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Auxiliary field diffusion Monte Carlo calculation of properties of oxygen isotopes
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1Dipartimento di Fisica dell’Universitá di Trento, and INFN, Gruppo Collegato di Trento via Sommarive 14, I-38050 Povo, Trento, Italy

2INFM DEMOCRITOS National Simulation Center Via Beirut 2/4, I-34014 Trieste, Italy
3International School for Advanced Studies, SISSA, Via Beirut 2/4, I-34014, Trieste, Italy

4Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287, USA
(Received 5 August 2005; published 7 April 2006)

The ground state and some low-lying excited states of oxygen isotopes 18O–22O were simulated by means of
auxiliary field diffusion Monte Carlo techniques. We performed the calculations by replacing the 16O core with
a mean-field self-consistent potential we computed by using Skyrme interactions. The external neutrons were
included in the Monte Carlo calculations, building a wave function with the orbitals computed in the self-consistent
external potential. The shell considered was the 1D5/2. The NN interactions employed included tensor, spin-orbit,
and three-body forces. While absolute binding energies are too deep compared with those of experimental
data, the differences between the energies for nearly all isotopes and excitations are in very good agreement
with the experiments. The exception is the 4+ state of the 18O isotope, which shows a larger discrepancy.
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I. INTRODUCTION

The structure of stable nuclei is generally dominated by
shell effects that can be nearly completely explained by the
single-particle picture of the system. However, it has been
found experimentally, by means of fragmentation of heavy-ion
beams [1–4], that neutron rich nuclei show features that seem
to go beyond the standard shell model. For example, it was
observed that the neutron drip line for O and F isotopes has
a sudden change. This has been interpreted as a clear sign
that many-body effects in this regime cannot be treated as a
perturbation of the one-particle picture, but become relevant
in determining the overall structure. Theoretical discussions of
the insurgence of a new magic number at N = 16 have recently
been developed by means of mean-field calculations [5] and
antisymmetrized molecular dynamics [6]. Recently Green’s
function Monte Carlo (GFMC) calculations with the use of
realistic interactions have been performed. In this case the
nuclei (all oxygen isotopes) were approximated as N neutrons
in a potential well built to reproduce the density of protons in
the 16O core [7].

In this paper we propose an analysis of heavy oxygen
isotopes in the 1D5/2 shell based on the auxiliary field diffusion
Monte Carlo (AFDMC) [8] method, which, while relying
on a shell-model picture for the treatment of the core, fully
includes the effects of quantum correlations and of realistic
interactions (in particular AV8’ + UIX) in the treatment of
the off-shell neutrons. This scheme was already employed in
part in past works [9] in which the NN interactions considered
were the Hasegawa–Nagata [10] and the Volkov [11]. In our
case the 16O core is replaced with the self-consistent potential
well generated by a self-consistent calculation with Skyrme
forces. The orbitals yielded are then used to construct a
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correlated antisymmetric wave function that is then employed
as a starting point and an importance function for projecting
the ground-state energy. This scheme tries to exploit the fact
that self-consistent calculations partially include effects from
quantum correlations and provide a better starting point for
exact calculations with realistic interactions. Similar methods
using density functional techniques to generate starting wave
functions are commonly used in quantum Monte Carlo
calculations of the electronic structure of molecules and solids
[12]. Our study was not limited to the ground-state energies,
but was also extended to some low-lying excited states.

The plan of the paper is as the follows. In the next section
we describe the Hamiltonian used in our calculations. A
brief outline of the AFDMC technique is given in Sec. III.
Results for oxygen isotopes in the 1D5/2 shell are discussed in
Sec. IV. The last section is devoted to conclusions and future
perspectives.

II. HAMILTONIAN

The ground-state properties of the oxygen isotopes are
computed starting from a nonrelativistic Hamiltonian of the
following form:

Ĥ = T + V1 + V2 + V3

= −
∑

i

h̄

2m
∇2

i +
∑

i

Vext(�ri) +
∑
i<j

vij +
∑

i<j<k

Vijk. (1)

The one-body potential Vext describes the 16O core, which in
our calculations is replaced with a self-consistent potential
we obtained by Hartree-Fock (HF) calculations using Skyrme
forces.

