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Stochastic mean-field dynamics for fermions in the weak-coupling limit
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Assuming that the effect of the residual interaction beyond the mean field is weak and has a short memory
time, two approximate treatments of correlation in fermionic systems by means of the Markovian quantum jump
are presented. A simplified scenario for the introduction of fluctuations beyond the mean field is presented first.
In this theory, part of the quantum correlations between the residual interaction and the one-body density matrix
are neglected and jumps occur between many-body densities formed of pairs of states D = |�a〉〈�b|/〈�b|�a〉,
where |�a〉 and |�b〉 are antisymmetrized products of single-particle states. The underlying stochastic mean-field
theory is discussed and is applied to the monopole vibration of a spherical 40Ca nucleus under the influence of
a statistical ensemble of two-body contact interactions. This framework is however too simplistic to account for
both fluctuation and dissipation. In the second part of this work, an alternative quantum jump method is obtained
without making the approximation on quantum correlations. By restricting to two-particle–two-hole residual
interactions, the evolution of the one-body density matrix of a correlated system is transformed into a Lindblad
equation. The associated dissipative dynamics can be simulated by quantum jumps between densities written as
D = |�〉〈�|, where |�〉 is a normalized Slater determinant. The associated stochastic Schrödinger equation for
single-particle wave functions is given.
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I. INTRODUCTION

The description of quantum self-interacting systems with
many degrees of freedom is common to many fields of physics,
including Bose-Einstein condensates, atomic clusters, and
nuclear systems. A striking aspect related to this problem
is the emergence of well-ordered motion at the same time
as complexity and chaos [1,2]. In many situations, the self-
consistent mean-field theory provides a suitable framework to
describe ordered motions. It also corresponds to one of the
most useful methods for studying the static and dynamical
properties of self-interacting systems [3–5]. However, it often
turns out that the mean-field theory reproduces average prop-
erties of one-body observables but underestimates dissipative
and fluctuating aspects. This can directly be assigned to
the absence of two-body effects beyond the mean field.
In the nuclear context, an extension of mean-field theory
has been proposed by considering that one-body degrees
of freedom represent a subsystem that is coupled to more
complex internal degrees of freedom. By doing so, the
problem of self-interacting systems has been mapped to an
open quantum system problem. In nuclei, extensive work
has been devoted to the formal derivation of dissipative
quantum mechanics [6] and/or related stochastic equations
for fermions, including Markovian and non-Markovian effects
[7–14]. A common aspect of these approaches is that the
residual part of the interaction introduces disorder on top of the
mean field. These theories end with rather complex transport
equations, which are hardly applicable in realistic situations
[15]. In fact, only recently, the theory proposed in Ref. [11]
has been applied to small-amplitude collective vibrations
[16]. Its application to large-amplitude motion in nonequi-
librated quantum many-body dynamics remains an open
issue [15,17].

During the past decades, significant theoretical efforts have
been devoted to the development of Monte Carlo methods to
describe the static properties of many-body interacting systems
[18]. Recent applications to nuclear physics have shown that
stochastic methods can successfully be applied to describe the
structure of nuclei [19]. These methods can also be extended to
dynamical problems [5] and have been used recently to treat
the exact dynamics of interacting bosons [20] and fermions
[21] in schematic cases. As underlined in Ref. [22], it is
highly desirable to provide approximate theory to describe
dissipation in many-body systems by taking advantage of
recent advances in Monte Carlo methods. The present work is
an exploratory study devoted to the description of dissipation
and fluctuations in dynamical problems using quantum jump
techniques. Starting from a perturbative treatment of the
residual interaction, two strategies are used to transform the
many-body dynamics into a stochastic process. In the first
strategy, neglecting part of the quantum correlations leads
to a stochastic theory that may be economical in terms of
numerical implementations. Although appropriate for treating
fluctuations beyond the mean field, it is however not suitable
for dissipation. In the second part of this article, we show
that the approximate treatment of quantum correlations can be
avoided, thereby leading to a more general framework. In that
case, the dynamical equation of motion of one-body degrees
of freedom can be mapped into a Lindblad equation [23,24]
generally found in the theory of open quantum systems [25].
Finally, the associated jump process is discussed.

