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Spatial structure of neutron Cooper pair in low density uniform matter
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The spatial structure of the neutron Cooper pair in superfluid low-density uniform matter is analyzed by means
of BCS calculations employing a bare force and the effective Gogny interaction. It is shown that the Cooper
pair exhibits a strong spatial dineutron correlation over a wide range of neutron densities ρ/ρ0 ≈ 10−4 − 0.5.
This feature is related to the crossover behavior between the pairing of the weak coupling BCS type and the
Bose-Einstein condensation of bound neutron pairs. It is also shown that the zero-range δ interaction can describe
the spatial structure of the neutron Cooper pair if the density-dependent interaction strength and the cutoff energy
are appropriately chosen. Parametrizations of the density-dependent δ interaction satisfying this condition are
discussed.
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I. INTRODUCTION

The importance of the pair correlation has been widely
recognized for nucleon many-body systems in various circum-
stances, in particular in open-shell nuclei and in neutron stars.
The pairing gap varies with system parameters such as N,Z,
and the rotational frequency in the case of finite nuclei, or the
temperature and the density in the case of neutron stars (cf.
Refs. [1–5] as reviews). The pairing correlation at low nucleon
density is of special interest, since the theoretical predictions
for low-density uniform matter suggest that the pairing gap
may take, at around 1/10 of the normal nuclear density, a
value that is considerably larger than that at the normal density
[3–5]. This feature is expected to have direct relevance to the
properties of neutron stars, especially those associated with the
inner crust [6,7]. The strong pairing at low density may also be
relevant to finite nuclei, if one considers neutron-rich nuclei
near the drip line [8–11]. This is because such nuclei often
accompany an unsaturated low-density distribution of neutrons
(the neutron skin and/or the neutron halo) surrounding the
nuclear surface [12–14]. It is interesting to clarify how the pair
correlation in these exotic nuclei is different from that in stable
nuclei, reflecting the strong density dependence mentioned
above. In this connection one would like to ask how the pair
correlation at low nucleon density is different from that around
the normal density.

The spatial structure of the neutron Cooper pair is focused
on as a characteristic feature of low-density nucleon pairing.
Its possible indication could be the dineutron correlation
in the two-neutron halo nuclei, e.g., 11Li, for which a
spatially correlated pair formed by the halo neutrons has been
predicted theoretically [8,15–20] and debated in experimental
studies [21–24]. Further, a recent theoretical analysis [25]
using the Hartree-Fock-Bogoliubov (HFB) method [26–29]
also predicts the presence of a similar dineutron correlation
in medium-mass neutron-rich nuclei where more than two
weakly bound neutrons contribute to form the neutron skin
in the exterior of the nuclear surface. It is also possible to

∗Electronic address: matsuo@nt.sc.niigata-u.ac.jp

argue the importance of the spatial correlation from a more
fundamental viewpoint based on the nucleon interaction in
the 1S channel. The bare nucleon-nucleon interaction in this
channel has a virtual state around zero energy, characterized
by the large scattering length a ≈ −18 fm, which implies a
very strong attraction between a pair of neutrons with the
spin singlet configuration. A rather general argument [30,31],
which applies to a dilute limit of any Fermion system, indicates
that the pair correlation of the Fermions interacting with a large
scattering length differs significantly from what is considered
in the conventional BCS theory [32] assuming weak coupling:
it is then appropriate to consider a crossover between a
superfluid system of the weak-coupling BCS type and a
Bose-Einstein condensate of spatially compact bound Fermion
pairs [30,31,33–35]. This BCS-BEC crossover phenomenon
was recently observed in an ultracold atomic gas in a trap,
for which the interaction is controllable [36]. In the case of
the nucleon pairing, the BCS-BEC crossover has been argued
mostly for the neutron-proton pairing in the 3SD1 channel,
for which the strong spatial correlation associated with the
deuteron and the BEC of the deuterons may emerge [37–41].
Concerning the neutron pairing in the 1S channel, which is
discussed in the present paper, we may also expect that the
strong coupling feature may lead to the spatial dineutron
correlation, although the realization of the crossover could
be marginal and should depend on the density [38].

In the present paper I would like to clarify how the
spatial structure of the neutron Cooper pair varies with the
density. For this purpose, I shall investigate the neutron pair
correlation in symmetric nuclear matter and in neutron matter
in the low-density region. Uniform matter is, of course, a
simplification of the actual nucleon configurations in finite
nuclei and neutron stars. However, it has a great advantage, as
one can solve the gap equation in this case without ambiguity
for various interactions including the bare nucleon-nucleon
forces with a repulsive core [3–5,39–49] as well as effective
interactions such as the Gogny force [48,50,51], provided
that the BCS approximation (equivalent to the HFB in finite
nuclei) is assumed. It is straightforward then to determine the
wave function of the neutron Cooper pair from the solution
of the gap equation [3,39,40,43–45,47,48]. This provides us
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with a good reference frame to study the spatial structure
of the Cooper pair as a function of the density, while I do
not intend to make precise predictions of other properties
of neutron and symmetric nuclear matter. I shall perform an
analysis employing both a bare force and the effective Gogny
force [52] and using a Hartree-Fock single-particle spectrum
associated with the media. The main conclusion will be that the
spatial dineutron correlation is strong in a wide range of low
densities, ρ/ρ0 ≈ 10−4 − 0.5, independently of the adopted
forces. I shall clarify the nature of the strong spatial dineutron
correlation in terms of the BCS-BEC crossover model.

I shall also examine the possibility of phenomenological de-
scription of the spatially correlated neutron Cooper pair. Here I
consider a contact force with a parametrized density-dependent
interaction strength, often called the density-dependent δ

interaction (DDDI) [8–11,53–58]. The parameters of the
DDDI need to be determined from some physical constraints.
For example, the interaction strength has been constrained by
conditions intended to reproduce the experimentally extracted
pairing gap in finite nuclei [9–11,54–57] or the density
dependence of the neutron pairing gap in symmetric nuclear
matter and the 1S scattering length [8,58]. It should be noted
here that the contact force requires a cutoff energy, which needs
to be treated as an additional model parameter. Concerning the
cutoff parameter, attention has been paid in previous studies
to convergence properties of the pairing correlation energy
in finite nuclei [9], to the energy dependence of the phase
shift [59], or to renormalization with respect to the pairing
gap [60,61]. In the present paper I shall take a different
approach to the cutoff; i.e., I investigate the relevance of the
cutoff parameter to the spatial structure of the neutron Cooper
pair. It will be shown that the cutoff energy plays an important
role in describing the strong spatial correlation at low density.
Considering this a physical constraint on the cutoff energy,
I shall derive new parameter sets for the DDDI.

Preliminary results of this work are reported in Ref. [62].

II. FORMULATION

A. BCS approximation

The neutron pair correlation in uniform neutron matter
and in uniform symmetric nuclear matter is described by
means of the BCS approximation, which is equivalent to
Bogoliubov’s generalized mean-field approach [26,27]. One
of the basic equations is the gap equation, which is written in
the momentum representation as

�(p) = − 1

2(2π )3

∫
dkṽ( p − k)

�(k)

E(k)
, (1)

E(k) =
√

[e(k) − µ]2 + �(k)2. (2)

Here �(k) is the pairing gap dependent on the single-particle
momentum k, while e(k) and E(k) are the single-particle and
the quasiparticle energies. ṽ( p − k) is the matrix element of
the nucleon-nucleon interaction in the 1S channel. The gap

equation needs to be solved together with the number equation

ρ ≡ k3
F

3π2
= 1

(2π )3

∫
dk

[
1 + e(k) − µ

E(k)

]
, (3)

which determines the relation between the neutron density
ρ (the Fermi momentum kF ) and the chemical potential µ.
The solution of these equations defines the ground state wave
function of the BCS type and the static pairing properties at
zero temperature for a given density ρ.

