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Hartree-Fock and many body perturbation theory with correlated realistic NN interactions
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We employ correlated realistic nucleon-nucleon interactions for the description of nuclear ground states
throughout the nuclear chart within the Hartree-Fock approximation. The crucial short-range central and tensor
correlations, which are induced by the realistic interaction and cannot be described by the Hartree-Fock many-
body state itself, are included explicitly by a state-independent unitary transformation in the framework of the
unitary correlation operator method (UCOM). Using the correlated realistic interaction VUCOM resulting from
the Argonne V18 potential, bound nuclei are already obtained on the Hartree-Fock level. However, the binding
energies are smaller than the experimental values because long-range correlations have not been accounted for.
Their inclusion by means of many-body perturbation theory leads to a remarkable agreement with experimental
binding energies over the whole mass range from 4He to 208Pb, even far off the valley of stability. The observed
perturbative character of the residual long-range correlations and the apparently small net effect of three-body
forces provides promising perspectives for a unified nuclear structure description.
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I. INTRODUCTION

The description of heavier nuclei starting from realis-
tic nucleon-nucleon (NN) interactions that reproduce the
experimental NN phase shifts is a long-standing and unsolved
problem. So far, the theoretical tools applicable in the mass
region beyond A≈ 60 are predominantly density-functional
approaches based on purely phenomenological energy func-
tionals. Recent developments aim at more fundamental energy
functionals motivated from and constrained by QCD [1]. At
the same time, light nuclei have been treated very successfully
in so-called ab initio approaches, e.g., Green’s function Monte
Carlo [2–4] or no-core shell model [5–7]. These calculations
have shown that realistic NN interactions, supplemented by a
three-body force, are able to describe the nuclear structure of
light isotopes quite well. However, owing to their computa-
tional complexity, these practically exact numerical solutions
of the quantum many-body problem cannot be applied to nuclei
beyond the p shell.

Strong correlations in the many-body system are the basic
issue that has to be addressed when starting from a realistic
NN interaction. The naive use of a bare realistic potential,
e.g., Argonne V18 (AV18) [8] or CD Bonn [9], in a simple
many-body approximation like the Hartree-Fock (HF) will
not lead to sensible results. The many-body states of the
HF approximation are Slater determinants, i.e., independent
particle states incapable of describing any correlations.

Already the deuteron elucidates the nature of the dominant
interaction-induced correlations. The relative two-body wave
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function shows a strong suppression at small particle distances,
which is generated by the short-range repulsive core in the
central part of the realistic interaction. The propability density
of finding any two nucleons in a nucleus (two-body density)
at relative distances smaller than the radius of this core is very
small. Furthermore, in addition to the S-wave part, the ground
state contains a D-wave admixture generated by the strong
and long-ranged tensor potential. The D-wave component and
thus the tensor force are essential for nuclear binding, not only
in the case of the deuteron. A detailed illustration of these
correlations is given, for example, in Refs. [10–13].

The central step on the way toward nuclear structure
calculations for heavy nuclei based on realistic potentials is
the combination of tractable many-body approximations with
an appropriate description of interaction-induced correlations.
In most cases, this is effectively achieved by converting the
bare realistic interaction into an effective interaction adapted
to the available model space. In addition to traditional methods,
like the Brueckner G matrix [14], several new approaches have
been developed recently, e.g., the Vlowk renormalization group
method [15,16].

We are going to treat the strong short-range correlations
in the framework of the unitary correlation operator method
(UCOM) [10–13]. This approach offers two complementary
but equivalent views on correlations: The short-range central
and tensor correlations are imprinted into uncorrelated many-
body states by a unitary transformation. The unitary operator
of this transformation is constructed in a representation-
independent operator form, which comprises the physics
of the dominant short-range correlations. Alternatively, the
correlation operator can be used to transform the operators
of the relevant observables. From the transformation of the
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Hamiltonian including a realistic NN interaction, we obtain
a correlated interaction VUCOM, which can be used in con-
junction with uncorrelated many-body states. This correlated
interaction was employed successfully in different many-body
methods for light- and medium-mass nuclei [12,13].

Our aim in this paper is to demonstrate the capabilities
of correlated realistic NN interactions in the description of
ground-state properties of nuclei across the whole mass range
from 4He to 208Pb. We summarize the elements of the unitary
correlation operator method in Sec. II and illustrate the proper-
ties of the correlated interaction VUCOM. As the simplest many-
body approximation, we employ the Hartree-Fock scheme.
Implementation and results for ground states of closed-shell
nuclei are discussed in Sec. III. The effect of residual
correlations is investigated by means of many-body perturba-
tion theory based on the Hartree-Fock ground state in Sec. IV.

II. THE UNITARY CORRELATION OPERATOR
METHOD (UCOM)

A. Unitary correlation operators

In the framework of the unitary correlation operator method
(UCOM) the dominant short-range correlations are described
by a unitary transformation with a correlation operator C. The
explicit operator form of the unitary correlator is constructed
by following the physical mechanism by which the realistic NN
interactions induce correlations into the many-body state, as
discussed in detail in Refs. [10–13]. This distinguishes UCOM
from other approaches employing unitary transformations
to describe correlations, like the Lee-Suzuki transformation
[5,6,17] or the unitary model operator approach [18–20],
which are entirely formulated in terms of matrix elements
constructed by requiring decoupling between a predefined
model space and the excluded space.

The correlation operator is expressed as a product of two
independent unitary operators C� and Cr describing short-
range tensor and central correlations, respectively:

C = C�Cr = exp

[
− i

∑
i<j

g�,ij

]
exp

[
− i

∑
i<j

gr,ij

]
. (1)

Each of them is written as an exponential of Hermitian two-
body generators g� and gr .

The generator gr in the central correlation operator will
describe the correlations induced by the repulsive core of
the interaction—it has to shift close-lying nucleons apart.
Formally, this is achieved by a radial distance-dependent shift
in the relative coordinate of two particles. Such radial shifts
are generated by the projection of the relative momentum
q = 1

2 [p1 − p2] onto the distance vector r = x1 − x2 of two
particles:

qr = 1

2

[r
r

· q + q · r
r

]
. (2)

The distance dependence is described by a function sST (r) for
each spin-isospin channel, leading to

gr =
∑
S,T

1

2
[sST (r)qr + qrsST (r)]�ST , (3)

where �ST is the projection operator onto two-body spin S
and isospin T.

The generator g� has to describe the characteristic entan-
glement between spin and spatial orientation of two nucleons
induced by the tensor force. It has the structure of a tensor
operator,

s12(r, q�) = 3
2

[
(σ 1 · r)(σ 2 · q�) + (σ 1 · q�)(σ 2 · r)

]
, (4)

where in comparison with the usual tensor operator of the
interaction one of the distance operators is replaced by the
tangential component of the relative momentum operator:

q� = q − r
r

qr = 1

2r2
(L × r − r × L). (5)

Supplemented by a function ϑT (r) describing the strength
of the tensor correlations as a function of the interparticle
distance, this defines the generator

g� =
∑
T

ϑT (r) s12(r, q�) �1T , (6)

which acts only in the spin S = 1 subspace. The effect of this
generator is best illustrated by considering correlated states.