II. GENERALITIES ON PERTURBATION THEORY AND
STOCHASTIC MECHANICS

We consider a many-body fermionic system described by
a two-body Hamiltonian H. We assume that the mean-field
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theory already provides a good approximation of its static
and dynamical properties. In this case, the N-body wave
function can be replaced by an antisymmetrized product of
single-particle states interacting through an effective self-
consistent mean field, denoted by HMF. Let us assume that
the system is initially a Slater determinant, denoted by |�(t)〉,
and let us introduce the mean-field propagator UMF(t ′, t). The
great advantage of mean-field theory is that the propagated
many-body state |�(t ′)〉 = UMF(t ′, t)|�(t)〉 remains a Slater
determinant and the dynamical evolution of the system reduces
to the evolution of its single-particle components. Thus, the
many-body density D is approximated by D � |�(t ′)〉〈�(t ′)|.
Accordingly, all the information on the system is contained
in the one-body density matrix, denoted by ρ, whose ma-
trix elements are defined by 〈j |ρ|i〉 = Tr(a+

i ajD) ≡ 〈a+
i aj 〉.

Mean-field theory does simplify the dynamical description of
many-body systems by reducing significantly the number of
degrees of freedom to follow in time.

In nuclear physics, the mean field is often adequate for
describing average properties of one-body observables but fails
to account for fluctuations. At the wave-function level, this
corresponds to a deviation of the mean-field trajectory from
the exact dynamics [26,27].

To illustrate this effect, we denote by δv12 the residual
two-body interaction defined through δv12 = H − HMF. In
the weak-coupling regime, this deviation can be treated in
perturbation theory and the state at time t ′ reads [12]

|�(t ′)〉 = |�(t ′)〉 − i

h̄

∫
δv12(s)|�(s)〉ds

− 1

2h̄2 T

(∫ ∫
δv12(s ′)δv12(s)ds ′ds|�(s)〉

)
, (1)

where δv12(s) corresponds to the residual interaction written
in the interaction picture, δv12(s) = U+

MF(s, t)δv12(t)UMF(s, t).
At the mean-field level, |�(t ′)〉 is replaced by |�(t ′)〉, but
owing to the accumulated effect of δv12 in time, it is expected
that the exact state becomes a more and more complex
superposition of a large number of Slater determinants.
Accordingly, information on the system can no longer be
reduced to only knowledge of the one-body density matrix
and higher order correlations must be accounted for. A natural
extension of mean-field theory is to enlarge the number of
degrees of freedom considered. This is done for instance in the
time-dependent density matrix (TDDM) theory, where both the
one-body density matrix and the two-body correlation operator
are followed in time [28]. These theories are however rarely
applied because of the large number of degrees of freedom to
consider [29].

An alternative way to account for correlations beyond the
mean field is to use stochastic methods. Several strategies have
been proposed to introduce noise on top of the mean field,
based on a statistical ensemble of one-body densities [7,10,11],
based on random two-body interactions or phase shifts [8,9],
or directly from Fermi’s golden rule [12–14]. The goal in
all cases is to simulate the dynamics of correlated system by
averaging over an ensemble of mean-field trajectories. The
great advantage in that case is that the number of degrees of
freedom to follow along each path is not increased compared to

standard mean-field theory. However, these theories are rather
complex and methods for numerical implementations are still
lacting.

The aim of the present work is to discuss again the
possibility of replacing correlated dynamics by quantum jumps
in the Hilbert space of Slater determinants. We use Eq. (1) as a
starting point and we restrict the discussion to the Markovian
limit. To illustrate this hypothesis, we follow Refs. [8,9]. We
assume that the residual interaction induces random transitions
treated as a statistical ensemble of two-body interactions acting
on top of the mean field. Equation (1) is then replaced by a set
of evolutions with the same initial state and mean field but with
different residual interactions. We assume that the two-body
operator has a Gaussian distribution with a mean value δv12 =
0 and a second moment denoted by δv2