As the interaction acting in the 1S channel I shall adopt
a bare nucleon-nucleon force, the G3RS force [63], and the
effective interaction given by Gogny [52]. The G3RS force
is a local potential representation of the bare nucleon-nucleon
interaction, which is given by a superposition of three Gaussian
functions:

v(r) =
∑

i

vie
−r2/µ2

i . (4)

One component represents a repulsive core with the height
of v1 = 2000 MeV and the range parameter µ1 = 0.447 fm,
while two other Gaussians with v2,3 = −240,−5 MeV and
µ2,3 = 0.942, 2.5 fm represent the attraction dominant for 1 <∼
r <∼ 3 fm (see Fig. 1). In spite of the simple three-Gaussian
representation, the G3RS reproduces rather well the 1S phase
shift up to about 300 MeV in the c.m. energy of the scattering
nucleons. The associated scattering length a = −17.6 fm is
in close agreement with the experimental value a = −18.5 ±
0.4 fm [64]. The G3RS has been used in some BCS calculations
for the 1S pairing at low density and for the 3P2 pairing at high
density [3–5]. From a practical point of view, the analytic form
makes it easy to evaluate the matrix elements of the interaction.

The Gogny force is an effective interaction that is designed
for the HFB description of the pairing correlation in finite
nuclei while keeping some aspects of the G matrix [52]. It is
also a local potential represented as a combination of two
Gaussian functions in the form of Eq. (4) with the range
parameters µ1,2 = 0.7, 1.2 fm. In the following I present
mostly results obtained with the parameter set D1 [52], as I
find no qualitative difference in the results for the parameter set
D1S [65]. A common feature of the G3RS and Gogny forces
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FIG. 1. Nucleon-nucleon potential v(r) in the 1S channel for the
G3RS and Gogny D1 forces, plotted with the solid and dotted curves,
respectively, as a function of the relative distance r between neutrons.
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is that both are attractive in the range 1 <∼ r <∼ 3 fm, while they
differ largely for r <∼ 0.5 fm, where the Gogny force exhibits
only a very weak repulsion instead of the short-range core
present in the G3RS force (Fig. 1). The interaction range of
the two forces is of the order of 3 fm. Note that the experimental
effective range is re = 2.80 ± 0.11 [64]. I shall also apply a
zero-range contact force v(r) ∝ δ(r). The treatment of this
interaction will be described separately in Sec. V.

As the single-particle energy e(k) I use, in the case of
the Gogny interaction, the Hartree-Fock (HF) single-particle
spectrum derived directly from the same interaction. In the
case of the bare force, it would be better from the viewpoint of
self-consistency to use the Brueckner Hartree-Fock spectrum.
But for simplicity I adopt in the present analysis an effective
mass approximation. Namely, the single-particle energy is
given by e(k) = k2/2m∗, where the effective mass m∗ =
(∂2e(k)/∂2k|kF

)−1 is derived from the Gogny HF spectrum [50]
for the parameter set D1.

The gap and number eqs. (1) and (3) are solved, without
introducing any cutoff. The momentum integrations in the two
equations are performed by using a direct numerical method,
where the maximum momentum kmax for the integration is
chosen large enough that the result does not depend on the
choice of kmax. I adopt kmax = 20 fm−1 for the G3RS and
kmax = 10 fm−1 for the Gogny interaction. Note here that it
is dangerous to introduce a small energy window around the
chemical potential (or the Fermi energy) or a cutoff at a small
momentum in evaluating the r.h.s. of the gap equation. Such
an approximation may be justified only in the case of the weak
coupling BCS, where the pairing gap is considerably smaller
than the Fermi energy, but it is not applicable to the strong
coupling case [30]. Note also that the chemical potential µ

and the Fermi energy eF are not the same except in the limit
of weak coupling. I define the Fermi momentum kF through
the nominal relation to the density ρ = (1/3π2)k3

F , and the
Fermi energy eF as eF ≡ e(kF ). The pairing gap �F ≡ �(kF )
at the Fermi momentum is used below as a measure of the
pair correlation. In the following ρ always denotes the neutron
density. (The total nucleon density is ρtot = 2ρ in the case
of symmetric nuclear matter.) I define, as a reference value,
the normal neutron density as ρ0 = (1/3π2)k3

F0 with kF0 =
1.36 fm−1.

To investigate the spatial structure of the neutron Cooper
pair, it is useful to look into its wave function represented as a
function of the relative distance between the partner neutrons
of the pair. It is given by

�pair(r) ≡ C ′〈�0|ψ†(r ↑)ψ†(r ′ ↓)|�0〉
= C

(2π )3

∫
dkukvke

ik·(r−r ′), (5)

ukvk = �(k)

2E(k)
, (6)

in terms of the u, v factors except by the normalization factors
C and C ′. Here ψ†(rσ ) (σ =↑,↓) is the creation operator of
the neutron and |�0〉 is the BCS ground state. The Cooper
pair wave function depends only on the relative distance r =
|r − r ′| between the partners, as it is an s wave. I evaluate the

momentum integral in Eq. (5) in the same way as in the gap
and the number equations.

It is useful to evaluate the size of the neutron Cooper pair.
A straightforward measure is the rms radius of the Cooper pair

ξrms =
√

〈r2〉, (7)

where

〈r2〉 =
∫

d rr2|�pair(r)|2 =
∫ ∞

0 dkk2
(

∂
∂k

ukvk

)2

∫ ∞
0 dkk2 (ukvk)2 (8)

can be calculated directly from the Cooper pair wave function
�pair(r) and/or from the u, v factors in the momentum space. If
one assumes weak coupling, Pippard’s coherence length [32]

ξP = h̄2kF

m∗π�F

(9)

given analytically in terms of the gap and the Fermi momentum
may also be used as another estimate of the size of the Cooper
pair. In the following I mostly use ξrms, since this quantity itself
has a solid meaning even in the strong coupling BEC case and
in the crossover region between BCS and BEC. I shall use ξP

for qualitative discussions.
In the present paper, I neglect higher-order many-body

effects that go beyond the BCS approximation. In many
calculations [66–75] the higher-order effects in low-density
neutron matter are predicted to reduce the pairing gap by about
a factor of two, which is, however, very much dependent on
the prescriptions adopted [4,5], except for the low-density
limit ρ → 0 [76]. A recent Monte Carlo study [77] using the
realistic bare force suggests a gap close to the BCS result.
The higher-order effects in symmetric nuclear matter [75]
and in finite nuclei [78–80] are estimated to increase the gap.
Keeping in mind these ambiguities, I consider that the BCS
approximation provides a meaningful zeroth-order reference.

B. Pairing gap and coherence length

Figure 2 shows the neutron pairing gap �F obtained with
the G3RS and Gogny D1 forces both for neutron matter and
for symmetric matter. Results assuming the free single-particle
spectrum (equivalent to the use of m∗ = m) are also shown
for comparison. The pairing gap becomes maximum around
ρ/ρ0 ∼ 0.1−0.3 in all the cases. The gap decreases gradually
with further decreases in the density. The difference between
neutron matter and symmetric nuclear matter, which originates
from the effective mass effect, becomes negligible at low
density ρ/ρ0 <∼ 5 × 10−2.

The pairing gap obtained with the G3RS force is very
similar to those obtained with more realistic models of the
bare force (OPEG [3,42,43], Reid [3,43,46], Argonne [44,46],
Paris [44], Bonn [45,48], Nijmegen [4]). This is because the
gap is essentially determined by the 1S phase shift function
[81], and the G3RS force reproduces the experimental phase
shift, though not as accurately as the modern forces. There is
small difference from them: the maximum gap �F ≈ 2.5 MeV
around ρ/ρ0 ∼ 0.2 (or kF ∼ 0.8 fm−1) for neutron matter
is slightly smaller in the G3RS by about 5%–20%. The
difference may be due to a limitation of the simple three-
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FIG. 2. Pairing gap �F in neutron and symmetric nuclear matter
as a function of the neutron density ρ/ρ0. The results for the G3RS
force are shown with the symbols: cross, free single-particle spectrum,
square, neutron matter, diamond, symmetric matter. The results with
the Gogny D1 force are plotted with the dashed, dotted, and solid
curves for matter with the free single-particle spectrum, for neutron
matter, and for symmetric matter, respectively.

Gaussian representation, but the quality is enough for the
following discussions. The gap obtained with the Gogny force
is consistent with those in the previous calculations [48,50,51].
If the Gogny and G3RS results are compared, they exhibit a
similar overall density dependence, and a significant difference
between the two forces is seen only at modest density ρ/ρ0 >∼
5 × 10−2. Garrido et al. [58] suggest that the similarity may
indicate a possible cancellation among higher-order effects
in the case of symmetric matter. A less significant difference
in the gap is also found at rather low density ρ/ρ0 <∼ 10−3,
though it is not visible in Fig. 2. This arises from the fact that
the scattering length a = −13.5 fm of the Gogny D1 force
deviates from the G3RS value a = −17.6 fm.