B. Correlated states

If we apply the unitary correlation operator C to an
uncorrelated many-body state |�〉, a new correlated many-
body state

|�̃〉 = C|�〉 (7)

results. In the simplest case, for example in a Hartree-Fock
calculation, the uncorrelated state is a Slater determinant. The
unitary transformation, however, maps it onto a correlated
state, which includes the dominant short-range correlations
and cannot be represented by a single or a few Slater
determinants anymore.

In two-body space, the analytic form of correlated states
can be worked out easily [10–13]. For simplicity, we assume
LS-coupled two-body states of the structure

|�〉 = |�c.m.〉 ⊗ |φ(LS)JT 〉, (8)

where M and MT are omitted for brevity. The correlation
operators do not act on the center-of-mass component |�c.m.〉
of the two-body state; only the relative part is transformed. In
coordinate representation, the relative two-body wave function
resulting from the transformation with the central correlator1

cr = exp(−igr ) reads as

〈r| cr |φ(LS)JT 〉
= R−(r)

r

√
R′−(r) 〈R−(r)

r
r
|φ(LS)JT 〉. (9)

This corresponds to a norm-conserving coordinate transfor-
mation r �→ R−(r) characterized by the so-called correlation
function R−(r) [10,12]. The transformation of a two-body
state with the Hermitian adjoint correlator c

†
r leads to an

1Correlation operators in two-body space are denoted by small
letters, those in a general A-body space by capital letters. The same
convention applies to other operators.
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analogous expression with a correlation function R+(r), which
is the inverse of R−(r), i.e. R±[R∓(r)] = r . The correlation
functions R±(r) are related to the shift function s(r) appearing
in generator (3) by ∫ R±(r)

r

dξ

s(ξ )
= ±1, (10)

where spin and isospin indices have been omitted for brevity.
The action of the tensor correlation operator c� =

exp(−ig�) onto LS-coupled two-body states can be evaluated
directly by using matrix elements of the tensor operator
s12(r, q�) contained in the generator [11]. Two-body states
with L = J are invariant under transformation with the tensor
correlator:

c� |φ(JS)JT 〉 = |φ(JS)JT 〉. (11)

Only states with L = J ± 1 are affected by c� and transform
as

c� |φ(J ± 1, 1)JT 〉 = cos θJ (r) |φ(J ± 1, 1)JT 〉
∓ sin θJ (r) |φ(J ∓ 1, 1)JT 〉 (12)

with θJ (r) = 3
√

J (J + 1) ϑ(r). The tensor correlation opera-
tor thus generates components with 	L = ±2 in the correlated
state. If we start with an uncorrelated state with L = 0, S = 1,
and J = 1, then the correlated state acquires an additional
L = 2 admixture, whose radial dependence is determined by
the tensor correlation function ϑ(r).

The relations for the correlated two-body states form the
basis for the evaluation of the matrix elements of correlated
operators without approximations.

C. Correlated operators

One of the virtues of the description of correlations by
a state-independent unitary transformation is that instead of
working with correlated states, one can also apply the unitary
correlator to the operators of interest and define correlated
operators

Ã = C†AC. (13)

For the calculation of observables, e.g., expectation values
or matrix elements, the formulations in terms of correlated
operators and correlated states are fully equivalent, and one can
choose whichever is technically more convenient. Note that
when the notion of correlated operators is used, all operators
of interest have to be transformed consistently.

The correlated operator Ã contains irreducible contribu-
tions to all particle numbers,

Ã = C†AC = Ã[1] + Ã[2] + Ã[3] + · · · , (14)

where Ã[n] denotes the irreducible n-body part [10]. Hence
the unitary transformation of a two-body operator—the NN
interaction for example—yields a correlated operator con-
taining a two-body contribution, a three-body term, etc. The
contributions of terms beyond the two-body order of this
cluster expansion depend on the range of the correlators.
For correlation functions s(r) and ϑ(r) of sufficiently short
range, three-body and higher-order contributions can be

neglected [12,13]. This defines the two-body approximation
of a correlated operator, ÃC2 = Ã[1] + Ã[2].

For a Hamiltonian H consisting of one-body kinetic
energy T = ∑

i p2
i /(2mN ) and a two-body NN interaction

V = ∑
i<j vij , the correlated operator in the two-body ap-

proximation reads as

H̃C2 = T̃ [1] + T̃ [2] + Ṽ [2] = T + VUCOM. (15)

The one-body contribution to the correlated Hamiltonian is
just the uncorrelated kinetic energy. The two-body part con-
sists of a contribution of the correlated kinetic energy T̃ [2]

and the correlated potential Ṽ [2]. Together these two-body
contributions define a correlated or effective two-body inter-
action VUCOM = ∑

i<j vUCOM,ij . The unitary transformation
preserves the symmetries of the bare operators. Therefore
the correlated interaction has the same symmetries as the
underlying NN potential, i.e., translational, rotational, Galilei,
and parity invariance.

Two inherent properties of VUCOM are of great importance
for practical application: (i) The correlated interaction VUCOM

is phase-shift equivalent to the bare potential that one starts
with. Hence the defining property of modern realistic NN
interactions—the reproduction of experimental phase shifts
from nucleon-nucleon scattering with high precision—is
preserved, and VUCOM can be considered a realistic potential
in its own right.

(ii) Based on correlation operator (1), an explicit operator
form of the correlated interaction VUCOM can be derived. The
details of this derivation and the structure of the resulting
interaction operators are discussed in Refs. [10–12]. This
property distinguishes UCOM from other approaches used
to derive phase-shift-equivalent effective interactions, such as
the Vlowk approach [15,16], which is formulated entirely on
the level of matrix elements. In many-body schemes that do
not allow the use of partial-wave matrix elements, such as
the fermionic molecular dynamics approach [12,21,22], the
knowledge of a closed operator form of the effective interaction
is indispensable.

Besides the Hamiltonian, all other observables such as radii
or transition strengths can and must be correlated in the same
way to be consistent. In most other schemes to derive effective
interactions it is very difficult or not even obvious how to derive
the corresponding effective observables consistently. Only in
the Lee-Suzuki framework have the first attempts been made
to construct effective transition operators [23].

D. Correlated matrix elements

For use of the correlated interaction VUCOM in standard
many-body schemes based on an orthogonal single-particle
basis, we have to evaluate appropriate two-body matrix
elements. Let us assume a spherical harmonic-oscillator basis,
as it will be used in the Hartree-Fock calculations discussed in
Sec. III.