The two-body NN interaction employed, which in our
model acts among only the off-shell neutrons, belongs to the
Urbana-Argonne vl potentials [13,14]:

vl =
∑
i<j

l∑
p=1

vp(rij )O(p)(i, j ), (2)
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truncated to include only the following eight operators (v′
8):

Op = 1,8(i, j ) = (1, �σi · �σj , Sij , �Lij · �Sij ) × (1, �τi · �τj ), (3)

where the operator Sij = 3�σi · r̂ij �σj · r̂ij − �σi · �σj is the tensor
operator and �Lij = −ıh̄�rij × ( �∇i − �∇j )/2 and �Sij = h̄(�σi +
�σj )/2 are the relative angular momentum and the total spin for
the pair ij, respectively. For neutrons �τi · �τj = 1, and we are
left with an isoscalar potential.

The v′
8 potential is a simplified version of the v18 potential,

having the same isoscalar parts of v18 in all S and P waves,
as well as in the 3D1 channel and its coupling to the 3S1. It
is semirealistic in the sense that it does not fit the Nijmegen
NN data at a confidence level of χ2/Ndata ∼ 1, as v18 does.
However, the difference between v18 and v′

8 is rather small
for densities smaller than or of the order of the nuclear matter
equilibrium density ρ0 = 0.16 fm−3, and it can be safely added
perturbatively. The v′

8 potential should be considered as a
realistic homework potential, and it has been used in a number
of calculations on light nuclei [15,16], symmetric nuclear
matter [17], neutron matter [18], spin-polarized neutron matter
[19]. For isotopes heavier than 19O, a three-body Urbana
IX (UIX) potential [15] has been included. Details of the
treatment of this term within the AFDMC method can be
found elsewhere [20].

III. METHODS

A. Auxiliary field diffusion Monte Carlo method

The AFDMC method is an extension of the diffusion Monte
Carlo (DMC) method to deal with spin-dependent Hamilto-
nians. The quadratic dependence of these Hamiltonians on
the spin-operators is taken care of by sampling auxiliary
variables, which serve to linearize such dependence through
Hubbard–Stratonovich transformations. A detailed discussion
of the method can be found in Refs. [18,21]. Here we limit
ourselves to briefly outlining the method for the case of a pure
neutron system and the v′

6 interaction.
The v′

6 two-body potential can be separated into a spin-
independent part and a spin-dependent part:

V = V SI + V SD,

V SD =
∑
i,j

σiαAiα;jβσjβ,

where the elements of the matrix A are given by the proper
combinations of the components vp in Eq. (2). Latin indices,
like i and j, are used for particles, while the Greek ones, like α

and β, refer to the Cartesian components of the operators. We
use the summation convention that all repeated Greek indices
are summed from 1 to 3.

Because Aiα;iβ = 0 the 3N × 3N matrix A has real eigen-
values and eigenvectors, defined by∑

j

Aiα;jβψjβ
n = λnψ

iα
n . (4)

The spin-dependent potential can therefore be written
in terms of such eigenvalues and eigenvectors in the

following form:

V SD = 1

2

∑
n

[ ∑
i,j

σiαψiα
n λnψ

jβ
n σjβ

]
. (5)

If one defines new N-body spinorial operators as

On =
∑

i

σiαψiα
n , (6)

the spin-dependent potential becomes

V SD = 1

2

3N∑
n=1

λnO2
n. (7)

In the short-time limit we can decompose the imaginary time
propagator of the diffusion process, which projects the ground
state out of a trial wave function in the following way:

e−H	τ ∼ e−T 	τ e−Vc	τ e−V SD	τ , (8)

where Vc = ∑
Vext(ri) + V SI is the spin-independent part of

the interaction. The propagation accounting for the kinetic and
Vc operators gives rise to the usual drift-diffusion scheme of
DMC. The spin-dependent two-body potential part e−V SD	τ

is handled by use of the following Hubbard–Stratonovich
transformation:

e− 1
2 λnO2

n	τ = 1√
2π

∫ +∞

−∞
dxn e− x2

n
2 −√−λn	τxnOn , (9)

with

e−V SD	τ ∼
∏
n

e− 1
2 λnO2

n	τ , (10)

where the commutators among the On are neglected; this
requires us to keep the time step 	τ small.