12. Here, the average
is taken over different values of δv12. In nuclear systems,
the residual interaction is expected to induce transitions on
a shorter time scale (called correlation time and denoted by τ )
than the time associated with the mean-field evolution (denoted
by τrel) [17,30]. τ is related to the average autocorrelation
function δv12(s ′)δv12(s), which is approximated by [8,9]

δv12(s ′)δv12(s) ∝ δv2
12(s)e−(s−s ′)2/2τ 2

. (2)

Using this approximation, we consider a time scale �t much
larger than the time τ but smaller than τrel. In the following,
this limit will be called the “Markovian” or “short memory
time” approximation.

Using approximation (2), we consider in the following
two limits for which the wave-function evolution as given
by (1) can be replaced by quantum jumps between Slater
determinants. The first case is a simplified scenario where part
of the quantum correlations between δv12 and ρ is neglected
along the path. In this case, it is shown that the evolution can
be formulated in terms of quantum jumps between many-body
densities formed of pairs of Slater determinants. In a second
part, we show that the perturbative dynamics can still be
transformed into a quantum jump process even if quantal
correlations are not neglected. In both cases, all equations
necessary for applications are given explicitly.

III. FLUCTUATIONS BEYOND THE MEAN FIELD IN A
SIMPLIFIED STOCHASTIC SCENARIO

Let us first consider the perturbative evolution of an initial
Slater determinant. Under the assumptions of Eq. (2) and the
short memory time approximation, the meanfield does not
change over �t . Then, the average evolution of the state,
denoted by �|�〉 = |�(t + �t)〉 − |�(t)〉, reduces to

�|�〉 = �t

ih̄
HMF|�(t)〉 − τ�t

2 h̄2 δv2
12|�(t)〉. (3)

This expression can also be regarded as an average over
Markovian stochastic processes in many-body wave-function
space. To give a deeper insight we define the ensemble of
antisymmetrized two-body residual interactions as

δv12(σ ) = 1

4

∑
αβγ δ

a+
α a+

β 〈αβ|δv12(σ )| δγ 〉aγ aδ. (4)
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Here, σ ≡ {σi}i=1,N , where all components are stochastic
variables sampled according to Gaussian probabilities with
mean zero and σi

2 = 1. The number N of stochastic compo-
nents defines the complexity of the process. The definition (4)
includes the force proposed in Ref. [9]. Equation (3) can be
interpreted as the average over the quantum diffusion

�|�〉 =
{

�t

ih̄
HMF + �Bδv12 + 1

2
(�Bδv12)2

}
|�(t)〉, (5)

where �B = i
√

τ�t/h̄. In the following, we will consider
the last expression as a differential stochastic equation in
Hilbert space [25,31]. We use the notation dB instead of �B

and use the Ito rules of stochastic calculus [32]. Because
of the two-body nature of δv12, Eq. (5) induces complex
reorganization of single-particle degrees of freedom. After the
jump, the state is not a priori a single Slater determinant.
For applications, it is highly desirable to preserve the simple
initial form of the state along the stochastic path. This can be
achieved by invoking the additional approximations described
in the following. Following Refs. [20–22], we consider an
initial density

D = |�a〉〈�b|
〈�b|�a〉 , (6)

where |�a〉 = A (�i |αi〉) and |�b〉 = A (�i |βi〉) are two
nonorthogonal Slater determinants formed of products of
single-particle wave packets denoted, respectively, by |αi〉 and
|βi〉. The notation A(.) corresponds to the antisymmetrized
product. We assume that both states follow the diffusion
process described by Eq. (5) but with two independent sets
of Gaussian stochastic variables, denoted, respectively, by σa
and σb. This case will be referred in the following as the
“uncorrelated noise.” The use of different sets of stochastic
variables is at variance with standard quantum Monte Carlo
procedures that simulate density evolution given by Lindblad
equations [25]. However, this assumption has been shown to
be crucial for describing the exact dynamics of interacting
systems with stochastic methods [20,21].