In a first step we consider LS-coupled harmonic-oscillator
two-body matrix elements of the form

〈n(LS)JT | VUCOM |n′(L′S)JT 〉
= 〈n(LS)JT | c†r c†� H c�cr − T |n′(L′S)JT 〉, (16)
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where n, n′ = 0, 1, 2, . . . are the radial oscillator quantum
numbers of the relative two-body states (M and MT are
omitted). One can, of course, use the operator representation of
VUCOM and compute these two-body matrix elements directly.
However, it is more convenient to map the correlation operators
back onto the LS-coupled two-body states and thus compute
the correlated matrix elements by using uncorrelated operators
and correlated states [13]. For the tensor correlations this
is a substantial simplification, since the tensor correlated
two-body states (11) and (12) are simple in comparison with
the corresponding tensor correlated Hamilton operator.

In Ref. [13] we developed a hybrid scheme with the central
correlator cr applied to the operators and the tensor correlator
c� applied to the two-body states. From the computational
point of view, this turns out to be the most efficient approach
and will be the basis for the following numerical calculations.
For the sake of brevity, we do not repeat the relevant
expressions here.

In the second step we have to transform the LS-coupled
relative matrix elements of VUCOM into matrix elements
with respect to antisymmetrized jj-coupled two-body states
|n1l1j1, n2l2j2; JT 〉. For the harmonic oscillator basis this is
achieved by the well-known Talmi-Moshinsky transformation
[24,25]. Including angular momentum recoupling, one obtains
the following relation for the nonnormalized antisymmetric
jj-coupled matrix elements:

〈n1l1j1, n2l2j2; JT | VUCOM |n′
1l

′
1j

′
1, n

′
2l

′
2j

′
2; JT 〉

=
√

[j1][j2][j ′
1][j ′

2]
∑

L,L′,S

∑
N,


∑
ν,λ

∑
ν ′,λ′

∑
j


l1 l2 L
1
2

1
2 S

j1 j2 J


×


l′1 l′2 L′
1
2

1
2 S

j ′
1 j ′

2 J


{


 λ L

S J j

}{

 λ′ L′

S J j

}
×〈〈N
, νλ |n1l1, n2l2; L〉〉 〈〈N
, ν ′λ′ |n′

1l
′
1, n

′
2l

′
2; L′〉〉

× [j ][S][L][L′] (−1)L+L′ {1 − (−1)λ+S+T }
× 〈ν(λS)jT | VUCOM |ν ′(λ′S)jT 〉, (17)

where [j ] ≡ 2j + 1. In addition to 9j and 6j symbols, the
harmonic oscillator brackets 〈〈. . . | . . .〉〉 appear [26,27]. Three
of the above summations can be eliminated right away. For
given N,
, λ, and λ′, the possible values of ν and ν ′ can be
determined directly from the relation (2N + 
) + (2ν + λ) =
(2n1 + l1) + (2n2 + l2). The factor {1 − (−1)λ+S+T } resulting
from the antisymmetrization removes all terms with even
values of λ + S + T and can be used to eliminate the S
summation for given λ and T.

Of course, this procedure is not restricted to the interaction
matrix elements. We evaluate other correlated observables,
e.g., correlated rms radii, in an analogous way.

E. Optimal correlation functions

Given the formal expressions for the matrix elements of the
correlated interaction, the only remaining task is to determine
the optimal correlation functions R+(r) and ϑ(r) for the
realistic NN potential under consideration. In this paper we will

TABLE I. Parameters of the central correlation functions R+(r)
for the AV18 potential obtained from two-body energy minimization.

S T Param. α [fm] β [fm] γ [fm] η

0 0 II 0.7971 1.2638 0.4621 —
0 1 I 1.3793 0.8853 — 0.3724
1 0 I 1.3265 0.8342 — 0.4471
1 1 II 0.5665 1.3888 0.1786 —

restrict ourselves to the Argonne V18 (AV18) potential [8].
The determination of the optimal correlation functions was
discussed in Ref. [13], and we only summarize the important
results here.

The easiest way to determine optimal correlation functions
is a variational calculation in the two-body system. For each
combination of two-body spin S and isospin T we minimize
the expectation value of the correlated Hamiltonian by varying
the central and tensor correlation functions. To this end, the
following parametrizations for the central correlation functions
are used for the even and odd channels, respectively:

RI
+(r) = r + α(r/β)η exp[− exp(r/β)],

(18)
RII

+(r) = r + α[1 − exp(−r/γ )] exp[− exp(r/β)].

For the tensor correlation functions the following form turns
out to be most suitable:

ϑ(r) = α[1 − exp(−r/γ )] exp[− exp(r/β)]. (19)

The optimal parameter values as determined in Ref. [13] are
summarized in Tables I and II.

The tensor correlation function for S = 1 and T = 1
(triplet-odd channel) turns out to be at least one order of
magnitude smaller than for S = 1 and T = 0 (triplet-even
channel) [13]. This is a consequence of the much weaker
tensor potential in this channel. To simplify the present study,
we will not include any tensor correlator in the triplet-odd
channel and will concentrate on the effect of the dominant
tensor correlations in the triplet-even channel.

A crucial point is the range of the tensor correlations.
The tensor force in the triplet-even channel is very long
ranged because of its origin from one-pion exchange. In an
isolated two-body system, i.e., the deuteron, the associated
tensor correlations will be present up to large interparticle
distances. The ramification of this is the long-range D-wave
admixture in the deuteron wave function. Therefore we will
obtain a long-range tensor correlation function if we employ an
unconstrained energy minimization in the two-body system.

TABLE II. Parameters of the triplet-even tensor correlation
function ϑ(r) for the AV18 potential with different values Iϑ for
the range constraint.

S T Iϑ [fm3] α β [fm] γ [fm]

1 0 0.08 541.29 1.2215 1000.0
1 0 0.09 536.67 1.2608 1000.0
1 0 0.10 531.03 1.2978 1000.0
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In the many-body system, the tensor interaction with
other nucleons will prevent the formation of the long-range
component of tensor correlations between a pair of nucleons.
Effectively, the long-range tensor correlations are screened.
We anticipate this many-body screening effect by imposing a
constraint on the range of the tensor correlator defined by the
volume integral

Iϑ =
∫

drr2 ϑ(r). (20)

The results of the constrained minimization in the two-body
system for different values of the measure Iϑ are summarized
in Table II.

The restriction to short-range tensor correlators is helpful
also in connection to the two-body approximation for corre-
lated operators. If a long-range tensor correlator were used,
as suggested by the deuteron wave function, then the higher-
orders of the cluster expansion would yield sizable and non-
trivial contributions. In fact, they represent the aforementioned
many-body screening of long-range tensor correlations. By
restricting the range of the tensor correlators, these higher-
order contributions are reduced from the outset.

