The quantity B
in Eq. (16) has the meaning of the effective mass of the total
quadrupole-octupole system.

The Schrödinger equation for the Hamiltonian (17) has the
form

− h̄2

2B

1

η2

[
η2∂2

∂η2
+ η

∂

∂η
+ ∂2

∂φ2

]
�(η, φ)

+UI (η)�(η, φ) = E�(η, φ). (18)

After dividing it by h̄2/(2Bη2) and separating the variables η

and φ through �(η, φ) = ψ(η)ϕ(φ) we obtain the following
two equations

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η) + 2B

h̄2

[
E − h̄2

2B

k2

η2
− UI (η)

]
ψ(η) = 0;

(19)

∂2

∂φ2
ϕ(φ) + k2ϕ(φ) = 0, (20)

where k is the separation quantum number.

IV. ANALYTIC SOLUTIONS AND NUMERICAL RESULTS

In the following we give analytic solutions of the above
equations in the cases (a)–(c) with the potentials described by
Eqs. (12), (13), (14), and (15).

In Case (a), after introducing the potential described in
Eq. (12) into Eq. (19) we have

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η) + 2B

h̄2

[
E − h̄2

2B

k2

η2

− 1

2
Cη2 − X(I )

dη2

]
ψ(η) = 0. (21)

By introducing a reduced energy ε = 2B/h̄2E and a reduced
angular momentum factor X̃(I ) = bX(I ), with b = 2B/h̄2d ,
we obtain Eq. (21) in the form

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η) +

[
ε − k2 + X̃(I )

η2
− BC

h̄2 η2

]
×ψ(η) = 0. (22)

The effective potential appearing in the brackets of Eq. (22)
is of a form similar to the Davidson potential [16], which
is analytically solvable [17,18]. Thus Eq. (22) can be solved
analytically and we obtain the following explicit expression
for the energy spectrum

En,k(I ) = h̄ω

[
2n + 1 +

√
k2 + X̃(I )

]
, (23)

where ω = √
C/B and n = 0, 1, 2, . . . . The eigenfunctions

ψ(η) of Eq. (21) are obtained in terms of the Laguerre
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polynomials

ψI
n (η) =

√
2�(n + 1)

�(n + 2s + 1)
e−aη2/2asη2sL2s

n (aη2), (24)

where a = √
BC/h̄ and s =

√
k2 + X̃(I )/2.

Now we remark that Eq. (20) in the variable φ is solved
under the periodic boundary condition ϕ(φ + 2π ) = ϕ(φ).
However, the assumption β2 > 0, which is equivalent to
the consideration of an infinite potential wall at β2 = 0 (or
φ = ±π/2), imposes the additional condition

ϕ(−π/2) = ϕ(π/2) = 0. (25)

Equation (20) has two different solutions satisfying Eq. (25)
with positive, π = (+), and negative, π = (−), parity as
follows

ϕ+(φ) =
√

2/π cos(kφ), k = ±1,±3,±5, . . . ; (26)

ϕ−(φ) =
√

2/π sin(kφ), k = ±2,±4,±6, . . . . (27)

Equation (26) provides positive parity for the intrinsic wave
function, whereas Eq. (27) corresponds to a negative parity
function. As a result, the intrinsic wave function appears in the
form �±(η, φ) = ψ(η)ϕ±(φ). However, the RP symmetry of
the total wave function of the system,  ∼ �±(η, φ)|IKM〉,
has to be conserved. The R symmetry of the rotation function
|IKM〉 is characterized by the factor (−1)I . For the total state
of the system one has π (−1)I = 1. It follows that for I = even
the quantum number k is allowed to take the values k(+) =
1, 3, 5, . . . , corresponding to the even function (26), whereas
for I = odd one has k(−) = 2, 4, 6, . . . corresponding to the odd
function (27). Thus, when the angular momentum is changed
from I = odd to I = even and vice versa, the respective values
of the quantum number k should switch between k(−) and k(+).
This parity effect provides an odd-even staggering structure of
the spectrum (23). We consider that the lowest states of the
system with respect to the variable φ are characterized by the
lowest k values, k(+) = 1 for I = even and k(−) = 2 for I =
odd. Therefore, the staggering behavior of the model spectrum
is provided by the difference �k2 = k2

(−) − k2
(+) = 3.