In Eq. (9) the quadratic dependence on the spin operators
is transformed into a linear expression that corresponds to a
rotation in the spin space. For each eigenvalue �iα

n a value of
xn is sampled, and the current spinor value for each particle is
multiplied by the set of matrices given by the transformation
in Eq. (9).

The spin-orbit and three-body potentials can be treated
within the same scheme. It is important to note that, while
the spin-orbit potential is already linear in the spin operator,
it is necessary to eliminate spurious terms from the simple
linearization of the propagator in order to take into account
corrections at order 	τ . This leads to additional two- plus
three-body contributions, which can be treated as additional
interaction terms. The AFDMC algorithm is implemented as
usual, with a propagation in imaginary time of a population of
walkers |R, S〉 according to the propagator in relation (8) with
the standard drift-diffusion procedure. In addition, one has to
sample the xn auxiliary variables given in Eq. (9) to rotate the
spinors. After that, all the weight factors are computed; they
are combined to evaluate a new value of 〈�|R, S〉.

To avoid the fermion sign problem that is due to the
antisymmetric character of the wave function, a path constraint
is introduced. If the real part of 〈�|R, S〉 is negative, the walker
is included in the evaluation of the mixed and growth energies,
but then is dropped from the population. In general, the
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importance sampling makes the number of dropped walkers
very small. In our calculations here the number of node
crossings is of the order of 1%.

B. Wave function

The wave function used as the importance and projection
function for the DMC algorithm has the following form:

�(R, S) = FJ (R)D(R, S), (11)

where R ≡ (�r1, . . . , �rN ) and S ≡ (s1, . . . , sN ). The spin as-
signments si consist of giving the spinor components, namely,

si ≡
(

ui

di

)
= ui |↑〉 + di |↓〉,

where ui and di are complex numbers. The Jastrow correlation
operator is given by

FJ =
∏
i<j

fJ (rij ), (12)

and

D(R, S) = A
N∏

i=1

φn,j,mj
(�ri, si), (13)

is the Slater determinant of one-body spin-space orbitals:

φn,j,mj
(�r, �σ ) = �n,j (�r)Yl,ml

(θ, φ)ξs,ms
. (14)

We obtained the radial components by solving the HF
problem with the Skyrme forces, which also provide the
external potential well that describes the closed 16O core. The
yielded radial functions are written in the j,mj base, so we ob-
tained the single-particle wave function by coupling the
spherical harmonics with the spin by using the Clebsh-Gordan
coefficients. In nO, n = 18–22 isotopes, neutrons fill only the
orbitals in the 1D5/2 shell except for the isotope 19O, for which
it is necessary to put some neutrons also in the 1D3/2 in order
to build the ground state of correct symmetry.

One obtains the many-body states by coupling the single-
particle angular momentum by constructing eigenstates of
total angular momentum J = j1 + · · · + jN with N = 2−6;
for the states with an even number of neutrons, the ground
state has J = 0, while for odd neutron numbers, the ground
state has total angular momentum J = 5/2. These states are in
general written in terms of a sum of Slater determinants whose
coefficients are determined by the symmetry of the state. Each
determinant is evaluated at the current values of the positions
and spin assignments of the nucleons in the walker |R, S〉.

The same procedure is used for the construction of the
excited states, always limiting the choice of the single-particle
orbitals to the shell 1D5/2.

The Jastrow function fJ has been taken as the scalar
component of the Fermi Hyper-Netted Chain at the Single
Operator Chain level (FHNC/SOC) correlation operator F̂ij

that minimizes the energy per particle of neutron matter at
density ρ = 0.16 fm−3 [22]. The Jastrow part of the function
in our case has the role only of reducing the overlap of nucleons
and therefore reducing the energy variance. Since it does not
change the phase of the wave function, it does not influence

TABLE I. Two sets of Skyrme’s parameter used to per-
form variational calculations of energy, t0 (MeV fm3), t1 (MeV fm5),
t2 (MeV fm5), t3 (MeV fm6), W0 (MeV fm5), and x0.