The choice of an appropriate value of Iϑ requires infor-
mation beyond the two-body problem. All other parameters
are fixed on the level of the two-nucleon system alone.
One strategy to fix Iϑ is by means of an exact few-body
calculation using VUCOM. As we have shown in Ref. [13],
the exact binding energies of 3H and 4He obtained in no-core
shell-model calculations for different Iϑ map out the Tjon-line.
Moreover, for Iϑ ≈ 0.09 fm3, the exact calculation based on
VUCOM reproduces the experimental binding energies for A � 4
quite well. The fact that the experimental energies are matched
without including a genuine three-body force and the induced
three-body contributions of the cluster expansion indicates
that the net effect of those missing three-body terms on the
ground-state energies vanishes. In other words, the three-body
contribution of the cluster expansion cancels the genuine
three-body force [13].

We will use the triplet-even tensor correlator for Iϑ =
0.09 fm3 as the optimal correlator for the present study of
heavier nuclei. This fixes the correlated interaction, and all
the following calculations are therefore completely parameter
free.

F. Illustration

As a first demonstration of the effect of the unitary transfor-
mation, we perform a naive shell-model-type calculation of the
ground-state energy for various nuclei. We assume an uncor-
related many-body state given by a single Slater determinant
built of harmonic oscillator single-particle states. Clearly, this
independent-particle state does not contain any of the relevant
many-body correlations. We successively apply the central
and the tensor correlation operators, Cr and C�, respectively,
and investigate their effect on the energy expectation value
for a many-body Hamiltonian containing the AV18 potential.
As discussed earlier, we map the correlation operators onto
the Hamiltonian and employ the two-body approximation,
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FIG. 1. (Color online) Effect of the unitary transformation on
energy expectation values of different nuclei with simple shell-model
Slater determinants. The four levels for each nucleus indicate (from
top to bottom) the expectation value of the bare Hamiltonian,
the centrally correlated, the fully correlated Hamiltonian, and the
experimental binding energy per particle, respectively. The AV18
potential with the optimal correlators for Iϑ = 0.09 fm3 is used.

which leads to the correlated interaction VUCOM. Using the
correlated two-body matrix elements constructed in Sec. II D,
we can directly evaluate the expectation value of the correlated
Hamiltonian.

In Fig. 1 the expectation values of the uncorrelated, the
central correlated, and the fully correlated Hamiltonian are
displayed together with the experimental ground-state energies
for various nuclei ranging from 16O to 208Pb. The oscillator
parameter is chosen such that the expectation value of the fully
correlated Hamiltonian is minimized for the nucleus under
consideration. The center-of-mass kinetic energy is subtracted.

Evidently, the expectation value of the bare Hamiltonian
with an uncorrelated Slater determinant is positive and large—
all nuclei are unbound. The proper inclusion of correlations is
crucial for obtaining bound nuclei. By invoking the central
correlation operator Cr , i.e., by including the correlations
induced by the repulsive core of the interaction, the energy is
reduced significantly. However, the inclusion of these central
correlations alone is not sufficient to obtain self-bound nuclei.
Employing the tensor correlation operator C� in addition,
i.e., accounting for the short-range part of the correlations
caused by the tensor component of the interaction, the
energy is lowered further, and we eventually obtain bound
nuclei troughout the whole mass range. This emphasizes the
importance of the tensor part of realistic NN interactions and of
the associated correlations in the nuclear many-body problem.

This simplistic calculation highlights two important points:
(i) The unitary correlation operators provide a very effi-
cient means of describing the state-independent short-range
correlations induced by the repulsive core and tensor part
of the potential. Throughout the nuclear chart, one obtains
bound nuclei starting from a simple Slater determinant as
an uncorrelated many-body state. In comparison with the
uncorrelated expectation value, the correlators reduce the
ground-state energy by typically more than 40 MeV per
nucleon for the AV18 potential (see Fig. 1). Motivated by
this observation, we use the correlated realistic interaction for
Hartree-Fock calculations as described in Sec. III.
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(ii) The resulting binding energy is typically smaller than
the experimental binding energy. This indicates that residual
long-range correlations not accounted for by the explicit
unitary transformations have to be considered. This is fully
in line with the results from no-core shell-model calculations
using VUCOM discussed in Ref. [13]. Those missing state-
dependent correlations need to be included through the degrees
of freedom of the available many-body states. It is remarkable
that the deviation from the experimental binding energy per
nucleon is practically constant over the whole mass range.
This already hints that the deviation is not dominated by
missing three-body forces. We will discuss this point in detail
in Sec. IV.

III. UCOM HARTREE-FOCK SCHEME

Using the correlated realistic NN interaction, we set up
a Hartree-Fock scheme and investigate the behavior of the
ground-state solutions across the nuclear chart. Further on,
the Hartree-Fock solutions form the basis for an improved
treatment of the nuclear many-body problem.

A. Formulation

According to the basic assumption of the Hartree-Fock
scheme, the many-body state is approximated by a single Slater
determinant

|HF〉 = A ( |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αA〉), (21)

where A is the antisymmetrization operator acting on an A-
body product state. The single-particle states |αi〉 are used
as variational degrees of freedom in a minimization of the
expectation value of the many-body Hamiltonian. The formal
variational solution of the many-body problem using trial state
(21) leads to the well-known Hartree-Fock equations [28].

As illustrated in Sec. II F, the explicit inclusion of corre-
lations beyond the independent-particle state |HF〉 is crucial
when starting from realistic NN interactions like the AV18
potential. By applying the unitary correlation operator C to
|HF〉, we obtain a correlated many-body state that has the dom-
inant correlations imprinted. By switching from the picture
of correlated states to the picture of correlated operators and
invoking the two-body approximation, we formally recover
a standard Hartree-Fock problem. However, the Hamiltonian
entering into the Hartree-Fock calculation now consists of the
kinetic energy and the correlated interaction VUCOM. In order
to account for the center-of-mass contribution to the energy,
we subtract the operator Tc.m. of the center-of-mass kinetic
energy. This leads to the correlated intrinsic Hamiltonian H̃int

in the two-body approximation,

H̃int = T − Tc.m. + VUCOM = Tint + VUCOM, (22)

where the superscript C2 indicating the two-body approxima-
tion has been omitted [cf. Eq. (15)]. The correlated Coulomb
interaction together with charge-dependent terms of the NN
potential are included in VUCOM and are not written separately.
The intrinsic kinetic energy operator can be expressed in terms

of the relative two-body momentum operator q alone:

Tint = T − Tc.m. = 2

A

1

mN

A∑
i<j

q2
ij , (23)

where we have assumed equal proton and neutron masses and
thus a reduced mass µ = mN/2. Thus, H̃int technically has
the structure of a pure two-body operator which facilitates
the implementation. Although this explicitly Galilei-invariant
Hamiltonian does not exclude the possibility of center-of-mass
excitations, their contribution to the ground state is expected to
be small. A stringent but computationally expensive approach
requires an explicit center-of-mass projection [29,30].