The rms radius ξrms of the neutron Cooper pair calculated
for neutron and symmetric nuclear matter with the bare
or the Gogny forces is shown in Fig. 3 and Table I. The
calculated ξrms is consistent with the rms radius (or Pippard’s
coherence length) reported in the BCS calculations by using
other models of the bare force [3,43,47,48]. Here I emphasize
the characteristic density dependence of ξrms. It is seen from
Fig. 3 that ξrms decreases dramatically, by nearly a factor
of ten, from a large value of the order of ∼50 fm around
the normal densities ρ/ρ0 ∼ 1 to considerably smaller values
ξrms ≈ 4.5−6 fm at densities around ρ/ρ0 ∼ 0.1. The size of
the Cooper pair stays at small values ξrms ≈ 5−6 fm in the
density region ρ/ρ0 ∼ 10−2 − 0.1. It then turns to increase,
but only gradually, at lower densities. These features are
commonly seen for both neutron and symmetric nuclear matter
and for both the G3RS and Gogny forces.

I emphasize also the smallness of the neutron Cooper pair.
This may be elucidated if one compares the rms radius ξrms

with the average interneutron distance d ≡ ρ−1/3 = 3.09k−1
F .

It is seen from Fig. 3 that ξrms becomes smaller than d in a

ρ/ρ0

ξ rm
s,  

 d
   

(f
m

)

Gogny D1
symmetric matter
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neutron matter
G3RS

symmetric matter
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ξrms

d

FIG. 3. The rms radius ξrms of the neutron Cooper pair in uniform
matter, plotted as a function of the neutron density ρ/ρ0. The results
for symmetric nuclear and neutron matter obtained with the Gogny
D1 force are shown by the solid and dotted curves, respectively, while
the results for symmetric nuclear and neutron matter with the G3RS
force are shown by the diamond and square symbols, respectively. The
average interneutron distance d = ρ−1/3 is plotted with the dotted-
dashed curve.

very wide range of densities ρ/ρ0 ∼ 10−4 − 0.1. The ratio
ξrms/d can reach values as small as ≈0.5 at densities around
ρ/ρ0 ∼ 10−2. The relation ξrms < d, i.e., a neutron Cooper
pair smaller than the average interneutron distance, suggests
that the neutron Cooper pair exhibits strong spatial dineutron
correlation.

To understand this strong spatial correlation, it is useful
to consider the ratio �F /eF between the pairing gap and
the Fermi energy rather than the absolute magnitude of the
gap. The pairing gap �F ≈ 0.2 MeV at the density ρ/ρ0 =
1/512, for example, appears small on the absolute scale, but
the gap-to-Fermi-energy ratio amounts to �F /eF ≈ 0.4 (see
Table I), which is larger than the value �F /eF ≈ 0.25 at
ρ/ρ0 = 1/8, where the gap is nearly maximum. If one uses
Pippard’s coherence length ξP = h̄2kF /m∗π�F in place of
the rms radius ξrms (this may be justified at least for qualitative
discussion, since the two quantities agree within 10%–25%,
see Table I), the ratio between the rms radius and the average
interneutron distance is related to the gap-to-Fermi-energy
ratio as ξrms/d ∼ ξP /d ∼ 0.2eF /�F . Consequently, one can
expect in the zeroth-order argument that the strong spatial
correlation ξrms/d <∼ 1 emerges when the gap-to-Fermi-energy
ratio is larger than �F /eF >∼ 0.2. This is realized in the present
calculations in the density range ρ/ρ0 ∼ 10−4 − 0.1. In the
following I shall investigate in detail the spatial correlation in
the neutron Cooper pair around this density range.

I comment here on a comparison with the 3SD1 neutron-
proton pairing in symmetric nuclear matter. In this case the
BCS pairing gap calculated with a realistic bare force (the
Paris force) is of the order of 8 MeV at maximum [49].
The rms radius ξrms of the neutron-proton Cooper pair is quite
small, reaching the minimum value ξrms ∼ 2 fm at a density
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TABLE I. Pairing gap �F , rms radius ξrms, Pippard’s coherence length ξP , and probability P (d) within the average interneutron distance d
associated with the neutron Cooper pair in symmetric nuclear matter obtained with the Gogny D1 interaction and in neutron matter with
the G3RS force, at the neutron density ρ/ρ0 = 1, 1/2, 1/8, 1/64, 1/512 or, equivalently, kF = 1.36, 1.094, 0.68, 0.34, 0.17 fm−1. The Fermi
energy eF , the effective mass m∗/m, and the average interneutron distance d are also shown. The parameters (1/kF a)ξ and (1/kF a)� of the
regularized δ interaction model are also listed (see text). The units for kF and �F , eF are fm−1 and MeV, respectively while that for d, ξrms,
and ξP is fm.

kF ρ/ρ0 d m∗/m eF �F ξrms ξP P (d) (1/kF a)ξ (1/kF a)�

Symmetric matter, Gogny D1
1.36 1 2.27 0.668 62.0 0.64 46.60 41.76 0.18 −2.91 −2.99
1.079 1/2 2.87 0.744 33.8 2.03 10.80 9.45 0.48 −1.83 −1.84
0.68 1/8 4.55 0.891 10.9 2.60 4.81 3.87 0.81 −0.97 −0.90
0.34 1/64 9.10 0.984 2.45 0.97 5.87 4.71 0.92 −0.59 −0.52
0.17 1/512 18.20 0.998 0.60 0.22 12.05 10.30 0.91 −0.62 −0.58

Neutron matter, G3RS
1.36 1 2.27 0.905 42.4 0.14 159.8 144.1 0.09 −3.70 −3.70
1.079 1/2 2.87 0.925 26.1 1.52 11.61 10.13 0.47 −1.88 −1.85
0.68 1/8 4.55 0.969 9.89 2.37 4.94 3.90 0.80 −0.99 −0.90
0.34 1/64 9.10 0.995 2.41 0.98 5.90 4.61 0.92 −0.60 −0.50
0.17 1/512 18.20 0.999 0.60 0.24 11.16 9.30 0.92 −0.55 −0.50

around ρ/ρ0 ∼ 0.2 [40]. Consequently, the rms radius ξrms

becomes considerably smaller than the average interparticle
distance d in the density interval from ρ/ρ0 ∼ 0.5 down to
the zero-density limit, where ξrms becomes identical to the rms
radius of the deuteron [40]. In the case of the 1S neutron
pairing, by contrast, the signature of the strong coupling
ξrms <∼ d is obtained in the wide but limited range of the density
ρ/ρ0 ∼ 10−4 − 0.1. Apart from this difference, it is noted that
the qualitative trend of the Cooper pair size, e.g., size shrinking
from the zero-density limit, is similar to that discussed in the
neutron-proton case [40].

III. SPATIAL STRUCTURE OF NEUTRON COOPER PAIR

A. Cooper pair wave function: basics

In examining the spatial structure of the neutron Cooper
pairs, I shall focus mostly on the symmetric nuclear matter
case obtained with the Gogny force and the neutron matter case
with the G3RS force. The rms radii in these two cases represent
a rough mean value of the four results plotted in Fig. 3. Note
also that the two rms radii coincide with each other within 10%
over a very wide interval of densities ρ/ρ0 = 10−3 − 0.5. It
is by accident, but this feature can be exploited to single out
influences of different interactions, since the comparison can
be made with the rms radii kept the same.

Figures 4(a)–4(e) show the wave function �pair(r) of the
neutron Cooper pair for the representative values of density
listed in Table I. The result for neutron matter calculated with
the G3RS force and that for symmetric nuclear matter with the
Gogny D1 force are plotted in the same figure for the reasons
mentioned just above. The probability density r2|�pair(r)|2
multiplied by the volume element r2 is plotted in Figs. 4(f )–
4( j).

As a quantitative measure of the spatial correlation, I also
evaluate the probability P (r) for the partners of the neutron
Cooper pair to come close to each other within a relative

distance r, which is nothing but a partial integration of the
probability density r2|�pair(r)|2 up to the distance r:

P (r) =
∫ r

0 |�pair(r ′)|2r ′2dr ′∫ ∞
0 |�pair(r ′)|2r ′2dr ′ . (10)

An example of this quantity is shown in Fig. 5 for the case
ρ/ρ0 = 1/2.