Force t0 t1 t2 t3 x0 W0

I −1057.3 235.9 −100.0 14463.5 0.56 120.0
II −1169.9 585.6 −27.1 9331.1 0.34 105.0

the computed energy value in projections methods. For this
reason the Jastrow function has not been further optimized for
our calculations.

In our calculations we neglected contributions for the 2S1/2

orbital despite the expectation of significant mixing of this
level in the states of isotopes considered. However, the fact
that the AFDMC gives results for the energy differences in
very good agreement with experimental data indicates that
the effects of the mixing are not extremely significant. The
inclusion of contributions from the 2S1/2 orbital also gives rise
to major technical difficulties. In fact, the component along
this orbital tends to be projected over the more bound 1S1/2

state, giving rise to a nonphysical density for the external
neutrons. This difficulty also prevented us from extending our
calculations to higher mass isotopes to the drip line.

C. Determination of the HF well

An important issue in this calculation is the choice of the
Skyrme force parameters to be used to generate the effective-
HF potentials included in the Hamiltonian for AFDMC
calculations. The use of a self-consistent potential well makes
the single-particle part of the importance function essentially
parameterless. In the absence of an efficient variational
procedure, it was important to establish that this choice of
orbitals could be in general reasonable, if not optimal.

Skyrme forces cannot be related directly to the realistic NN
interaction used in our calculation. We must therefore establish
a criterion for discriminating among different choices. As a
first step we computed the variational energy of the closed-
shell isotope 22O on the correlated Slater determinants we
obtained by using different sets of parameters in the Skyrme
Hamiltonian, but using the full Hamiltonian with potential
V8′+ UIX. In particular we tried the Skyrme I and Skyrme
II [23] forces, whose parameters are given in Table I.

The expectation value of the Hamiltonian (reported in
Table II) considerably differs in the two cases. This is mainly

TABLE II. Ground-state variational energies of 22O starting from
two differents types of single-particle effective potential and orbitals,
obtained with different types of Skyrme’s parameters. We report the
total energy, the kinetic energy (calculated with the Jackson-Feenberg
[24] and Pandharipande-Bethe [25] forms), and the potential energy.
All the energy are expressed in MeV. The experimental value of the
energy for the external neutrons is −34.407 MeV.

Force E E
jf

kin E
pb

kin Epot

I −29.9(1) 142.6(3) 142.4(2) −172.2(2)
II −60.5(1) 123.5(2) 123.6(2) −184.1(3)
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FIG. 1. Effective single-particle potential generated by the HF
algorithm, with Skyrme’s parameter of type Force I (full line) and
Force II (dashed line).

because the two sets of Skyrme’s parameters give quite
different effective-HF potentials (as plotted in Fig. 1). As a
criterion for determining which shell (and which set of orbitals)
to use, we chose to minimize the difference between 〈H 〉 and
the available experimental estimates of the binding energy of
the nucleus.

D. Computational Details

To have an accurate estimate of the ground-state energies
of the isotopes, we performed several sets of runs for different
values of the time-step and walker populations. The reported
values are all extrapolated to 	τ → 0. Also, the dependence
of the result from the number of walkers used was investigated.
Some calculations were repeated for 500 and 1000 walkers.
For relatively long time steps, the energy has rather large
fluctuations when a smaller number of walkers is employed.
On the other hand, the average energy does not show a clear
trend outside the statistical fluctuations. Therefore we present
all results obtained with 1000 walkers.

IV. RESULTS

A. Ground states

In Table III we report the AFDMC energies obtained
for the isotopes series 18O–22O compared with the available
experimental values. As expected, the computed values are
quite different from the experiment, although the relative

TABLE III. Ground-state energy calculated with AFDMC. All
the energies are express in MeV.

Isotope EAFDMC Eexp

E18O −18.04(2) −12.188
E19O −22.4(1) −16.145
E20O −29.36(6) −23.752
E21O −33.6(2) −27.558
E22O −40.48(5) −34.407

TABLE IV. Ground-state energy calculated with AFDMC. We
report the differences between the isotopes we had studied. All the
energies are express in MeV.