We formulate the Hartree-Fock scheme in a basis repre-
sentation, using harmonic oscillator states in order to use the
correlated matrix elements of realistic NN potentials discussed
in Sec. II D. The Hartree-Fock single-particle states |α〉 are
written as2

|α〉 = |νljmmt 〉 =
∑

n

C(νljmmt )
n |nljmmt 〉, (24)

where |nljmmt 〉 denotes a harmonic oscillator eigenstate with
radial quantum number n, orbital angular momentum l, total
angular momentum j with projection m, and isospin projection
quantum number mt . Assuming spherical symmetry, only
oscillator states with the same quantum numbers l, j , and
m can contribute in the expansion. In the following, we will
restrict ourselves to constrained or closed-shell calculations,
where C

(νljmmt )
n = C

(νljmt )
n is independent of m.

The expansion coefficients C
(νljmt )
n are used as variational

parameters for the minimization of the energy expectation
value. The formal variation leads to a nonlinear matrix
eigenvalue problem determining the optimal coefficients [28]:∑

n̄

h
(ljmt )
nn̄ C

(νljmt )
n̄ = ε(νljmt )C(νljmt )

n , (25)

where ε(νljmt ) are the corresponding single-particle energy
eigenvalues. The matrix elements of the HF single-particle
Hamiltonian h

(ljmt )
nn̄ are given by

h
(ljmt )
nn̄ =

∑
l′,j ′,m′

t

∑
n′,n̄′

H
(ljmt l

′j ′m′
t )

nn′;n̄n̄′ �
(l′j ′m′

t )
n′n̄′ (26)

with the one-body density matrix

�
(ljmt )
nn̄ =

∑
ν

O(νljmt )C
(νljmt )�

n̄ C(νljmt )
n . (27)

Here O(νljmt ) is the number of occupied magnetic sublevels
in the respective shell, which is simply O(νljmt ) = 2j + 1 for
closed-shell configurations. Via the density matrix, the single-
particle Hamilton matrix itself depends on the coefficients
C

(νljmt )
n , entailing the nonlinear character of the eigenvalue

problem (25).
The essential ingredient for the single-particle Hamilton

matrix (26) are the m-averaged antisymmetric two-body matrix

2α = {νljmmt } is used as a collective index for all quantum
numbers of the HF single-particle states.
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elements of the correlated intrinsic Hamiltonian:

H
(ljmt l

′j ′m′
t )

nn′,n̄n̄′ = 1

(2j + 1)(2j ′ + 1)

∑
m,m′

〈nljmmt, n
′l′j ′m′m′

t |

× H̃int |n̄ljmmt, n̄
′l′j ′m′m′

t 〉. (28)

Instead of starting from uncoupled two-body matrix elements,
we can employ jj-coupled two-body matrix elements and cast
Eq. (28) into the more convenient form

H
(ljmt l

′j ′m′
t )

nn′;n̄n̄′ =
∑

J,T ,MT

(2J + 1)

(2j + 1)(2j ′ + 1)

〈
1

2
mt ;

1

2
m′

t

∣∣∣∣T MT

〉2

× 〈nlj, n′l′j ′; JT MT | H̃int |n̄lj, n̄′l′j ′; JT MT 〉.
(29)

Since the intrinsic Hamiltonian includes the Coulomb potential
as well as charge-dependent terms of the correlated NN
interaction, we explicitly indicate the MT dependence of the
matrix elements.

B. Implementation and convergence

The implementation of the Hartree-Fock procedure using
correlated matrix elements of realistic NN potentials is straight-
forward. The harmonic oscillator basis is truncated in the ma-
jor oscillator quantum number e = 2n + l � emax. Additional
truncations with respect to the radial quantum number n or the
orbital angular momentum l can be employed. The optimal
oscillator parameter for a given nucleus is determined by an
explicit minimization within a set of oscillator parameters.

The major computational effort goes into the calculation of
the correlated jj-coupled matrix elements of the interaction.
They are computed separately and stored to disk for a given
emax (or nmax, lmax) and oscillator length aHO. Once calculated,
they are used as input for the Hartree-Fock calculations as
well as for many-body perturbation theory, etc. The two-
body matrix elements for the intrinsic kinetic energy and
other observables are handled in the same way. Thus the
conceptionally and technically demanding step of computing
correlated matrix elements of various operators is completely
separated from the simple task of solving the nonlinear
single-particle eigenvalue problem (25). The latter is solved
in a standard iterative procedure until full self-consistency is
obtained.

Besides the ground-state energy, we consider root-mean-
square (rms) radii as a second simple observable. As for all
observables, the unitary transformation has to be applied con-
sistently to the corresponding operators. The translationally
invariant form of the operator for the square radius can be
written as follows:

Rsq = 1

A

∑
i

(xi − Xc.m.)
2 = 1

A2

∑
i<j

r2
ij , (30)

where Xc.m. = 1
A

∑
i xi . The unitary transformation with the

central correlator can be evaluated directly on the operator

level and generates an additional two-body term,

R̃C2
sq = Rsq + 1

2A

∑
i<j

[
R+(rij )2 − r2

ij

]
, (31)

where we have suppressed the spin-isospin dependence of
the correlation function R+(r). The tensor correlator does
not affect this operator since it only depends on the relative
distance. The square-root of the corresponding expectation
value for the HF ground state yields the correlated point rms
radius. The proton point rms radius is obtained in an analogous
manner, and, after the standard correction for proton and
neutron size is added, leads to the correlated charge radius
Rch. We note that the effect of the unitary transformation on
the rms radii is marginal. The difference between the correlated
and the uncorrelated rms radius is very small for all particle
numbers (typically between 0.01 and 0.02 fm). Pictorially, the
central correlators modify the wave function only at small
interparticle distances, whereas the square radius operator (30)
is more sensitive to the behavior at large distances.

As a first benchmark we investigate the convergence
properties of the UCOM-HF calculations for different closed-
shell nuclei. Figure 2 depicts the ground-state energy for
16O,90 Zr, and 208Pb as a function of the oscillator length aHO.
With increasing size of the single-particle space, characterized
by the truncation parameter emax, we observe a very nice
convergence for all nuclei. In general, bases with emax = 10
or 12 are sufficient to obtain binding energies that are fully
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FIG. 2. (Color online) Ground-state energy of 16O,90 Zr, and
208Pb as a function of the oscillator length aHO for different basis
sizes emax. The correlated AV18 potential with Iϑ = 0.09 fm3 is used.
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FIG. 3. (Color online) Ground-state energies and charge radii of
selected closed-shell nuclei resulting from a Hartree-Fock calculation
with the correlated AV18 potential. Three different ranges for the
triplet-even tensor correlator are used: Iϑ = 0.08 fm3, 0.09 fm3, and
0.10 fm3. The bars indicate experimental values [31,32].

converged and independent of aHO over a wide range. All
following calculations are performed for emax = 12.