In such a way the energy expression (23), with the parity-
dependent quantum number k, determines the structure of an
alternating parity spectrum. The energy levels E0,k(I ), with
n = 0, correspond to the yrast alternating parity sequence.
The levels with n �= 0 correspond to higher-energy bands, in
which the rotational states are built on quadrupole-octupole
(mixed β2-β3) vibrations of the system. In this case, the
states with even I appear similarly to the states of a higher
β (quadrupole) band. Thus, the present model suggests that, in
the nuclear regions with quadrupole-octupole collectivity, one
may consider “octupole mixed” β-band structures. We remark
that, in the present model framework, the γ bands are not
included. This can be done in an extended formalism allowing
the simultaneous consideration of the γ variable. In addition,
the octupole triaxiality can be taken into account. Then one
may also discuss possible “octupole admixtures” in the γ -band
structure.

We can estimate analytically the staggering effect at
higher angular momenta, where �k2 	 X̃(I ). The square-

(a)

(b)

FIG. 6. Schematic energy levels (a) and staggering pattern (b) for
the spectrum of Eq. (23) with n = 0. The parameter values are shown
in (a), ω is given in MeV/h̄, whereas b and d0 are in h̄−2 and h̄2

respectively.

root term
√

k2 + X̃(I ) in Eq. (23) can be expanded as√
X̃(I ) + k2/[2

√
X̃(I )]. We see that the term k2/[2

√
X̃(I )],

which is responsible for the staggering effect, decreases
nearly linearly with the angular momentum I because X̃(I ) =
bX(I ) ∼ I (I + 1). We consider the quantity b = 2B/(h̄2d)
as a model parameter. The numerical behavior of the energy
and the staggering effect for the spectrum (23) is illustrated
in Fig. 6. The staggering effect is illustrated in terms of the
five-point quantity

Stg(I ) = 6�E(I ) − 4�E(I − 1) − 4�E(I + 1)

+�E(I + 2) + �E(I − 2), (28)

where �E(I ) = E(I + 1) − E(I ). The schematic staggering
pattern suggests that the odd and even angular momentum
sequences approach each other toward higher angular mo-
menta. It outlines a trend for the forming of an octupole band.
However, the linear decrement of the staggering amplitude is
not enough to provide such a band structure at reasonable (ex-
perimentally observed) angular momenta. A similar situation
is observed in rare-earth nuclei, where the alternating parity
levels approach each other without merging into a single band.
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(a)
(b)

(c) (d)

FIG. 7. (Color online) Theoretical and experimental energy levels for the alternating parity bands in 150Nd (data from Ref. [19]), 152Sm
(data from Ref. [20], 154Gd (data from Ref. [21]), and 156Dy (data from [22]). The theoretical results are obtained by (23) with n = 0. The
parameter units are as in Fig. 6.

On this basis, we applied Eq. (23) to describe the alternating
parity spectra in the nuclei 150Nd, 152Sm, 154Gd, and 156Dy.
The theoretical energies are obtained by taking Ẽn,k(I ) =
En,k(I ) − En,k(0), with n = 0 and X(I ) = 1

2 [d0 + I (I + 1)],
where the parameter d0 characterizes the potential shape in the
ground state, as mentioned in the paragraph after Eq. (2). The
parameters ω, b, and d0 are adjusted to the energy levels by
means of a least-squares minimization procedure.

In Fig. 7 results for the energy levels of 150Nd, 152Sm,
154Gd, and 156Dy are compared to the experimental data. The
respective theoretical and experimental staggering patterns are
compared in Fig. 8. In 150Nd [Fig. 7(a)], the levels with I =
9, 11, 13 are predicted. The respective staggering pattern for
I > 5 [Fig. 8(a)] is also predicted. We see that in the nuclei
152Sm, 154Gd, and 156Dy the experimental patterns confirm the
predicted behavior of alternating parity levels with increasing
angular momentum.

In case (b1) after introducing Eq. (13) into Eq. (19), we
have the equation

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η) + 2B

h̄2

[
E − h̄2

2B

k2

η2

− X(I )

dη2
− X(I )

dη4
min

η2

]
ψ(η) = 0, (29)

which is solved in the same way as Eq. (21) of case (a), and
the respective energy levels are obtained in the form

En,k(I ) = h̄2

√
X̃(I )

Bη2
min

[
2n + 1 +

√
k2 + X̃(I )

]
, (30)

where n = 0, 1, 2, . . .. The eigenfunctions ψ(η) of Eq. (29)
are of the same form as Eq. (24) in case (a), but with a =√

X̃(I )/η2
min.