Before proceeding to the main analysis, I first point out
that the G3RS and Gogny forces provide essentially the same
spatial structure of the Cooper pair except at very short relative
distances. In Fig. 4 a clear difference between the two forces
is seen at short relative distances r <∼ 1 fm. (Note that the
normal density case, Figs. 4(a) and 4(f), is not relevant for
this discussion, since the gaps and the rms radii are very
different.) Apparently the suppression of the wave function
seen at r <∼ 1 fm in the G3RS case is caused by the strong
repulsive core present in the bare force. The Cooper pair wave
function for the Gogny force does not show this short-range
correlation because of the lack of the core. On the other hand,
by looking at distances r > 1 fm, slightly larger than the core
radius, one finds that the Cooper pair wave functions obtained
with the two forces agree quite well with each other. This
observation also applies to the probability density r2|�pair(r)|2
and the probability P (r), for which the difference at short
distances r < 1 fm becomes barely visible, as the volume
element is small at such short distances. Thus the spatial
structure of the neutron Cooper pair does not depend on
whether the interaction is the bare force or the effective Gogny
force, provided that two cases gives the same rms radius of the
Cooper pair. In the following, I shall concentrate on behaviors
that are common to the two interactions.

The Cooper pair wave function �pair(r) in the coor-
dinate representation is reported in some of the previous
BCS calculations adopting other models of the bare force
[43–45,47,48] and the Gogny force [48]. The wave function
appears consistent with those in Refs. [43–45,48], although
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FIG. 4. (a)–(e) Wave function �pair(r) of the neutron Cooper pair as a function of the relative distance r between the pair partners at the
neutron density ρ/ρ0 = 1, 1/2, 1/8, 1/64, 1/512. The solid curve is for the pair in symmetric nuclear matter obtained with the Gogny D1
force, while the dotted curve is for that in neutron matter with the G3RS. The vertical dotted line represents the rms radius ξrms of the Cooper
pair in neutron matter with the G3RS, while the dashed line is for symmetric nuclear matter with Gogny D1. Here and also in the following
figures the wave function is normalized by

∫ ∞
0 |�pair(r)|2r2dr = 1. The arrow indicates the average interneutron distance d. (f)–( j) The same

as (a)–(e) but for the probability density r2|�pair(r)|2. The thin dotted curve in (g) and (i) is the wave function of the fictitious bound state in
the free space described in the text.

in these references the wave function is shown only at very
limited numbers of density values and not up to very large
relative distances. I found, however, that the shape of the
Cooper pair wave function shown in Ref. [47] differs markedly
from the present results (Fig. 4), especially at relative distances
smaller than several femtometers.

B. Density dependence

If the Cooper pair wave functions at different density
values are compared in Fig. 4, important features show up.
An apparent observation is that the spatial extension or the
size of the Cooper pair varies strongly with the density,
in accordance with the strong density dependence of the
rms radius ξrms discussed in the previous section (Fig. 3).
I emphasize here another prominent feature, namely, that pro-
file of the Cooper pair wave function also changes significantly
with the density.

At normal density, ρ/ρ0 = 1 [Figs. 4(a) and 4(f)], the
Cooper pair wave function is spatially extended: the rms
radius of the Cooper pair is as large as ξrms >∼ 50 fm. The

profile of the Cooper pair wave function in this case exhibits
an exponential falloff convoluted with an oscillation. This
behavior is consistent with the well-known expression [32]
r�pair(r) ∼ K0(r/πξP ) sin(kF r) for the Cooper pair wave
function in the weak coupling BCS situation. Here K0

is the modified Bessel function, which behaves asymptoti-
cally as K0(r/πξP ) ∼ (ξP /r)1/2 exp[−(r/πξP )]. The position
of the first node r ≈ πk−1

F approximately corresponds to
the average interparticle distance d = 3.09k−1

F (= 2.3 fm).
The wave function has significant amplitude for r > d, since
here ξrms,P  d (see Table I). This is a typical behavior in the
situation of the weak coupling BCS.

The Cooper pair wave function at the density ρ/ρ0 = 1/8
[Figs. 4(c) and 4(h)] is very different from that at the normal
density. Apart from the considerably small spatial extension
(ξrms = 4.8−4.9 fm), the functional form of the wave function
behaves quite differently. It is found that the amplitude of
the wave function is strongly concentrated within the average
interneutron distance d and that the oscillating amplitude
beyond d is quite small. This is consistent with the observation
in the previous section that the rms radius ξrms of the Cooper
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pair is smaller than the average interneutron distance d in
this case (cf. Fig. 3 and Table I). The probability P (d) for
the partners of the Cooper pair to be correlated within the
internucleon distance d exceeds 0.8 (Fig. 6 and Table I),
indicating directly the strong spatial dineutron correlation.

The neutron Cooper pair wave functions at ρ/ρ0 = 1/64
and 1/512 [Figs. 4(d), 4(e), 4(i), and 4( j)] exhibit a behavior
similar to that at ρ/ρ0 = 1/8. Inspecting more closely, one
notices that the concentration within r < d is stronger than at
ρ/ρ0 = 1/8, while the spatial extension itself is slightly larger
(ξrms ≈ 6−12 fm). One also observes a smaller oscillating
amplitude in the long-distance region r > d (Fig. 4), larger
values of P (d) ≈ 0.9, and smaller ratio ξrms/d (Table I). They
all point to stronger spatial dineutron correlation at these values
of density.

The Cooper pair wave function at ρ/ρ0 = 1/2 [Figs. 4(b)
and 4(g)] exhibits an intermediate feature between that at the
normal density ρ/ρ0 = 1 and those at ρ/ρ0 = 1/64−1/512. In
particular, notice that the spatial correlation seen at the lower
density also persists to some significant extent in this case.
For example, the probability density is strongly concentrated
to the short-distance region of r <∼ 3 fm [Fig. 4(g)]. This is
more apparent in the plot of P (r), shown in Fig. 5, where one
finds that the probability P (r) increases steeply as r increases
from r = 0 and already reaches ∼50% at r = 3 fm, which
is roughly the interaction range of the nucleon force. This
strong concentration within r < 3 fm may be elucidated by
comparing with what could be expected if a bound pair having
the same rms radius (ξrms = 10.8 fm in this case) were formed
in the free space. (I calculate this fictitious “bound state”
wave function by increasing the strength of the Gogny D1
potential by a numerical factor.) It is noticed that the profile of
the Cooper pair wave function differs from the “bound state”
wave function which is plotted with the thin dotted curve in
Fig. 4(g). In this “bound state” wave function, the concen-
tration of the probability within r <∼ 3 fm is not very large,
i.e., P (3 fm) = 0.24, while the probability P (3 fm) associated
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FIG. 5. Probability P (r) for the partner neutrons of the Cooper
pair to be correlated within a relative distance r, calculated at density
ρ/ρ0 = 1/2. The result for symmetric nuclear matter with the Gogny
D1 force is plotted with the solid curve, while the dotted curve
represents the result for neutron matter with the G3RS force. The
dashed vertical line indicates the rms radius of the Cooper pair in the
symmetric matter case. The vertical dotted line marks the position
r = 3 fm.
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FIG. 6. Probability P (d) for the partner neutrons to be correlated
within the average interneutron distance d and the probability P (3 fm)
within r = 3 fm. The solid and dotted curves are for symmetric
nuclear matter obtained with the Gogny D1 force, while the square
and diamond symbols are for neutron matter with the G3RS force.

with the neutron Cooper pair wave function is about twice this
value. This indicates that the spatial dineutron correlation is
also strong for the moderate low-density region ρ/ρ0 ∼ 0.5. A
remnant of this spatial correlation is also found at the normal
density [Figs. 4(a) and 4(f)], but in this case the concentration
within the interaction range is not very large [P (3 fm) = 0.21],
owing to the very large Cooper pair size (ξrms ∼ 50 fm). In
contrast, the Cooper pair wave function at the lower density,
ρ/ρ0 = 1/64 [Fig. 4(i)], for example, is much more similar to
the bound state wave function.