C. Ground-state energies and charge radii

We now study the global systematics of binding energies
and charge radii of closed-shell nuclei by using the correlated
AV18 potential. In addition to the behavior as a function of
the mass number, we investigate the dependence on the range
of the triplet-even tensor correlation function, i.e., the value of
the correlation measure Iϑ .

Figure 3 depicts the binding energies and the correlated
charge radii obtained from Hartree-Fock calculations for
selected closed-shell nuclei ranging from 4He to 208Pb. The
different data sets correspond to different values of the integral
constraint (20) on the triplet-even tensor correlator around the
optimal value Iϑ = 0.09 fm3 (see Sec. II E).

As anticipated from the schematic calculation in Sec. II F,
we obtain bound solutions for all nuclei, indicating that the
dominant correlations are indeed introduced very efficiently
by the unitary correlation operators. In comparison with the
experimental data, the binding energies are underestimated and
the charge radii are too small. It is remarkable, however, that
the systematics of the binding energies is very well reproduced
over the full mass range except for an almost constant offset.

The deviation is not surprising: The no-core shell-model
calculations of Ref. [13] have shown that residual long-range
correlations, which are not covered explicitly by the unitary
correlation operators, influence the binding energies. More-
over, the three-body contributions of the cluster expansion
of the correlated Hamiltonian and the genuine three-body
interactions are not included. We have chosen the range of
the tensor correlator such that the net three-body contributions

to the energy are minimal for systems with A � 4. However, it
is by no means clear that this remains true for larger systems.
Therefore it is important to disentangle the effects of missing
long-range correlations and three-body forces. We will discuss
this question in detail in Sec. IV, where we assess the effect
of long-range correlations in the framework of many-body
perturbation theory.

The interplay between missing long-range correlations and
three-body terms also determines the behavior of the HF
energies as functions of the tensor correlator range, as the
different data sets in Fig. 3 illustrate. The description of
longer-ranged tensor correlations is improved by increasing
the correlator range, resulting in a lower energy. At the same
time, the repulsive three-body contributions of the correlated
Hamiltonian, not included in the two-body approximation,
become larger. For correlator ranges Iϑ ≈ 0.09 fm3, the effect
of the induced and the genuine three-body forces on the
ground-state energy cancels [13]. Any longer-ranged corre-
lator will generate a repulsive net three-body contribution.

D. Single-particle levels and spin-orbit splittings

The energy eigenvalues of the single-particle HF Hamil-
tonian provide an additional source of information. However,
one has to be extremely careful with their interpretation, since
they are no direct experimental observables. In the simplest
case they can be defined via many-body energy differences of
neighboring nuclei.

In a conventional HF treatment without any center-of-mass
correction, the single-particle energy of an occupied state
|β〉 corresponds to the change of the energy expectation
value EA − EA−1(β removed) when removing this state from
the A-body Slater determinant under the assumption of
static single-particle states (Koopman’s theorem). This direct
connection does not hold for a HF scheme based on the intrinsic
Hamiltonian [33,34]. Calculating the change of the energy
expectation value when removing one particle from the HF
Slater determinant results, for εβ < εF , in

εcorr
β = EA − EA−1(β removed)

= εβ − 〈Tint〉
A − 1

+ 2

mA(A − 1)

<εF∑
α

〈αβ| q2 |αβ〉, (32)

where 〈Tint〉 is the expectation value of the intrinsic kinetic
energy operator and the summations extend over all occupied
levels, both with respect to the A-body system. The corre-
sponding energy difference for a system with one additional
particle in state |β〉 reads, for εβ > εF , as

εcorr
β = EA+1(β added) − EA

= εβ − 〈Tint〉
A + 1

− 2

mA(A + 1)

<εF∑
α

〈αβ| q2 |αβ〉. (33)

In addition to the eigenvalues εβ of the HF Hamiltonian (26),
a global shift depending on the intrinsic kinetic energy of
the A-body system and a state-dependent correction appear.
These relations are used to define corrected single-particle
energies εcorr

β , which can be compared with single-particle en-
ergies extracted from experimental data or other calculations.
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FIG. 4. (Color online) Single-particle energies for 40Ca, obtained
with the correlated AV18 potential by using three different values of
Iϑ as indicated by the labels. The experimental data is taken from
Ref. [35].

In Fig. 4 the corrected single-particle energies for 40Ca
are shown for three different ranges of the triplet-even tensor
correlator around the optimal value of Iϑ = 0.09 fm3. The
overall agreement with the experimental levels is reasonable.
The position of the highest occupied single-particle state
is reproduced quite well for the optimal correlator range.
Nevertheless, the average level spacing seems too large,
leading to very deeply bound single-particle states at the lower
end of the spectrum. An analogous calculation based on a
Vlowk effective interaction derived from the AV18 potential has
shown the same effect in an even more pronounced way [36].

Apart from the overall structure of the single-particle
spectrum, the energy splitting between spin-orbit partner states
provides some insight into the structure of the correlated
interaction. These energy differences should be less sensitive to
the gross properties of the single-particle Hamiltonian, but em-
phasize its spin-orbit structure. In Table III we report the energy
differences for spin-orbit partners in the vicinity of the Fermi
energy for different nuclei. The experimental data are taken
from Ref. [35]. One should keep in mind that there are
sizable differences between different experimental data sets.
For example, the experimental estimates for the 0d splittings
in 40Ca range from 6 to 8 MeV [37].

The overall agreement of the UCOM-HF results with
experimental data is quite good, and no systematic deviation
is evident. This shows that the spin-orbit structure of the
correlated interaction is reasonable. Moreover, the results
highlight the role of tensor correlations. In all cases, the
spin-orbit splittings increase with increasing range of the
tensor correlator.

These results on the single-particle states do not in-
clude the effects of long-range correlations and of three-
body interactions. This remains an important task for future
investigations.

TABLE III. Difference of the HF single-particle energies for spin-
orbit partner states for protons (π ) and neutrons (ν) in various nuclei,
obtained with the correlated AV18 potential for different Iϑ . The
experimental values are taken from Ref. [35].

Nucleus Orbital Iϑ [fm3] Exp.