All considerations related to the φ equation (20) and the
quantum number k are the same as in case (a). However, now
we obtain a different behavior of the staggering amplitude
as a function of the angular momentum. This is seen after

expanding the term
√

X̃(I )
√

k2 + X̃(I ) of Eq. (30) in the form

X̃(I ) + k2/2. The appearance of the staggering effect is only
because of the term k2/2. Because the difference �k2 = 3 does
not depend on I, the staggering effect will be characterized by
a constant amplitude. The schematic behavior of the energy
levels and the respective staggering pattern for the spectrum of
Eq. (30) are illustrated in Fig. 9. Indeed, we see from Fig. 9(b)
that, after some slight increase in the beginning, toward the
higher angular momenta the staggering amplitude saturates to
a constant value.
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(a) (b)

(c) (d)

FIG. 8. (Color online) Theoretical and experimental staggering patterns for the alternating parity bands in 150Nd, 152Sm, 154Gd, and 156Dy.
Experimental data are taken from the same references as in Fig. 7. The theoretical results are obtained by (23) with n = 0. The parameter units
are as in Fig. 6.

In case (b2), Eq. (14) differs from Eq. (13) of case (b1) by
the term −2X(I )/(dη2

min). The respective energy spectrum is

En,k(I ) = h̄2

√
X̃(I )

Bη2
min

[
2n+ 1 +

√
k2 + X̃(I ) −

√
X̃(I )

]
, (31)

with the wave function ψ(η) being the same as in case (b1).

Equation (31) differs from Eq. (30) by the term −
√

X̃(I )
in the brackets. This term reduces the angular momentum
dependence of the energy to a linear (vibrational) behavior.
However, it does not affect the staggering effect. Therefore,
similarly to case (b1), the staggering pattern for the levels
[Eq. (31)] will be characterized by a constant amplitude. This is
seen from the schematic numerical results illustrated in Fig. 10.

In Case (c) (the square-well potential [Eq. (15)] the
Schrödinger equation can be written in the form

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η) +

[
ε − ν2

η2

]
ψ(η) = 0, (32)

where ν2 = k2 + X̃(I ) and η � ηw. By introducing new vari-
ables through the definitions z = ηκ and ε = κ2, we obtain
Eq. (32) in the form of the Bessel equation

∂2

∂z2
ψ(z) + 1

z

∂

∂z
ψ(z) +

(
1 − ν2

z2

)
ψ(z) = 0. (33)

The spectrum of this equation is determined by the boundary
condition ψν(ηw) = 0 and is given by

ε = κ2
ν, n, κν, n = xν, n

ηw

, (34)

where xν, n is the nth zero of the Bessel function Jν(z). The
eigenfunctions have the form ψν, n(η) = cν, nJν(κν, nη), where
cν, n are normalization constants. The schematic behavior of
the spectrum [Eq. (34)] and the respective staggering pattern
are illustrated in Fig. 11. We remark that the staggering
amplitude initially decreases, whereas toward higher I it
saturates to a constant value.

V. ELECTRIC TRANSITION PROBABILITIES

The formalism developed so far allows the calculation of
E1, E2, and E3 transition probabilities for the energy spectra
in the considered cases (a)–(c). In cases (a) and (b), the reduced
probability for an electric transition of multipolarity L from a
state with angular momentum Ii to a state with If is given by

B(EL; Ii → If ) = 1

2Ii + 1

∑
MiMf µ

∣∣〈�±
nf If Mf

(η, φ)
∣∣

×Mµ(EL)
∣∣�±

niIiMi
(η, φ)

〉∣∣2
, (35)
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(a)

(b)

FIG. 9. Schematic energy levels (a) and staggering pattern (b)
for the spectrum of Eq. (30) with n = 0. The parameter values are
shown in part (a), B is given in h̄2/MeV, b in h̄−2, whereas ηmin is
dimensionless.

where

�±
nIM (η, φ) = ψI

n (η)ϕ±(φ)|I0M〉

=
√

2�(n + 1)

�(n + 2s + 1)
e(−aη2/2)asη2sL2s

n (aη2)

×ϕ±(φ)