A. Approximate stochastic mechanics in one-body
density matrix space

To approximate the diffusion process, we first focus on
single-particle degrees of freedom. Under the approximation〈

a+
i aj δv

2
12

〉 � 〈a+
i aj 〉

〈
δv2

12

〉 + 2〈a+
i aj δv12〉 〈δv12〉

− 2〈a+
i aj 〉 〈δv12〉2 , (7)

the one-body density evolution [Eq. (5)] reduces to

d〈a+
i aj 〉 � dt

ih̄
〈[a+

i aj ,HMF]〉
+ dBa(〈a+

i aj δv12〉 − 〈a+
i aj 〉〈δv12〉)

+ dB∗
b (〈δv12a

+
i aj 〉 − 〈a+

i aj 〉〈δv12〉). (8)

It is interesting to notice that, although we consider a second
order perturbation theory for the residual interaction, the
second-order term exactly cancels out when approximation (7)
is used. Equation (7) corresponds to a Gaussian approximation
for quantal fluctuations. Therefore, Eq. (8) provides the

stochastic equation of motion of one-body degrees of freedom
associated with Eq. (5) when neglecting part of the quantal
fluctuations. The corresponding stochastic evolution of ρ reads

dρ = dt

ih̄
[hMF, ρ] + dBa(1 − ρ)U (ρ, σa)ρ

+ dB∗
b ρU ′(ρ, σb)(1 − ρ), (9)

where hMF denotes the matrix elements associated with the
mean-field Hamiltonian, and U (ρ, σa) = Tr2[δv12(σa)ρ2] and
U ′(ρ, σ b) = Tr2[ρ2δv12(σ b)].

The stochastic one-body evolution given by Eq. (9) also
contains part of the information on correlations. Indeed,
an approximate evolution of the two-body density, whose
matrix elements are 〈a+

i a+
j alak〉 = 〈kl|ρ12|ij 〉, can be obtained

through approximations similar to Eq. (7) but preserving the
symmetry of the two-body density:

〈a+
i a+

j alakv12〉 � 〈a+
i a+

j alak〉〈v12〉 + (〈a+
i akv12〉〈a+

j al〉
− 〈a+

i alv12〉〈a+
j ak〉) + (〈a+

i ak〉〈a+
j alv12〉

−〈a+
i al〉〈a+

j akv12〉) − 2(〈a+
i ak〉〈a+

j al〉
− 〈a+

i al〉〈a+
j ak〉)〈v12〉 (10)

and

〈a+
i a+

j alakv12v12〉
� 〈a+

i a+
j alak〉

〈
v2

12

〉+ 2(〈a+
i akv12〉〈a+

j alv12〉
− 〈a+

i alv12〉〈a+
j akv12〉) − 2(〈a+

i ak〉〈a+
j al〉

− 〈a+
i al〉〈a+

j ak〉)〈v12〉2. (11)

Combining with Ito rules reduces the evolution of ρ12 to

d〈a+
i a+

j alak〉 � d(ρkiρlj − ρkjρli), (12)

indicating that the two-body evolution can be deduced from
the stochastic evolution of ρ. Although Eq. (12) is similar to
the mean-field case, it contains correlations beyond the mean
field. A similar situation occurs in the exact reformulation of
self-interacting fermions with quantum jumps [22].

In summary, the jump process described by Eq. (5) for
both state vectors entering in D can be approximated by the
jump process in one-body space given by Eq. (9) if part of
the quantal fluctuations is neglected. The advantage of this
approximation is that expression (6) for D is preserved along
the stochastic path. In this work, we restrict ourselves to this
limit and Eq. (9) will be referred to as the incoherent stochastic
mean-field (SMF) dynamics. The properties of this diffusion
process are described in the following.

We consider that the single-particle states of |�a〉 and |�b〉
initially verify

〈βj |αi〉 = δij . (13)

Equation (9) can be simulated by quantum jumps for single-
particle states given by{|dαi〉 = [

dt
ih̄

hMF(ρ) + dBa(1 − ρ)U (ρ, σa)
] |αi〉 ,

〈dβj | = 〈
βj

∣∣ [− dt
ih̄

hMF(ρ) + dB∗
bU ′(ρ, σb)(1 − ρ)

]
.