Figure 6 shows the overall behavior of P (3 fm) and P (d) as
a function of the density. It is seen that the strong concentration
within the interaction range, say P (3 fm) > 0.5, is realized
in the density region ρ/ρ0 ≈ 5 × 10−2−0.5. The probability
P (3 fm) reaches the maximum value ∼0.7 around ρ/ρ0 ∼ 0.1,
where the rms radius is the smallest. At lower density,
ρ/ρ0 <∼ 10−1, the probability P (3 fm) decreases gradually in
accordance with the gradual increase of the rms radius of
the Cooper pair. Note, however, that in this density region
(ρ/ρ0 ∼ 10−4−10−1) the concentration of the probability
within the average interneutron distance d remains very large,
i.e., P (d) >∼ 0.8.

All the above analyses indicate that the spatial dineutron
correlation is strong in the quite wide density interval ρ/ρ0 ∼
10−4−0.5.

It is interesting to compare the present result with that in
a similar analysis of the Cooper pair wave function for the
3SD1 neutron-proton pairing. In that case the Cooper pair
wave function is found to merge smoothly into the deuteron
wave function in the low-density limit [39]. Correspondingly,
the rms radius of the Cooper pair approaches that of the
deuteron, which is much smaller than the average interparticle
distance [40]. This is interpreted as a realization of the BEC
of the deuterons in the low-density region and the BCS-BEC
crossover taking place with the change in the density [38–41].
In the neutron pairing case, the similarity of the Cooper pair
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wave function to a bound state wave function is found only
in a limited density range ρ/ρ0 ∼ 10−4−10−1, and it never
converges to a bound state wave function (NB.: there is no
bound state in this channel in the free space). The rms radius
ξrms of the Cooper pair is only comparable with the average
interneutron distance d in the same density interval. Although
the spatial correlation is strong, as discussed above, these
qualitative observations alone are not enough to assess whether
the region of the BCS-BEC crossover is reached in the case
of neutron pairing. I shall investigate this issue on a more
quantitative bases in the next section.

IV. RELATION TO THE BCS-BEC CROSSOVER

In the previous section, I have shown the strong spatial
correlation in the neutron Cooper pair wave function at
low density. In the present section I shall elucidate its
implication by making a connection to the BCS-BEC crossover
phenomenon.

For this purpose, I shall first describe a reference Cooper
pair wave function based on a simple solvable model of the
BCS-BEC crossover and then compare the results with that of
the reference model. As such a reference, I adopt a 1S pairing
model that applies generically to a dilute gas limit of any
Fermion system [30,33,34], for which the average interparticle
distance d = ρ1/3 is supposed to be much larger than the range
of interaction. The dilute limit is equivalent to treating the
interaction matrix elements as a constant, or assuming a contact
interaction. Using the relation between the interaction constant
and the zero-energy T matrix or the scattering length a, the gap
equation (1) is written in a regularized form:

m

4πh̄2a
= − 1

2(2π )3

∫
dk

[
1

E(k)
− 1

e(k)

]
. (11)

The regularized gap equation (11) and the number
equation (3) are now expressed analytically in terms of
some special functions and are easily solvable [82,83]. In
this model a dimensionless parameter 1/kF a, characterized
by the scattering length and the Fermi momentum, is the
only parameter that controls the strength of interaction, and
hence properties of the pair correlation are determined solely
by 1/kF a, while the length scale is given by k−1

F (or the
interparticle distance d = 3.09k−1

F ), and the energy scale by
the Fermi energy eF = h̄2k2

F /2m [30,33–35,82]. The gap-
to-Fermi-energy ratio �/eF and the ratio ξrms/d between
the rms radius and the average interparticle distance are
then monotonic functions of the interaction parameter 1/kF a

[34,82]. The functional form of the Cooper pair wave function,
defined by Eq. (5), is also determined only by 1/kF a, except for
the length scale. Since there is no available analytic expression
for the wave function, I evaluate Eq. (5) by performing the
momentum integral numerically with a help of an explicit use
of a smooth cutoff function of Gaussian form. The cutoff scale
is chosen to be large enough that the results shown below do
not depend on it.

The range 1/kF a � −1 of the interaction parameter
corresponds to the situation of the weak coupling BCS, for
which the pairing gap is given by the well-known formula

TABLE II. Reference values of 1/kF a, ξrms/d , and �/eF char-
acterizing the BCS-BEC crossover in the regularized δ interaction
model.

1/kF a ξrms/d �/eF P (d)

−1 1.10 0.21 0.807 boundary to BCS
0 0.36 0.69 0.990 unitarity limit
1 0.19 1.33 1.000 boundary to BEC

[4,30,35]�/eF ≈ 8e−2 exp(π/2kF a). In the opposite range,
1/kF a  1, the situation of Bose-Einstein condensation
(BEC) of bound Fermion pairs (bosons) is realized. The
crossover between the weak coupling BCS and the strong
coupling BEC corresponds to the interval −1 <∼ 1/kF a <∼
1, as described in Refs. [30,33–35]. (The case with the
infinite scattering length 1/kF a = 0 is the midpoint of the
crossover, called the unitarity limit.) In the following I shall
adopt 1/kF a = ±1 according to Ref. [34] as the boundaries
characterizing the crossover, although the transition is smooth
in nature.

In Table II are listed the values of ξrms/d and �F /eF at
the boundaries 1/kF a = ±1 of the crossover domain and
at the unitarity limit 1/kF a = 0 [34,82]. Note that the rms
radius comparable with the average interparticle distance 0.2 <∼
ξrms/d <∼ 1.1, or the gap comparable with the Fermi energy
0.2 <∼ �F /eF <∼ 1.3, corresponds to the BCS-BEC crossover
domain −1 <∼ 1/kF a <∼ 1. I have discussed in the previous
section the probability P (d) for the paired neutrons to come
closer than the average interneutron distance d (cf. Fig. 6). As
the same quantity is also easily calculated in the analytic model
of the BCS-BEC crossover (the result is shown in Fig. 7), this
quantity may also be used as a measure of the crossover. The
calculated boundary values corresponding to 1/kF a = ±1, 0
are listed in Table II. The crossover region is specified by
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FIG. 7. Probability P (d) for the partner particles to be correlated
within the average interparticle distance d for the regularized δ

interaction model.
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0.8 <∼ P (d) <∼ 1.0, while the boundary to the strong coupling
BEC regime [P (d)≈1] is hardly visible in this measure.

In the case of nucleonic matter, the assumption of the dilute
gas limit may be justified only at very low density ρ/ρ0 <∼ 10−5

(or kF <∼ 0.05 fm−1) [4,46,84], and hence one cannot apply
the above analytic model in a direct manner to the region
of the density ρ/ρ0 = 10−5−1 which I am dealing with. In
order to make the application possible, I adopt a more flexible
viewpoint by regarding the interaction parameter 1/kF a as
a freely adjustable variable, rather than by fixing it from the
physical value of the neutron scattering length. I shall call the
model treated in this way the regularized δ interaction model
to distinguish from the original idea of the dilute gas limit.

The interaction parameter 1/kF a needs to be determined,
then. I shall require the condition that the regularized δ

interaction model give, for a given value of density, the same
rms radius ξrms/d as that of the microscopically calculated
neutron Cooper pair. The parameter determined in this way
may be denoted (1/kF a)ξ . One can also determine the
interaction parameter to reproduce the ratio �F /eF between
the gap and the Fermi energy, which I shall denote (1/kF a)�.
The values of (1/kF a)ξ and (1/kF a)� thus determined are
listed in Table I. There is no sizable difference between
(1/kF a)ξ and (1/kF a)�. The Cooper pair wave functions
obtained in this reference model are shown in Fig. 8. It is
hard to distinguish between the two options of 1/kF a. Let
us compare them with the neutron Cooper pair wave function
obtained with the Gogny force for symmetric matter at the three
representative values of density ρ/ρ0 = 1, 1/8, and 1/512.

It is seen from Fig. 8 that the wave function of the regular-
ized δ interaction model and and that of the neutron Cooper pair
behave very similarly at distances far outside the interaction
range, r >∼ 5 fm. In contrast, there is a sizable disagreement
for r <∼ 3 fm. The disagreement is understandable, as the wave
function within the interaction range r ≈ 3 fm of the finite

range Gogny force could not be described by the zero-range
δ interaction. The Cooper pair wave function in the regularized
δ interaction model exhibits the known divergence �pair(r) ∝
1/r for r → 0 [cf. Figs. 8(a)–8(c)], and consequently the
disagreement between the Gogny model and the regularized δ

interaction model becomes serious at very short relative dis-
tances r <∼ 1 fm. Note, however, that the squared wave function
weighted with the volume element r2 stays finite as seen in
Figs. 8(d)–8(f) and hence there is no diverging difference in
the probability density. These observations suggest that the
regularized δ interaction model can account for the essential
features of the spatial structure of the neutron Cooper pair if
the interaction strength 1/kF a is chosen appropriately.