√
2I + 1

32π2
DI

0,M (θ ). (36)

The general form of the multipole operators M in the col-
lective variables is given in Ref. [23]. The electric quadrupole
and octupole transition operators for an axially symmetric
nucleus are defined by the deformation variables β2 and
β3 as

Mµ(EL) = MLβLDL
0µ(θ ), L = 2, 3,

(37)
(µ = −L, . . . , L),

whereas the E1 (dipole) transition operator is defined as [24–
27]

Mµ(E1) = M1β2β3D
1
0µ(θ ), (µ = 0,±1), (38)

where Mi (i = 1, 2, 3) are constants related to the respective
intrinsic moments. In terms of the polar variables η and φ the

(a)

(b)

FIG. 10. Same as Fig. 9, but for the spectrum of Eq. (31).

above transition operators read

Mµ(E1) = M1
η2 cos φ sin φ√

d2d3/d2
D1

0µ(θ ), (39)

Mµ(E2) = M2
η cos φ√

d2/d
D2

0µ(θ ), (40)

Mµ(E3) = M3
η sin φ√

d3/d
D3

0µ(θ ). (41)

In Eq. (35) the integration over the angles θ involves an
integral over three Wigner functions [28], which leads to
the Clebsch-Gordan coefficients 〈Ii0L0|If 0〉. The integration
over the variable φ leads to the following constants

I++
E2 = 2

π

∫ π/2

−π/2
cos3 φdφ = 8

3π
, (42)

I−−
E2 = 2

π

∫ π/2

−π/2
cos φ sin2(2φ) dφ = 32

15π
, (43)

I+−
E1 = 2

π

∫ π/2

−π/2
cos2 φ sin φ sin(2φ) dφ = 16

15π
, (44)
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(a)

(b)

FIG. 11. Schematic energy levels (a) and staggering pattern (b)
for the spectrum of Eq. (34) with n = 0. The parameter values are
shown in (a), B is given in h̄2/MeV, d is in h̄2 MeV−1, whereas ηw is
dimensionless.

I+−
E3 = 2

π

∫ π/2

−π/2
cos φ sin φ sin(2φ) dφ = 1

2
. (45)

The notations (++), (−−), and (+−) correspond to the
parities of the functions ϕ±(φ) included in the integration.

As a result, the reduced E1, E2, and E3 transition proba-
bilities between levels with |niIi〉 and |nf If 〉 are given by the
expressions

B(E1, Ii → If ) = b1〈Ii010|If 0〉2S2(E1, Ii → If ), (46)

B(EL, Ii → If ) = bL〈Ii0L0|If 0〉2S2(EL, Ii → If ), (47)

where

S(E1, Ii → If ) =
∫ ∞

0
dηψ

If

nf
(η)η3ψIi

ni
(η), (48)

S(EL, Ii → If ) =
∫ ∞

0
dηψ

If

nf
(η)η2ψIi

ni
(η), (49)

with L = 2, 3. In Eq. (47) the values of the integrals (42),
(43), and (45) are included in the constant bL. In Eq. (46) the
constant [Eq. (44)] is included in b1. We remark that if values

of different kinds of transition probabilities are compared, or
if branching ratios are considered, Eqs. (42)–(45) should be
taken into account explicitly.

In the case of transitions between states of the yrast
alternating parity band, |0Ii〉 and |0If 〉 (with ni = nf = 0),
we obtain the integrals in Eqs. (48) and (49) in the following
simple analytic form

S(E1, Ii → If ) = 1

a2

�(si + sf + 2)√
�(2si + 1) �(2sf + 1)

, (50)

S(EL, Ii → If ) = 1

a3/2

�
(
si + sf + 3

2

)√
�(2si + 1) �(2sf + 1)

, (51)

where si = (1/2)
√

k2
i + X̃(Ii), sf = (1/2)

√
k2
f + X̃(If ), and

a = √
BC/h̄.