(14)

The latter quantum diffusion process has several attractive
aspects. First, it can be easily verified that Eq. (13) is preserved
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along the stochastic path. Thus, the one-body density reads at
all time ρ = ∑

i |αi〉〈βi |. Consequently, the trace of the density
is constant along the path: Tr(dD) = Tr(dρ) = 0. In addition,
ρ remains a projector (i.e., ρ2 = ρ at all time). Finally, the
total entropy S = −kBTr(D ln D) is constant along the path.
Indeed, since the density is given by Eq. (6), S(D) identifies
with the one-particle entropy S(ρ). Using Eq. (9) and Ito rules,
we obtain dS(ρ) = 0. Despite a constant entropy, the SMF
induces correlations beyond the mean field. Indeed, starting
from an initial two-body density ρ12 = A(ρ1ρ2), after one time
step, the average evolutions of the one- and two-body density
matrices read{

dρ = dt
ih̄

[hMF, ρ] ,

dρ12 = dt
ih̄

[hMF(1) + hMF(2), ρ12] + dC12,
(15)

where the labels “1” and “2” refer to the particle on which the
operator is acting [33] and dC12 corresponds to correlations
beyond the mean field associated with the stochastic one-body
evolution given by Eq. (9). It reads

dC12 = −τdt

h̄2 [(1 − ρ1)(1 − ρ2)U1(σa)U2(σa)ρ12

+ ρ12U
′
1(σb)U ′

2(σb)(1 − ρ1)(1 − ρ2)], (16)

where the density dependences are omitted in U and U ′.
Equation (16) clearly indicates that dC12 is a second-order
term in perturbation. Note that its form is similar to that of
the second moment of the initial stochastic correlation used in
Ref. [11].

B. Illustration of the application

To illustrate the SMF theory, we consider the monopolar
vibration of a 40Ca nucleus. The system is initially prepared
in a pure state D = |�〉〈�|, where |�〉 is a Slater determinant
solution of a constrained Hartree-Fock (CHF) equation. The
CHF equation is solved by assuming spherical symmetry
and spin and isospin saturation. The Skyrme interaction of
Ref. [34] is used in the mean field. We assume, in addition
to the self-consistent mean field, a monopolar constraint
λr2, with λ = 0.25 MeV fm−2 at t < 0 fm/c [35]. At t =
0 fm/c, the constraint is relaxed and two dynamical calculations
are considered. The first corresponds to the time-dependent
Hartree-Fock (TDHF) evolution. In the second case, the
SMF evolution described by Eq. (9) is performed with a
statistical ensemble of contact interactions defined by one
stochastic variable [i.e., δv12(σ ) = σvres, where vres is a contact
interaction]. In this case, U (σ, r) takes the form U (σ, r) =
σg0ρ(r), where g0 is a parameter measuring the strength of the
perturbation. In both cases, evolutions are solved by assuming
spherical symmetry.

The evolution of the root-mean-square (rms) radius ob-
tained with TDHF evolution is presented in Fig. 1 (filled
circles). The different lines displayed on the top part of
Fig. 1 correspond to the evolution of the rms radius along
several stochastic paths obtained with g0 = 500 MeV/fm and
a collision time τ = 0.01 fm. In each case, the stochastic
evolution differs significantly from the mean-field prediction.
The bottom part of Fig. 1 shows a comparison between the

FIG. 1. (Color online) Top: Evolution of the rms radius as a
function of time. Black circles correspond to the standard TDHF
evolution, different lines correspond to different stochastic paths.
Bottom: Error bars correspond to the rms evolution obtained by
averaging over different paths; black circles correspond to the TDHF
case. The stochastic simulation is performed for g0 = 500 MeV/fm.
The average is taken over 200 trajectories. The width of the error bars
corresponds to the statistical fluctuations of the rms.