We thus have a reference frame, i.e., the regularized
δ interaction model, to which the neutron pairing is mapped.
The question of the possible relation to the BCS-BEC
crossover phenomena can be addressed now quantitatively.
Let us first look into the ratio ξrms/d between the rms radius
ξrms of the Cooper pair and the average interparticle distance d.
The values of ξrms/d for the neutron Cooper pair obtained with
the G3RS force and the Gogny D1 interaction are compared
in Fig. 9 with the reference values defining the boundaries
of the BCS-BEC crossover domain (Table II). It is seen in
Fig. 9 that the calculated ratio ξrms/d enters the domain of
the BCS-BEC crossover, 1.10 > ξrms/d(>0.19), in the density
interval ρ/ρ0 ≈ 10−4−0.1. Note also that calculated ratio
becomes closest to the unitarity limit ξrms/d = 0.36 around the
density ρ/ρ0 ∼ 10−2. From another point of view, the weak
coupling BCS regime is realized only at very low density,
ρ/ρ0 <∼ 10−4, and around the normal density, ρ/ρ0 >∼ 0.2.

Comparing in Fig. 10 the gap-to-Fermi-energy ratio �F /eF

with the boundary values 0.21 < �F /eF < 1.33 leads to the
same observation, that the density region ρ/ρ0 ∼ 10−4−0.1
corresponds to the domain of the BCS-BEC crossover. Com-
parison of the third measure P (d), shown in Fig. 6, provides
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FIG. 8. (a)–(c) Neutron Cooper pair wave function �pair(r) in the regularized δ interaction model, plotted with the dotted curve and the cross
symbols in the cases of (1/kF a)ξ and (1/kF a)�, respectively. The neutron Cooper pair wave function in symmetric nuclear matter obtained
with the Gogny D1 force is also shown by the solid curve. (d)–(f) The same as (a)–(c) but for the probability density r2|�pair(r)|2.
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Cooper pair and the average internucleon distance d, calculated with
the Gogny D1 force for symmetric nuclear and neutron matter (the
solid and dotted curves, respectively), and those with the G3RS force
for symmetric nuclear and neutron matter (the diamond and square
symbols), plotted as a function of the neutron density. The refer-
ence values characterizing the BCS-BEC crossover listed in Table II
are also shown as the horizontal dotted and dashed lines.

us the same information. It is also seen in the values of
(1/kF a)ξ and (1/kF a)� listed in Table I that the condition
of the crossover region (1/kF a)ξ,� > −1 is met in the cases
ρ/ρ = 1/8, 1/64, 1/512.

On the basis of the above analysis, it is concluded that the
strong spatial correlation at short relative distances seen in the
neutron Cooper pair in the very wide density range ρ/ρ0 ≈
10−4−0.1 is the behavior associated with the BCS-BEC
crossover.
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FIG. 10. Ratio �F /eF between the neutron pairing gap �F and
the neutron Fermi energy eF , plotted as a function of the neutron
density. The curves and the symbol are the same as in Fig. 9. The
reference values characterizing the BCS-BEC crossover listed in
Table II are also shown as the horizontal lines.

V. DENSITY-DEPENDENT δ INTERACTION

A. DDDI and the cutoff energy

The contact force whose interaction strength is chosen
as a density-dependent parameter, often called the density-
dependent δ interaction (DDDI), has been employed as a
phenomenological effective interaction describing the pairing
correlation in finite nuclei, especially unstable nuclei with
large neutron excess [9–11,25,61,85–88]. In the previous
section I showed that the regularized contact interaction model,
which also employs the contact force but with an analytic
regularization, describes the essential feature of the spatial
structure of the neutron Cooper pair wave function over the
whole density range. This suggests the possibility that the
phenomenological DDDI may describe the spatial correlation
in the neutron pairing. I would like to examine from this
viewpoint under what conditions the DDDI can be justified.

The density-dependent δ interaction has a form

v(r) = 1 − Pσ

2
V0[ρ]δ(r), (12)

where V0[ρ] is the interaction strength that is supposed to be
dependent on the density. The force acts only in the 1S channel
owing to the projection operator (1 − Pσ )/2. It should be noted
that in applications of the density-dependent δ interaction to
finite nuclei an explicit and finite cutoff energy needs to be
introduced. The cutoff energy in this case is regarded as an
additional model parameter.

Applying the DDDI to the neutron pairing in uniform
matter, the gap equation reads as

� = − V0

2(2π )3

∫ ′
dk

�

E(k)
, (13)

where the pairing gap is a momentum independent constant
�. For the single-particle energy e(k), the effective mass
approximation is adopted, and the effective mass derived from
the Hartree-Fock spectrum of the Gogny D1 is used. The
momentum integral in Eq. (13) is performed under a sharp
cutoff condition,

e(k) < µ + ecut, (14)

where the cutoff energy ecut is defined as the relative energy
from the chemical potential µ. I shall treat ecut as a common
constant that is applied to all densities. The same cutoff is used
in calculating the Cooper pair wave function.

The present definition of the cutoff is different from a
similar one adopted in Refs. [8,58], where a cutoff energy
is defined with respect to the single-particle energy e(k)
measured from the bottom of the spectrum e(k = 0), e.g., by
imposing e(k) < 60 MeV [58] independent of the density. In
the present work, by contrast, an energy window above the
chemical potential µ is fixed to ecut. I think that the cutoff
energy ecut defined in this way can be compared with the
quasiparticle energy cutoff Ei < Ecut adopted often in the HFB
calculations for finite nuclei (Ei is the quasiparticle energy of
the single-particle state i) [9–11,25,28,61,85–88]. Note that in
finite nuclei the density varies locally with the position coor-
dinate, while the quasiparticle energy is defined globally. This
may imply, in the sense of the local density approximation, that
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TABLE III. The rms radius ξrms of the neutron Cooper pair
in symmetric nuclear matter obtained with the density-dependent
δ interaction and different cutoff energies ecut = 5, 10, 30, 50,

100, 200 MeV. In the rightmost column, the rms radius for the Gogny
D1 force is also listed. The underline denotes that the calculated
number agrees with the reference Gogny D1 result within 10%.

ρ/ρ0 ξrms [fm]

ecut = 5 10 30 50 100 200 MeV Gogny D1

1 48.6 47.3 46.7 46.6 46.5 46.5 46.6
1/2 16.9 13.8 11.2 10.9 10.7 10.6 10.8
1/8 14.9 10.0 6.0 5.3 4.8 4.6 4.8
1/64 10.5 7.9 6.2 6.0 5.7 5.5 5.9
1/512 13.2 12.5 12.0 11.9 11.8 11.7 12.1

a fixed density-independent cutoff quasiparticle energy Ecut is
applied to each value of local density. Note also that both
our ecut and the cutoff quasiparticle energy Ecut are quantities
measured from the chemical potential, which approximately
coincide if ecut and Ecut are sufficiently larger than the pairing
gap. Thus one can compare directly ecut and Ecut, provided
that ecut is chosen as a density-independent constant. At the
zero-density limit with µ = 0, the cutoff energy ecut simply
defines an upper bound on the free single-particle energy
e(k) = h̄2k2/2m.

B. Constraints on ecut

Let us investigate how the energy cutoff influences the
Cooper pair wave function. I performed several calculations,
using different values of ecut = 5, 10, 30, 50, 100, 200 MeV
for symmetric nuclear matter. The value of the interaction
strength V0 is chosen for each value of the density so that the
gap � calculated with a given cutoff energy ecut coincides with
the gap �F obtained with the Gogny D1 force. Note that the
interaction strength V0 thus determined depends on both the
cutoff energy and the density.

Table III shows the rms radius ξrms of the neutron Cooper
pair calculated with the DDDI for different values of the
cutoff energy. Here ξrms is calculated by using the Cooper
pair wave function in the coordinate representation evaluated
up to r = 500 fm. It is seen from Table III that the result
apparently depends on the cutoff energy ecut. In the cases
ρ/ρ0 = 1/64−1/2, the dependence of ξrms on ecut is very
strong. The values calculated with the small cutoff energy
ecut = 5, 10 MeV deviate greatly from those obtained with the
Gogny force even though the interaction strength is chosen to
reproduce the same reference pairing gap. It is concluded that
the small cutoff energies ecut = 5, 10 MeV are unacceptable,
since they fail to describe the small size ξrms ∼ 5 fm of the
neutron Cooper pair at the density around ρ/ρ0 = 10−2−0.1.
If one requires the DDDI to reproduce the rms radius of the
neutron Cooper pair within an accuracy of 10% over the whole
density region of interest, the use of a large value of the cutoff
energy satisfying ecut >∼ 50 MeV is suggested.