0.08 0.09 0.10

16O π 0p 6.40 6.77 7.06 6.32
π 0d 3.57 3.82 4.03 5.00
ν 0p 6.41 6.78 7.07 6.18
ν 0d 4.22 4.51 4.76 5.08

40Ca π 0d 8.44 8.85 9.14 6.00
π 0f 6.35 7.16 7.47 4.95
π 1p 1.25 1.47 1.52 2.01
ν 0d 8.49 8.89 9.18 6.00
ν 0f 7.60 8.21 8.54 4.88
ν 1p 1.67 1.85 1.91 2.00

100Sn π 0g 5.35 5.68 5.90 6.82
π 1p 1.72 1.83 1.90 2.85
ν 0g 5.03 5.35 5.55 7.00
ν 1d 2.29 2.44 2.54 1.93

132Sn π 0g 4.38 4.64 4.79 6.08
π 1d 2.18 2.31 2.40 1.48
ν 0h 6.34 6.70 6.94 6.53
ν 1d 2.54 2.70 2.81 1.65
ν 2p 0.67 0.70 0.72 0.81

208Pb π 1d 2.19 2.30 2.37 1.33
π 0h 4.88 5.13 5.27 5.56
ν 1f 3.32 3.51 3.63 1.77
ν 0i 6.75 7.10 7.32 5.84
ν 2p 1.30 1.36 1.41 0.90

IV. MANY-BODY PERTURBATION THEORY

In order to assess the importance of residual long-range
correlations, we use the Hartree-Fock solution as the starting
point for a perturbative calculation. This will allow us to
disentangle the effect of residual correlations, which can be
included via perturbation theory, from the effect of missing
three-body forces.

A. Formulation

The results of the Hartree-Fock calculations clearly show
the importance of residual long-range correlations for the
description of nuclei based on realistic NN interactions. Since
these system-dependent correlations cannot be described by
the same unitary transformation employed to include the
dominant short-range correlations, we have to extend our
model space such that long-range correlations can be described
by the many-body states themselves.

The simplest way to estimate the effect of long-range
correlations is many-body perturbation theory (MBPT). Many-
body perturbation theory starting from the HF solution is a
standard technique in many fields of quantum many-body
physics, ranging from quantum chemistry [38] to nuclear
physics [36,39–41]. It is straightforward to apply but has
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inherent limitations. It is well known that the convergence of
successive orders of perturbation theory is not guaranteed. As
soon as there are near degeneracies in the single-particle spec-
trum, convergence problems are inevitable [42]. Nevertheless,
low-order MBPT provides a quantitative measure for residual
contributions beyond HF due to long-range correlations. Of
course, a description of the dominant short-range correlations
by means of perturbation theory is not possible—it is crucial
that those are treated explicitly by the unitary transformation
first.

We will restrict ourselves mainly to second-order calcula-
tions and use the third-order contributions only to estimate
higher-order effects. The second-order contribution involves
antisymmetrized two-body matrix elements of the correlated
intrinsic Hamiltonian H̃int = Tint + VUCOM between two states
below the Fermi energy (hole states denoted α, α′, . . .) and
two states above the Fermi energy (particle states denoted
β, β ′, . . .):

E(2) = 1

4

<εF∑
α,α′

>εF∑
β,β ′

|〈αα′| H̃int |ββ ′〉|2
(εα + εα′ − εβ − εβ ′)

. (34)

Note that the full two-body part of the many-body Hamiltonian
enters, which includes the intrinsic kinetic energy in our case.

The third-order contribution can be conveniently decom-
posed into three parts [41]: one involving two additional
particle states,

E(3)
pp = 1

8

<εF∑
α,α′

>εF∑
ββ ′β ′′β ′′′

× 〈αα′| H̃int |ββ ′〉〈ββ ′| H̃int |β ′′β ′′′〉〈β ′′β ′′′| H̃int |αα′〉
(εα + εα′ − εβ − εβ ′ )(εα + εα′ − εβ ′′ − εβ ′′′ )

,

(35)

one with two additional hole states,

E
(3)
hh = 1

8

<εF∑
αα′α′′α′′′

>εF∑
ββ ′

× 〈αα′| H̃int |ββ ′〉〈ββ ′| H̃int |α′′α′′′〉〈α′′α′′′| H̃int |αα′〉
(εα + εα′ − εβ − εβ ′)(εα′′ + εα′′′ − εβ − εβ ′ )

,

(36)

and a third part with one additional particle and one additional
hole state:

E
(3)
ph =

<εF∑
αα′α′′

>εF∑
ββ ′β ′′

× 〈αα′| H̃int |ββ ′〉〈α′′β| H̃int |αβ ′′〉〈β ′β ′′| H̃int |α′′α′〉
(εα + εα′ − εβ − εβ ′)(εα′ + εα′′ − εβ ′ − εβ ′′ )

.

(37)

The numerical evaluation of the third-order contributions is
extremely time consuming. Moreover, it does not necessarily
improve the results, nor does it prove convergence [42].

Perturbation theory can also be used to construct the
perturbed many-body states, which in turn give access to the
other observables. We will not go into detail (see Ref. [43])
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FIG. 5. (Color online) Ground-state energies for selected closed-
shell nuclei in HF approximation and with added second- and
third-order MBPT corrections. The correlated AV18 potential with
Iϑ = 0.09 fm3 was used. The bars indicate the experimental binding
energies [31].

but rather present a few results on the effect of second-
order perturbative corrections on occupation propabilities and
charge radii in Sec. II C.

B. Ground-state energies

For all following calculations we again use the correlated
AV18 potential for the triplet-even tensor correlator with the
optimal range Iϑ = 0.09 fm3, as determined from no-core
shell-model calculations (cf. Sec. II E).

Figure 5 compares the ground-state energies in HF ap-
proximation and second order perturbation theory for selected
closed-shell nuclei. All calculations were performed using
emax = 12 major oscillator shells in order to ensure a satisfac-
tory degree of convergence of the perturbative contributions.
The residual change in binding energy when going from
emax = 12 to emax = 13 is on the level of 3% for 40Ca and 90Zr.
For light nuclei the third-order perturbative contributions are
also shown. However, owing to the high computational cost, a
reduced basis set with emax = 8 was used.

The inclusion of the perturbative contributions to the energy
leads to a remarkable result. Throughout the whole mass range,
we obtain a good agreement with the experimental binding
energies. The binding energy missing in the HF treatment
is completely recovered by the second-order perturbative
contribution E(2). In all cases we considered, the third-order
contribution E(3) is very small, but tends to improve the
agreement with the experimental energies further.

This observation is also confirmed for open-shell nuclei. We
extend the HF and MBPT schemes by allowing for partially
filled nlj shells under the constraint of identical single-particle
states for each m sublevel (cf. Sec. III). This, of course,
does not account for effects like pairing and deformation,
which will be discussed elsewhere. Nevertheless, it allows
us to systematically investigate the isospin dependence of
the correlated interaction. Figure 6 shows the HF and the
HF+MBPT energies for the O, Ca, Ni, and Sn isotope chains.
Again, the agreement of EHF + E(2) with the experimental
ground-state energies is remarkable, even for extreme neu-
tron numbers. This shows that the isospin-character of the
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FIG. 6. (Color online) Ground-state energies for the O, Ca, Ni,
and Sn isotope chains in HF approximation and with added second-
order MBPT corrections (see Fig. 5). The correlated AV18 potential
with Iϑ = 0.09 fm3 was used. The bars indicate the experimental
binding energies [31].

correlated interaction is realistic and ensures predictive power
also far off the valley of stability.