TDHF evolution and the evolution of the rms radius obtained
by averaging over the different stochastic trajectories. Inter-
estingly enough, the average evolution tracks with the TDHF
evolution. This example illustrates a special situation where the
mean-field dynamics can be recovered from complex trajecto-
ries in many-body space [36]. However, significant fluctuations
around the mean TDHF trajectories are observed. This is

illustrated in Fig. 2, where the quantity �r = (〈r2〉2 − 〈r2〉2
)1/2

FIG. 2. (Color online) Evolution of the dispersion of the rms as
a function of time for different values of g0. The different curves
from bottom to top correspond, respectively, to g0 = 100, 250, and
500 MeV fm. Solid lines and open circles correspond, respectively,
to initial constraints λ = 0 MeV fm−2 and λ = 0.25 MeV fm−2.
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is displayed as a function of time for different values of g0 and
λ. We also computed as a reference the mean-field width σMF,
corresponding to the quantal fluctuations of r2 estimated in
the mean-field approximation, leading to σMF = 6.3 fm2. As
expected in the weak-coupling approximation, the additional
fluctuations �r induced by the stochastic term are much
smaller than σMF. It turns out that the dispersion is properly
parametrized by the formula �r = �0(1 − e−
0t ), where �0 is
proportional to g0 although 
0 is independent of it. Therefore,
although the average evolution of the rms collective variables
is not affected by the stochastic process, fluctuations around
the mean value increase and saturate as expected in Brownian
motion. Interestingly enough, the behavior observed here is
very similar to the description of a quantum oscillator [37] with
Nelson stochastic mechanics [38] replacing (h̄/m)1/2 by g0. By
assuming a single collective state and using similar techniques
as in Ref. [37], an analytical expression can be obtained for �r ,
where �0 is indeed proportional to g0 whereas 
0 depends only
on the oscillator frequency. Note, however, that a complete
understanding of the Brownian process presented here must
pass through the linearization of Eq. (9) as in Ref. [17].

C. Critical discussion

In this section, we have shown that the presented SMF
theory can be applied to account for fluctuations beyond the
mean field. The previous example can only serve as an illus-
tration owing to the very schematic residual interaction used
and to the very small time τ (see estimation in Refs. [39,40]).
Besides the simplicity of the force, it is important to note
that the preceding theory only gives a partial answer to the
simulation of correlations beyond the mean field for realistic
nuclear systems. Indeed, as clearly seen in Fig. 1, although
fluctuations of one-body observables are increased, the average
evolution of the rms tracks with the TDHF case. Therefore,
no additional damping is observed in the SMF, in contrast to
what is obtained in extended TDHF dynamics [17]. Indeed,
dissipative aspects present in the memory kernel of extended
TDHF dynamics are not included in the present framework. A
careful analysis demonstrates that the absence of a collision
term could be assigned to the approximations made on quantal
fluctuations [Eqs. (7), (10), and (11)].

Under these approximations, it is however possible to show
that a fermionic system submitted to a statistical ensemble of
residual interactions δv12 can be treated by a jump process
related to its mean field [Eq. (9)]. The form of the noise
is a second critical aspect for nuclear physics. In fact, it
is expected that the residual interaction is dominated by
the two-particle–two-hole (2p–2h) channels. Owing to the
mean-field nature of the noise in Eq. (9), these components
cancel out in the stochastic part. Therefore, although the
SMF can be of great interest, some important aspects for
nuclear physics are missing. In the next section, we discuss
the possibility of using the quantum jump process in one-body
space in a more general framework.

IV. STOCHASTIC MECHANICS WITH DISSIPATION

To generalize the stochastic method described previously,
we consider directly the evolution of the many body density

D associated with Eq. (1). Using the short memory time
approximation for δv12, the evolution of D can be recast as

�D = �t

ih̄
[HMF,D] − τ�t

2 h̄2 [δv12, [δv12,D]]. (17)

In the previous section, the term δv12Dδv12 has been neglected
because the average evolution of wave functions were directly
considered. This approximation made it possible to have
uncorrelated noise for |�a〉 and 〈�b|. Here, this contribution
is not neglected. As a consequence, the uncorrelated noise
assumption is no longer possible.