To see the roles of the cutoff energy in more details, I show
in Fig. 11 the neutron Cooper pair wave functions �pair(r)

obtained for ecut = 5, 10, 30, 50, 100 MeV. The plot of �pair(r)
clearly indicates that the Cooper pair wave function depends
sensitively on the cutoff energy ecut. If one adopts the small
cutoff energies ecut = 5, 10 MeV, the wave function obtained
with the DDDI fails to produce the strong spatial correlation at
the short relative distances r <∼ 3 fm, which is the characteristic
feature of the neutron Cooper pair wave function common to
the Gogny and G3RS forces. (Figure 11 shows only the Gogny
result for comparison, but the reader should be reminded of
Fig. 4, where the G3RS case is also shown.) The plot of
the probability density r2|�pair(r)|2 at the density ρ/ρ0 = 1/8
indicates that even the wave function at larger distances is not
described well if the small cutoff energies ecut = 5, 10 MeV
are adopted. This is nothing but the difficulty mentioned above
in describing the rms radius with these small cutoff energies.
If one uses a large cutoff energy, say, ecut >∼ 30−50 MeV,
the wave function at large distances converges reasonably to
that obtained with the Gogny force. Concerning the wave
function at short relative distances r <∼ 3 fm, on the other
hand, no convergence is seen with respect to the cutoff
energy. The value of the wave function �pair(0) at zero relative
distance r = 0 increases monotonically with increasing ecut.
(Increasing further, ecut → ∞, �pair(r) will approach that for
the regularized δ interaction model shown in Fig. 8, and the
value �pair(0) at r = 0 will diverge.)

It may be possible to regard ecut as a parameter that
simulates the finite range of the neutron-neutron interaction.
It is then reasonable to require that the wave function �pair(r)
of the DDDI model with an appropriate choice of ecut describe
that of the Gogny force at distances r <∼ 3 fm (within the
interaction range) as well as at larger distances. In the case of
ρ/ρ0 = 1/8, for example, this requirement is approximately
satisfied if one chooses ecut = 30 or 50 MeV; see Fig. 11(b).
At ρ/ρ0 = 1/512, a good description of the wave function
is obtained with ecut = 30 MeV [Fig. 11(c)], and similarly
ecut ∼ 70 MeV is good for the normal density ρ/ρ0 = 1
[Fig. 11(a)]. If one does not include in the comparison the wave
function at very short distances r <∼ 1 fm where the repulsion
due to the core has influence in the case of the bare force, the
constraint on the cutoff energy may be slightly relaxed. For
example, at the density ρ/ρ0 = 1/512, the wave functions for
ecut = 30 and 50 MeV differ by only about <∼20% at distances
1 < r < 3 fm, and hence the cutoff energy ecut = 50 MeV
may also be accepted. Within this tolerance one can choose a
value around ecut ∼ 50 MeV as the cutoff energy, which can be
used commonly over the whole density region of interest. This
value can be compromised with the constraint ecut >∼ 50 MeV,
which is obtained from the condition on the rms radius of the
neutron Cooper pair.

It is interesting to note that cutoff quasiparticle energies
around Ecut = 50−70 MeV have been employed in many re-
cent HFB applications to finite nuclei [9–11,25,28,61,85–88].
These cutoff energies, are consistent with the constraint ecut ∼
50 MeV suggested from the above analysis. Much smaller
cutoff energies <∼10 MeV, adopted in early applications of
the DDDI [54,55] are not appropriate from the viewpoint
of the spatial structure of the neutron Cooper pair wave
function. In Ref. [8] the cutoff energy of 20 MeV for the
single-particle energy (40 MeV in the center of mass frame
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FIG. 11. (a)–(c) Neutron Cooper pair wave function �pair(r) in symmetric nuclear matter calculated with the DDDI having different cutoff
energies ecut = 5, 10, 30, 50, 100 MeV. The result obtained with the Gogny D1 interaction is shown also by the solid curve. (d)–(f) Same as
(a)–(c) but for the probability density r2|�pair(r)|2.

energy) was shown to describe reasonably the scattering
wave function at zero energy. This cutoff energy is not very
different from the cutoff energy ecut ∼ 30 MeV, which is
found most reasonable (among the selected examples) in the
lowest-density case ρ/ρ0 = 1/512. In the δ interaction model
adopted in Ref. [59] the cutoff energy is examined with respect
to the low-energy scattering phase shift in the 1S channel. The
cutoff value adopted is around 5–10 MeV in the single-particle
energy (9−20 MeV for the center of mass frame energy), in
disagreement with our value ecut ∼ 30 MeV. The difference
seems to originate from different strategies to the δ interaction:
the momentum dependence of the interaction matrix element
is accounted for by the cutoff energy in Ref. [59], while it is
taken into account in the present approach mostly through the
density-dependent interaction strength V0[ρ].

C. DDDI parameters

It is useful to parametrize the interaction strength of the
DDDI in terms of a simple function of the density. The
following form is often assumed [8–11,54,55,58]:

V0[ρ] = v0

(
1 − η

(
ρtot

ρc

)α)
, (15)

ρc = 0.16 fm−3, (16)

where ρtot is the total nucleon density. The parameters v0, η,
and α need to be determined. In the works by Bertsch and
Esbensen [8] and Garrido et al. [58] the parameters are
determined so that the parametrized DDDI reproduces the
pairing gap obtained with the Gogny force in symmetric
nuclear matter as well as the experimental s-wave scattering
length at zero density. I shall follow a similar line, but I add

the important constraint that the spatial structure of the neutron
Cooper pair is also reasonably reproduced. As discussed in the
subsection just above, this can be achieved if one constrains
the cutoff energy to a value around ecut ∼ 50 MeV. Note also
that the definition of the cutoff energy is different from that in
Refs. [8,58], as mentioned in Subsection V A.

The procedure is as follows. I consider symmetric nuclear
matter. The cutoff energy is fixed to ecut = 50 MeV or 60 MeV
for the reasons mentioned above. I then fix the interaction
strength V0[0] = v0 at zero density to a value v0 that reproduces
the scattering length a in the free space; v0 satisfying this
condition is given by [8,58]

v0 = −2π2h̄2m−1

kc − π/2a
, (17)

kc =
√

2mecut/h̄. (18)

If one uses as the scattering length a in Eq. (17), the one
associated with the Gogny force, the pairing gap of the
DDDI in the low-density limit ρ/ρ0 → 0 coincides with that
of the Gogny force. However, since the scattering length
a = −13.5 fm of the Gogny D1 is slightly off the experimental
value, the experimental one, a = −18.5 fm, is used for
Eq. (17). This is equivalent to constraining the DDDI at the
low-density limit by the bare nucleon force.

To determine the other parameters η and α controlling
the density dependence of the interaction strength, I first
calculate at several representative points of density the values
of V0 with which the neutron gap �F of the Gogny D1
force is reproduced. The parameters η and α are searched
so that the simple function Eq. (15) fits well the values of V0

thus determined. The density interval ρ/ρ0 ∼ 10−2−1 (kF ∼
0.3–1.4 fm−1) is considered in this fitting. The obtained values
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TABLE IV. Parameter sets of the density-dependent δ interaction
with the cutoff energies ecut = 50 and 60 MeV, derived from the
procedure applied to the Gogny D1 and D1S, and the G3RS forces.
See text for details.

v0 [MeV fm−3] η α

DDDI-D1
ecut = 50 MeV −499.9 0.627 0.55
ecut = 60 MeV −458.4 0.603 0.58

DDDI-D1S
ecut = 50 MeV −499.9 0.652 0.56
ecut = 60 MeV −458.4 0.630 0.60

DDDI-G3RS
ecut = 50 MeV −499.9 0.872 0.58
ecut = 60 MeV −458.4 0.845 0.59

of the parameters (denoted DDDI-D1) are shown in Table IV,
which lists the parameter set obtained with ecut = 60 MeV
instead of 50 MeV. Another set of the parameters derived in
the same way from the Gogny D1S force (DDDI-D1S) is also
listed. The same procedure is performed for the G3RS force
(DDDI-G3RS).