In the case of the infinite square well potential [case (c)],
the model wave function is of the form

�±
ν,n,IM (η, φ) = cν, nJν(κν, nη)

√
2I + 1

32π2
DI

0,M (θ )ϕ±(φ),

(52)

whereas the integrals over the variable η read

S(E1, Ii → If ) =
∫ ∞

0
dηJνi

(κνi , ni
η)η3Jνf

(κνf , nf
η); (53)

S(EL, Ii → If ) =
∫ ∞

0
dηJνi

(
κνi ,ni

η
)
η2Jνf

(
κνf , nf

η
)
. (54)

In general, the above formalism can be applied for a
detailed analysis of the electric transition rates in spectra
where the collective quadrupole-octupole dynamics carries the
characteristics outlined in the cases (a)–(c) of our study. In
Figs. 12 and 13 we illustrate its application to E2 transition
probabilities in the nuclei 150Nd, 152Sm, 154Gd, and 156Dy, as
well as to the E1 transitions in 152Sm, in the framework of
case (a). The results are obtained with the parameter sets given
in Fig. 7. The quantity a = √

BC/h̄, appearing in Eqs. (50) and
(51), has been considered as a fitting parameter. The constant
b1 in Eq. (46) has been determined so as to scale the theoretical
E1 transition values with respect to the experimental data and
takes the value b1 = 1.2 × 10−6, whereas the constants bL in
Eq. (47) have been set equal to 1.

We see a good agreement between theory and experiment
for the B(E2) values in 150Nd [Fig. 12(a)], 152Sm [Fig. 13(a)],
and 154Gd [Fig. 12(b)]. In Fig. 12(c), the theoretical E2
transition probabilities in 156Dy are compared to two different
sets of experimental data, Refs. [29] and [30] (with no error
bars reported in Ref. [30]. We see that the theoretical values
follow only the overall increase of the experimental data. We
should, however, remark that the two sets of data diverge
essentially, especially at the higher angular momenta. There
is also some discrepancy between theory and experiment in
the E1 transition values in 152Sm [Fig. 13(b)]. The results
in Figs. 12(c) and 13(b) suggest that further examination of
the formalism, as well as of the experimental data, may be
necessary. The further analysis of data on electric transitions
in a wider range of nuclei will be the subject of future work.
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(a) (b)

(c)

FIG. 12. (Color online) Theoretical and experimental B(E2) transition probabilities (in W.u.) as functions of the angular momentum in the
alternating parity spectra of 150Nd, 154Gd, and 156Dy. The data for 150Nd, 154Gd, and for Experiment A in 156Dy are from Ref. [29]; Experiment
B in 156Dy is from Ref. [30]. The theoretical results are obtained by Eq. (47). See Sec. V for further discussion.

VI. INFLUENCE OF THE γ DEFORMATION MODE ON
THE β2-β3 COLLECTIVE MOTION

As it has been mentioned in Sec. IV, the present model
framework does not include the γ degree of freedom. Here we

briefly discuss the possible ways in which this can be done and
shortly estimate the influence of the γ deformation mode on
the collective motion in the β2-β3 space. The rotation energy of
a system with presence of axial and triaxial quadrupole modes
(β2 and γ ) and axial octupole degree of freedom (β3) can be

(a) (b)

FIG. 13. (Color online) Theoretical and experimental B(E2) (a) and B(E1) (b) transition probabilities (in W.u.) as functions of the angular
momentum in the alternating parity spectrum of 152Sm (data from Ref. [29]. The theoretical results are obtained by Eqs. (46) and (47).
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given by [13,31]

T̂rot = 1

2

3∑
i=1

Î 2
i

J
(2)
i + J

(3)
i

, (55)

where

J
(2)
i = 4B2β

2
2 sin2

(
γ − 2πi

3

)
, (i = 1, 2, 3) (56)

are the moment-of-inertia components of the quadrupole shape
about the axes 1, 2, and 3, whereas those of the axially
symmetric octupole shape are

J
(3)
1 = J

(3)
2 = 6B3β

2
3 , J

(3)
3 = 0. (57)

A simple estimation of the γ influence can be done by
assuming small variations of the system around γ = 0, as in
the case of the X(5) model [12]. Then the quadrupole moment-
of-inertia components (56) can be taken as

J
(2)
1 = J

(2)
2 = 3B2β

2
2 , J

(2)
3 = 4B2β

2
2 sin2 γ. (58)

As a result the rotation energy (55) obtains the form

T̂rot = 1

2

(
Î 2 − Î 2

3

3B2β
2
2 + 6B3β

2
3

+ Î 2
3

4B2β
2
2 sin2 γ

)
. (59)