These results entail two important conclusions: (i) The
residual long-range correlations behave perturbatively and
can be described well within MBPT. The essential step of
taming the realistic NN interaction with regard to the strong
nonperturbative short-range central and tensor correlations
was accomplished within the UCOM framework by the unitary
transformation. This is encouraging, also in view of more

refined methods of extending the model space beyond the
HF Slater determinant, e.g., shell-model or configuration
interaction (CI) and coupled cluster (CC) calculations [44]. In
a forthcoming publication, we will compare the MBPT results
with explicit CI calculations based on VUCOM.

(ii) Considering ground-state energies only, it seems that
the cancellation between genuine three-body forces and the
omitted three-body contribution of the cluster expansion of the
correlated Hamiltonian works nicely throughout the nuclear
chart. If residual long-range correlations are included by
means of MBPT, then the experimental binding energies are
reproduced without systematic deviations, leaving no room
for a net contribution of the three-body force to the energy.
However, this might be different for other observables.

C. Occupation probabilities and charge radii

On the basis of the perturbed many-body state we can study
the effect of the residual correlations on other quantities of
interest. Here we will restrict ourselves to two aspects: first,
the change of the occupation probabilities of the single-particle
orbitals as a probe for the structure of the perturbed state;
second, the charge rms radius as a global indicator for the
change of the density distribution.

We adopt the formulation of the perturbative corrections to
the one-body density matrix given in Ref. [43]. The matrix
elements of the perturbed density matrix in the HF single-
particle basis are constructed from the perturbed many-body
states including all contributions up to second order in the
perturbation. The diagonal matrix elements directly provide
the mean occupation numbers n̄α of the HF single-particle
states.

The changes in the occupation numbers of the proton states
in 40Ca and 90Zr are depicted in Fig. 7. The occupation of
levels below the Fermi energy is depleted and levels above the
Fermi energy are populated. Just below the Fermi energy the
depletion can reach up to 10%. The total depletion of the proton
states below the Fermi energy is between 6% and 7% for both
nuclei. The population of states right above the Fermi energy
reaches approximately 4%. With increasing single-particle
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FIG. 7. (Color online) Change of the mean occupation numbers
of the HF single-particle states due to second-order perturbative
corrections. Shown are the results for proton orbitals in 40Ca and 90Zr
as functions of the corrected single-particle energy. The correlated
AV18 potential with Iϑ = 0.09 fm3 was used.
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FIG. 8. (Color online) Charge radii for selected closed-shell
nuclei in the HF approximation and with added second-order MBPT
corrections. The correlated AV18 potential with Iϑ = 0.09 fm3 was
used. The bars indicate experimental charge radii [32].

energy the population of the particle states deceases rapidly
and becomes rather small for the largest energies contained in
the single-particle space.

One should keep in mind that these results reflect only the
effect of the long-range correlations treated by perturbation
theory. The dominant short-range correlations, which are
described by the unitary correlators, do not show up in these
occupation numbers. In order to reveal their impact as well,
one has to formulate a correlated occupation number operator,
e.g., with respect to momentum eigenstates.

By contracting the one-body density matrix with the wave
functions of the HF single-particle states we determine the per-
turbed proton and neutron density distributions. Charge dis-
tributions and charge radii are obtained by including the
proton and neutron form factors as well as a center-of-mass
correction. The perturbed charge radii of closed-shell nuclei
are summarized in Fig. 8. The perturbative corrections increase
the charge radii typically by 0.1−0.2 fm. The increase is the
result of individual contributions of different signs, which
could also cause a decrease of the radius [43]. This result
is consistent with the general expectation that the admixture
of higher-lying states increases the radii. However, the ob-
served increase is not sufficient to obtain agreement with the
available experimental data for heavier nuclei. With growing
mass number, the deviation from the experimental radii
increases.

Assuming the validity of the perturbative estimate, this
implies that the deviation of the HF charge radii from the
experimental ones cannot be fully explained by long-range
correlations. Hence, it can be interpreted as an indication
for the necessity of a net effective three-body force, i.e., a
combination of the genuine three-body force and the three-
body contributions of the cluster expansion.

V. CONCLUSIONS

We have employed the unitary correlation operator method
for describing the dominant short-range correlations induced
by realistic NN potentials in a simple Hartree-Fock frame-
work. Based on the Argonne V18 potential with optimal

correlation functions determined in the two-body system and
a range constraint for the tensor correlation functions fixed
in three- and four-body systems, we have performed HF and
MBPT calculations for spherical nuclei throughout the nuclear
chart.

We obtain bound nuclei using the correlated AV18 potential
already at the HF level. This proves that the dominant
short-range central and tensor correlations are successfully
described by the unitary correlation operators. Without the
proper inclusion of both types of correlation it is not possible
to obtain self-bound solutions in a HF framework by using
the AV18 potential. However, the HF binding energies remain
significantly smaller than the experimental binding energies.
The same holds true for charge radii. On the other hand, the
single-particle energy differences between spin-orbit partner
states show a satisfactory agreement with experimental esti-
mates.

The missing binding energy is connected to residual long-
range correlations, which are not described by the unitary
correlation operators. They have to be covered by the model
space, and the Slater determinant of the HF approximation
is clearly not able to do so. Many-body perturbation theory
as the simplest possible step beyond the HF ground state
already recovers the missing binding energy. The agreement
between second-order ground-state energies and experimental
data is remarkably good throughout the whole mass range
from 4He to 208Pb, even far off the valley of stability.
Unlike the short-range central and tensor correlations, the
residual long-range correlations are perturbative. This opens
interesting perspectives for the application of more refined
many-body techniques, like configuration interaction and
coupled-cluster schemes, to benchmark the perturbative results
and obtain a more detailed insight into the structure of those
correlations.

None of the calculations presented here does include three-
body forces. Therefore, it is surprising that a good agreement
with the experimental binding energies was observed for all
nuclei considered. This is due to a net cancellation of the energy
contributions of the genuine three-body force (attractive) and
the three-body order of the cluster expansion (repulsive).
This was already observed in no-core shell-model calculations
for light systems [13], but seems to hold across the whole
nuclear chart. Obviously, this cancellation effect does not
necessarily work for other observables as well. The charge
radii, which still show a sizable deviation from experiment
after including long-range correlations, point in that direction.
The construction and inclusion of effective three-body forces
will therefore be one of the major lines of research for
the future.
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