The pairing gap obtained with these parametrizations of
the DDDI are shown in Fig. 12. The resultant gap � agrees
with that of the corresponding reference gap to the accuracy
of about one hundred keV for the whole density region below
ρ/ρ0 = 1. Although the results for ecut = 60 MeV are not
shown here, the agreement with the reference gaps is as good
as in the ecut = 50 MeV case.

Notice in Table IV that the parameter α takes a similar
value, α = 0.58−0.60 (in the case ecut = 60 MeV) for all of
DDDI-D1, DDDI-D1S, and DDDI-G3RS, while the difference
between the Gogny forces (DDDI-D1,-D1S) and the G3RS

ρ/ρ0

∆ F   
(M

eV
)

symmetric matter

Gogny D1

10-4 10-3 10-2 10-1 100
0

1

2

3

DDDI-D1

Gogny D1S
DDDI-D1S

G3RS
DDDI-G3RS

FIG. 12. Pairing gap in symmetric nuclear matter obtained with
the DDDI parameter sets shown in Table IV with the cutoff energy
ecut = 50 MeV. The solid, dotted, and dashed curves represent the
result for the parameter sets DDDI-D1, DDDI-D1S, and DDDI-
G3RS, respectively. The symbols represent the gap for the reference
calculations with the Gogny D1 (square) and D1S (cross) forces, and
the G3RS force (circle).

force (DDDI-G3RS) is readily recognized in the value of η.
It is also seen that the difference in the cutoff energy slightly
influences the values of v0, η, and α. If one compares the
present result with that of Ref. [58], the parameter values
η = 0.60−0.63 for the prefactor and α = 0.55−0.58 for the
power imply stronger density dependence in V0[ρ] than that
in Ref. [58], where the parameters are determined as η =
0.45, α = 0.47 from a similar fitting to the gap with the Gogny
D1 force. This is due to the difference in the cutoff schemes
mentioned in Subsection V A. Since the chemical potential µ

increases with the density, the energy window measured from
the chemical potential µ decreases with increased density in
the scheme of Ref. [58], where the cutoff e(k) < 60 MeV is
adopted for all densities, while in the present cutoff scheme
the energy window is kept constant, ecut = 50, 60 MeV,
independent of the density. Consequently the stronger density
dependence in V0[ρ] is needed in the present case.

It may be interesting to compare the DDDI parameter
sets with those determined phenomenologically from the ex-
perimental pairing gap in the ground states of finite nu-
clei. Such a comparison is made in Fig. 13, where the
density-dependent interaction strength V0[ρ] is plotted. The
phenomenological DDDI’s employed here are the so-called
surface and mixed types, for which the prefactor parameter η is
fixed to η = 1 and η = 0.5, respectively. The power parameter
is α = 1 for the mixed type [11], while for the surface type
α = 1 or 1/2 is assumed. (Note that the power parameter
in the surface-type DDDI was investigated in Ref. [10],
and 1/2 <∼ α <∼ 1 is suggested as a reasonable range of the
parameter.) The strength of the surface-type DDDI used here is
v0 = −521 MeV fm−3 for α = 1 and v0 = −781 for α = 1/2,
taken from Ref. [10], where the value of v0 is determined by
a Skyrme HFB calculation for 120Sn to reproduce the gap
1.25 MeV. The equivalent energy cutoff 60 MeV adopted in
the HFB calculation corresponds to our cutoff ecut = 60 MeV.
In the case of the mixed-type DDDI, the adopted strength
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FIG. 13. Density-dependent interaction strength V0[ρ] of the
DDDI for the parameter sets DDDI-D1 (solid curve) and DDDI-G3RS
(dotted curve) with ecut = 60 MeV. For comparison, V0[ρ] for the
phenomenological DDDI parameters of the surface and mixed types
are also shown by the symbols. See the text for details.
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is v0 = −290 MeV fm−3, derived from the same condition
on 120Sn. It is seen in Fig. 13 that the density dependence
in the present parametrizations of V0[ρ] is mild in the range
ρtot/ρc >∼ 0.4, resembling more that of the mixed-type DDDI
than that of the surface type. At lower density, ρtot/ρc <∼ 0.3,
the density dependence is stronger than the mixed-type DDDI.
Note that the interaction strength V0[ρ] itself is not large:
it takes the values between those of the mixed- and the
surface-type DDDI’s in this low-density region. The above
comparisons suggest that the density dependence in the present
parametrization of V0[ρ] may not be very unrealistic for
applications to finite nuclei. It could be also suggested that the
present parametrization will be free from the problems pointed
out in Ref. [10] for strongly density-dependent DDDI’s, such
as the surface-type DDDI with small values of the power α <∼
1/2. For more definite conclusions, one needs to make more
quantitative analyses, using the HFB calculation performed
directly for finite nuclei. It is also interesting to compare a new
approach to the DDDI with microscopically derived cutoff
factors [89]. This is, however, beyond the scope of this paper,
and such analyses will be pursued in future.

VI. CONCLUSIONS

I have analyzed the spatial structure of the neutron Cooper
pair obtained with the BCS approximation for neutron and
symmetric nuclear matter by using a bare force and the
effective Gogny interaction. The size of the Cooper pair varies
significantly with the density: its rms radius ξrms becomes as
small as ∼5 fm around ρ/ρ0 ≈ 10−2−0.2, and ξrms smaller
than the average interneutron distance d is realized over a very
wide range, ρ/ρ0 ≈ 10−4−0.1, at low density. The analysis of
the Cooper pair wave function indicates that the probability
for the spin up and down neutrons in the pair to be correlated
within the average interneutron distance d exceeds 0.8 in this
density range. The strong spatial correlation at short relative
distances is also seen for the modest density ρ/ρ0 ∼ 0.5,
at which the concentration of the pair neutrons within the
interaction range ∼3 fm reaches about 0.5. These observations
suggest that the spatial dineutron correlation is strong, at least
in the level of the mean-field approximation, in low-density

superfluid uniform matter over the wide range of densities
ρ/ρ0 ≈ 10−4−0.5. The essential feature does not depend on
the interactions.

The behavior of the strong dineutron correlation have been
investigated in connection with the crossover phenomenon
between the conventional pairing of the weak coupling BCS
type and the Bose-Einstein condensation of the bound neutron
pairs. From the comparison with the analytic BCS-BEC
crossover model, it is found that the density region ρ/ρ0 ≈
10−4−10−1 corresponds to the domain of the BCS-BEC
crossover.

I have also examined how the density-dependent δ interac-
tion (DDDI) combined with a finite cutoff energy can describe
the spatial correlation of the neutron Cooper pair. The spatial
correlation at short relative distances and the rms radius of
the pair are described consistently over a wide density region
0 < ρ/ρ0 <∼ 1, provided that one adopts a cutoff energy around
ecut ∼ 50 MeV defined with respect to the chemical potential.
I have derived a possible parametrization of the DDDI, which
satisfies this new condition on top of the constraints on the gap
in symmetric nuclear matter and on the scattering length in the
free space. The new DDDI parametrizations may be consistent
with or at least not strongly contradictory to the phenomeno-
logical DDDI’s derived from the gap in finite nuclei.
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G. Colò, and E. Vigezzi, Phys. Rev. C 72, 011302(R) (2005).

[81] Ø. Elgarøy and M. Hjorth-Jensen, Phys. Rev. C 57, 1174
(1998).

[82] M. Marini, F. Pistolesi, and G. C. Strinati, Eur. Phys. J. B 1, 151
(1998).

[83] T. Papenbrock and G. F. Bertsch, Phys. Rev. C 59, 2052
(1999).

[84] H. Heiselberg, Phys. Rev. A 63, 043606 (2001).
[85] M. Grasso, N. Sandulescu, N. V. Giai, and R. J. Liotta, Phys.

Rev. C 64, 064321 (2001).
[86] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and

D. J. Dean, Phys. Rev. C 68, 054312 (2003).
[87] E. Terán, V. E. Oberacker, and A. S. Umar, Phys. Rev. C 67,

064314 (2003).
[88] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.

75, 121 (2003).
[89] T. Duguet, Phys. Rev. C 69, 054317 (2004).

044309-16