The one-body density matrix equation of motion associated
with Eq. (17) is given by

dρ

dt
= 1

ih̄
[hMF(ρ), ρ] − g

2
D(ρ), (18)

where g = τ/h̄2 is a real constant. The D(ρ) term, called the
“dissipator” hereafter, corresponds to the average effect of the
residual interaction and reads

〈j |D|i〉 = 〈[[a+
i aj , δv12], δv12]〉. (19)

We assume that the system is initially in a pure state described
by a Slater determinant |�(t)〉 formed of N orthonormal
single-particle states denoted by |α〉. The associated initial
one-body density matrix reads ρ = ∑

α |α〉 〈α|. Having in
mind the nuclear many-body problem, we assume that only
2p–2h components of δv12 are not equal to zero. Completing
the hole states by a set of particle states, denoted by |α̃〉, we
have

δv12(t) = 1

4

∑
α̃β̃αβ

a+
α̃ a+

β̃
〈α̃β̃|v12(t)|αβ〉aαaβ. (20)

D can then be recast as

D(ρ) = Tr2 [v12, F12] , (21)

where F12 is equal to

F12 = 1
2 [(1 − ρ1) (1 − ρ2) v12ρ1ρ2

− ρ1ρ2v12 (1 − ρ1) (1 − ρ2)] . (22)

Expression (21) takes a form similar to the collision term
generally obtained in extended TDHF dynamics [17]. The
dissipator D(ρ) can be further transformed. Indeed, δv12 given
by Eq. (20) can always be decomposed as (see for instance
[41])

δv12 = −1

4

∑
n

λnO2
n, (23)

where λn are real and the On correspond to a set of
commuting Hermitian one-body operators written as On =∑

α̃α 〈α̃|On| α〉a+
α̃ aα . By using Eq. (21), D(ρ) can be recast as

D(ρ) =
∑
mn


mn (OnOmρ + ρOnOm − 2OmρOn) . (24)

The coefficients 
mn are given by


mn = 1
2λmλnTr[Om(1 − ρ)Onρ]. (25)

We recognize in this expression the quantum covariance
between the operator On and Om (i.e., Tr[Om(1 − ρ)Onρ] =
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〈OmOn〉 − 〈Om〉〈On〉). Expression (24) has the form of the
dissipator appearing usually in the Lindblad equation [25].
Therefore, we have shown that the evolution of one-body
degrees of freedom associated with Eq. (17) can be identi-
fied with a Markovian quantum master equations generally
obtained in quantum open systems. A large amount of work
is devoted to the simulation of such master equations by
quantum jump methods (see for instance [25,42–45]) and
one can take advantage of the most recent advances in this
field. This aspect has however rarely been discussed in the
context of self-interacting systems. In the following, the
associated diffusion process is made explicit and we show that
it indeed corresponds to jumps between Slater determinants.
The stochastic Schrödinger equation for the single-particle
wave function is then given.

A. Explicit form of the stochastic process

Following Ref. [25], we introduce the Hermitian positive
matrix 
 with components 
mn. An economical method for
introducing the quantum jump process [25] is to use the
unitary transformation u that diagonalizes 
 (i.e., 
 = u−1γ u,
where γ is the diagonal matrix of the eigenvalues of 
).
New operators Ak can be defined by the transformation
Ak = ∑

n u−1
kn On. The dissipator is then recast as

D(ρ) =
∑

k

γk

(
A2

kρ + ρA2
k − 2AkρAk

)
. (26)

The last equation can be simulated using the average over the
stochastic mean-field dynamics:

dρ = dt

ih̄
[hMF(ρ), ρ] − g

dt

2
D(ρ) + dbsto, (27)

where dbsto is a stochastic one-body operator, which, using Ito
rules [32], reads

dbsto =
∑

k

[dWk(1 − ρ)Akρ + dW ∗
k ρAk(1 − ρ)]. (28)

Here dWk denotes stochastic variables given by dWk =
−idξk

√
gγk , where dξk corresponds to a set of real Gaussian

stochastic variables with mean zero and dξkdξk′ = δkk′dt .