The first term in Eq. (59) corresponds to the centrifugal term
in the quadrupole-octupole potential described in Eq. (2). The
second term in Eq. (59) provides the influence of the γ mode on
the potential. After taking into account Eq. (59) with d2 = 3B2

and d3 = 6B3, and by including a γ -oscillation term, Eq. (2)
can be generalized in the form

U (β2, β3, γ, I ) = 1

2
C2β2

2 + 1

2
C3β3

2 + 1

2
C ′

2γ
2

+ X(I ) − K2/2

d2β
2
2 + d3β

2
3

+ 3K2/2

4d2β
2
2 sin2 γ

, (60)

where K is the projection of the angular momentum on the
body-fixed z-axis. Then for a fixed value of γ the extremum
conditions (3) and (4) in Sec. II provide the following cases
for the bottom of the potential (60) in the β2-β3 space.

(a) β3min = 0 with

β2min = ±
{

2

d2C2

[
X(I ) + K2

2

(
3

4 sin2 γ
− 1

)]}1/4

. (61)

(b) β2min �= 0 and β3min �= 0 with the condition

C2 = [2X(I ) − K2]d2(
d2β

2
2min + d3β

2
3min

)2 + 3K2

4d2β
4
2min sin2 γ

and

C3 = [2X(I ) − K2]d3(
d2β

2
2min + d3β

2
3min

)2 . (62)

The following comments can be done on the above result:

(i) The appearance of β2
2 in the denominator of the second

term in Eq. (60) divides the β2-β3 space into two
half-spaces, β2 > 0 and β2 < 0, separated by an infinite

potential barrier at β2 = 0. For this reason the potential
minimum with β2min = 0 and β3min �= 0 does not appear.

(ii) Equations (61) and (62) illustrate the ways in which
the term involving the γ deformation mode can shift
the position of the potential minima in the β2-β3

space [compare with cases (i)–(iii), including Eq. (6) in
Sec. II]. Note that for K = 0 the influence of the γ mode
on the β2-β3 potential shape automatically disappears.
This is a limit in which the β2 and γ degrees of freedom
are weakly coupled and can be adiabatically separated,
which is implied in the framework of the present work.
The involvement of the K = 2 configurations in the
collective motion implies the consideration of a strong
β2-γ coupling [32].

(i) The involvement of the γ degree of freedom in the above
way would influence the correlation between the axial β2

and β3 variables because of the appearance of the second
term in C2 [Eq. (62)], as a consequence of the last term in
Eq. (60). Now, in terms of the polar variables, the potential
will depend on both η and φ, so that the variables in the
Schrödinger equation cannot be directly separated. This
could be done in a way similar to the adiabatic separation
of the β and γ degrees of freedom in the X(5) model
framework [12], as well as in the framework of the AQOA
model [33]. Alternatively, the problem could be solved
numerically in a way similar to the approach of Ref. [32].

A more general way to examine the influence of the
γ deformation mode on the quadrupole-octupole motion of
the system could be based on the complete form [Eq. (56)]
of the quadrupole moment-of-inertia components, so that the
γ variable would not be limited in the vicinity of zero.
Furthermore, nonaxiality of the octupole degree of freedom
can be considered. Any efforts in these directions should be
based on numerical solution of the problem.

VII. SUMMARY AND CONCLUSIONS

The present study outlines some dynamical properties of
a system with simultaneously manifesting quadrupole and
octupole degrees of freedom. We remark that the obtained
results represent a restricted class of exact analytic solutions of
the problem. This is because of the correlation (16) between the
mass and the inertial parameters, which essentially simplifies
the Hamiltonian in Eq. (11) in the form of Eq. (17). In addition,
the correlation [Eq. (6)] between the inertial and oscillator
parameters brings the potential in a form depending on the
“effective deformation” variable η only, and not on the relative
“angular” variable φ, thus allowing an exact separation of
variables in the Schrödinger equation. As it is explained in
Sec. IV, the above correlations provide a coherent interplay
between the quadrupole and octupole collective modes. In
this respect, the presently considered potentials suggest some
specific properties of quadrupole-octupole collectivity, which
can be developed in various nuclear regions.

However, despite the above limitations (the necessary price
we pay for solving the problem exactly) we were able to
identify a region of nuclei where the assumed “equal” presence
of quadrupole and octupole degrees of freedom can take place
in the collective motion. We found that the structure of the
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spectrum in the case of the potential (12), illustrated in Fig. 6,
is similar to the structure of alternating parity bands in some
rare-earth nuclei. On this basis, we have reproduced quite
accurately the energy levels and the staggering patterns in
the nuclei 150Nd, 152Sm, 154Gd, and 156Dy, as demonstrated
in Figs. 7 and 8. In these spectra the reduction of the
staggering amplitude indicates the trend of forming octupole
deformations toward the higher angular momenta. However,
the slow decrease of the parity effect does not allow this
to happen at reasonable (observed) angular momenta. The
B(E2) transition probabilities have been also described with a
reasonable accuracy (Figs. 12 and 13, whereas the result for
B(E1) transition probabilities in 152Sm [Fig. 13(b)] suggests
further tests of the formalism and analysis of additional
experimental data.

We remark that the energy expression (23) cannot reproduce
the complicated beat staggering effects observed in the
octupole bands of light actinide nuclei [34]. The latter have
been described [14], with good accuracy, by the use of the
quadrupole-octupole rotation model [35]. Thus, compared
to the light actinide region, the application of expression
(23) indicates a different behavior of the quadrupole-octupole
collectivity in the rare-earth nuclei, with a less developed oc-
tupole deformation and a more strongly pronounced octupole
vibration mode. The present analysis suggests that in this case
the coherent (equal) contribution of quadrupole and octupole
oscillations can take place in the collective motion of nuclei.

The potentials with fixed energy minima [cases (b) and
(c)] can be related generally to a situation in which the
vibrational and rotational degrees of freedom are weakly cou-
pled. Then the rotational angular momentum slightly affects
the quadrupole-octupole vibration motion, which suggests
a constant (or nearly constant) behavior of the staggering
amplitude. In particular this is well seen in the case (b2)
where the direct contribution of the rotational motion is
excluded. Thus, the spectrum illustrated in Fig. 10 suggests
an essentially quadrupole-octupole vibrational motion of the
system. Cases (b1) and (c), in which the rotational mode is
taken into account, suggest quadrupole-octupole vibrations
with an adiabatically manifested rotational motion. We remark
that the constant staggering patterns, illustrated in Figs. 9
and 10, are in some meaning idealistic cases, as far as
the current experimental data do not show such a strong
persistence of the parity effect at high angular momenta.
However, the square-well potential of case (c) appears to be
applicable to examining the possible critical behavior of the
quadrupole-octupole collectivity in different nuclear regions.
Studies in this direction have been implemented recently

in the light actinide nuclei [33]. We suggest that further
analysis of experimental data for quadrupole-octupole spectra
would be of use for testing the prediction of the staggering
pattern illustrated in Fig. 11 for the case of the square-well
potential (15).

It is important to note that the present exactly solvable
model can be naturally extended, beyond the “coherent
interplay” assumption, to a more general nonanalytic problem
in the following two ways. First, we can release the correlation
[Eq. (6)] between the inertial and oscillator parameters,
allowing the potential to depend on the variable φ. Then the
problem can still be transformed into a form having an ana-
lytical solution, by performing an “approximate” separation
of variables, as done in Ref. [33] and in the framework of the
X(5) symmetry model [12]. The second extension would be
to release the correlation (16) between the mass and inertial
parameters. This would allow us to examine different ways
in which the coupled quadrupole and octupole degrees of
freedom enter the collective motion. In this case, however,
more sophisticated mathematical and numerical techniques
have to be sought to solve the problem.

Finally, we also remark that the developed formalism
contains several limits. Thus, when the quadrupole variable is
frozen to some stable quadrupole deformation, the potentials
and the spectra of the cases (a)–(c) transform to the respective
ones appearing in the one-dimensional problem [14,15].
Another interesting limit can be obtained by appropriate
parameter values, for which the difference �k2 is negligible
compared to X̃(I ) for all angular momentum values. Then
the staggering effect vanishes, and the odd and even angular
momentum sequences appear in a single nonperturbed col-
lective band. For example, if such a transition is performed
in case (c), the spectrum presented in Fig. 11 is reduced to
the structure supposed to correspond to the transition between
octupole vibrations and stable octupole deformation, in which
a single octupole band is formed [33]. It is also of interest
to take into account the nonaxiality of the quadrupole and/or
the octupole degree of freedom, to examine how the present
results are modified. Studies in these directions are the subject
of further work.
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