B. Nature of the stochastic process in Hilbert space

It is worth noticing that the proposed dissipative equation
and its stochastic counterpart are only well defined if the
density is initially prepared as a pure Slater-determinant state.
We now turn to the essential properties of Eq. (27). First, it
preserves the number of particles Tr (dρ) = 0. In addition, if
initially ρ2 = ρ, then

dρdρ − g
dt

2
[ρD(ρ) + D(ρ)ρ] = −g

dt

2
D(ρ), (29)

which is obtained using Ito stochastic rules and retaining
only terms linear in dt. The last expression demonstrates that
(ρ + dρ)2 = ρ + dρ. Thus, ρ remains a projector along the
stochastic path. As a consequence, the pure state nature of the
many-body density matrix is preserved along the stochastic

path [i.e., D = |�(t)〉〈�(t)|, where |�〉 is a normalized Slater
determinant at all time]. The associated stochastic Schrödinger
equation for single-particle states reads

d |α〉=
{

dt

ih̄
hMF(ρ) +

∑
k

dWk(1 − ρ)Ak

− g
dt

2

∑
k

γk

[
A2

kρ + ρAkρAk − 2AkρAk

]}|α〉.

(30)

Eq. (30) can be directly used for practical applications.
In this section, assuming that the residual interaction can

be written in terms of 2p−2h components, we have shown
that the dissipative dynamics of one-body degrees of freedom
can be simulated by quantum jumps. The stochastic method
differs significantly from the simplified scenario considered in
the previous section. First, the above theory does not require
the introduction of the generalized many-body density matrix
formed of two Slater determinants since D = |�(t)〉〈�(t)|
along each path. As a counterpart, the numerical effort required
to treat the new SMF, which includes dissipative aspects,
is significantly increased. Indeed, in Sec. III B, we have
shown that fluctuations can be introduced using a simplified
residual interaction and a limited number of noise terms. In
the new SMF, the numerical effort is directly proportional
to the number of one-body operators entering in Eq. (23).
This situation is similar to stochastic methods used in nuclear
structure studies [19]. In that case, significant numerical
effort is required. For instance, if we assume that a physical
system is described in a mesh, then the number of noise
terms is a priori as large as the number of mesh points. The
numerical implementation of the quantum jump process in its
full complexity is expected to remain difficult with present
computer capacities. Therefore, specific numerical techniques
as well as truncation procedures should be developed to
implement the method in many-body dissipative dynamics.

V. CONCLUSION

In this work, we have presented a discussion on the pos-
sibility of replacing the dynamics of interacting fermions by
quantum jumps. By assuming a weak-coupling approximation
and a short memory time for the residual interaction, two
scenarios have been considered. Focusing on one-body degrees
of freedom, we have found two different approximations
that lead to equations of motions for the one-body density
matrix that can be treated by quantum jumps between Slater
determinants.

In the first stochastic mean-field process, part of the quantal
correlations between ρ and δv12 are neglected along the
path. The SMF is illustrated in the monopolar vibration
of a calcium nucleus. In this case, whereas expectation
values of one-body observables are unchanged, fluctuations
are increased compared to the mean field. In the presented
application, the residual interaction is rather simple. However,
more complex statistical ensembles, such as two-body random
interactions, can be used. This method suffers from the absence
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of dissipative effects and appears to be too simplified for the
nuclear many-body problem.

In the second part of this work, we showed that the dynamics
of correlated systems can be described by a quantum jump
process even if no approximation on the quantal correlations
are made. Restricting to 2p–2h residual interactions gives a
guideline for transforming the evolution of the one-body den-
sity matrix evolution into a Lindblad equation. The stochastic
process corresponds to quantum jumps between pure state
densities D = |�〉〈�|, where |�〉 is a Slater determinant. The
associated stochastic equation of motion for single-particle
wave functions is given.

Finally, we would like to mention that the presented
framework does not account for non-Markovian effects. It has
however been shown in Ref. [15] that the memory effect might
be important in the nuclear context. Promising work is being
devoted to incorporating non-Markovian effects in quantum
Monte Carlo methods [46–49].
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