Isotope EAFDMC Eexp

E19O–E18O −4.4(1) −3.957
E20O–E18O −11.32(8) −11.564
E21O–E18O −15.5(2) −15.370
E22O–E18O −22.44(7) −22.219

discrepancy never exceeds 30%. Of course this is a drawback
of the use of an external potential for including the effects of
the filled core of the nucleus. In particular the total binding
energies are all overestimated. This reflects the absence of a
correct description of the density of neutrons at the center of
the drop, which is underestimated, giving rise to an effective
potential that is too deep for small distances from the center.
Moreover we completely neglect core-polarization effects.
However, one can obtain most of the information needed to
understand the effects of NN interaction in the external shell by
looking at energy differences between the isotopes considered.
In fact, if the intrashell interaction has a dominant effect, the
gaps should not depend too much on the quality of the external
well considered. In Table IV and in Fig. 2 we report the
energy differences for the isotopes considered compared with
the corresponding differences obtained from the experimental
results. Our calculations have also been compared with the
GFMC results reported in Chang et al. [7]. As can be seen, in
this case the agreement between computed and experimental
values is excellent. It has to be noted that for the 19O ground
state we mixed two orbitals with the same angular momentum
1D5/2 and the 1D3/2; this is the only way to obtain the correct
energy. In fact, the same calculation with a wave function
restricted to only one orbital, as for all other isotopes, gives
an energy of −19.64(5) MeV, instead of the deeper value of
−22.4(1) MeV. This indicates that, for this state, which is an
odd nucleus, components of higher single-particle states are
very important.
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FIG. 2. Outline of differences between energies of the isotope
series studied. All the energies are expressed in mega-electron-volts,
and all values are referred to that of 18O. Results are compared with
experimental results and with GFMC calculations [7].
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It is also possible to note how the binding energy of 22O rel-
ative to 18O is almost coincident with the experimental finding
in the AFDMC, while one has again a strong overestimation
in the GFMC calculation. This is quite surprising, as 22O is a
closed-shell nucleus. However, it is possible that in this case
the choice of the self-consistent HF potential gives a better
description of the outer shell than the all-neutron picture used
in the GFMC calculations.

The isotope 17O is a particular case. In fact this nucleus
has only one valence neutron, and no calculation is needed to
determine the energy, which is given by the eigenvalue of the
single partile problem solved in the external well. The energy
of the 17O is −3.89(1) MeV. This value reasonably compares
with the experimental binding energy of −4.144 MeV. The
difference between the two values partly accounts for the total
absence of a realistic interaction between the external neutron
and the core. The missing correlations may describe very
important effects like core polarization, spin-orbit interaction,
and pairing between internal neutrons and an external one;
instead these effects are partially included with the HF well
and by AFDMC calculations with more external neutrons.

In Fig. 3 we report the AFDMC densities normalized to
unity of the external neutrons for the isotopes considered
in this work. As can be seen, the neutron’s densities are all
quite similar, and very small deviations are present. In fact,
the density profile seems to be larger when there are more
neutrons; this can be expected because of the repulsive nature
of the n-n interaction. In the figure we also display the density
of 16O calculated with Skyrme’s interaction to make evident
the “halo” effect of the external neutrons.

B. Excited states

By construction of the appropriate wave functions it is
possible to study the low-lying excited states of a given isotope.
Excited states were computed for the isotopes 18O and 21O. We
limited ourselves to states that can be built while still remaining
within the 1D5/2 shell. No modification of the algorithm is
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FIG. 3. Radial densities of external neutrons for all isotopes in
the ground state calculated with AFDMC and the Skyrme’s density
of 16O.

TABLE V. Excitation energy calculated with AFDMC of the
isotopes 18O and 21O compared with experimental results (see text).
All energies are in MeV.

Isotope State 	EAFDMC 	Eexp

18O 2+ 1.99(9) 2.0(2)
4+ 5.08(2) 3.6(2)

21O 1/2+ 1.24(9) 1.218(4)
3/2+ 2.11(9) 2.133(5)

required. If the states considered are orthogonal to the ground
state, the projected wave function will be constrained within
the same subspace. We report in Table V the AFDMC results
compared with experimental results of Norum et al. [26] for
18O and of Stanoiu et al. [1] for 21O.

In Fig. 4 we show the results for the 18O isotope com-
pared with experiment and with multideterminant projection
Hartree-Fock (MDHF) results by Morrison et al. [27].

The excitation energy of the 2+ state turns out to be in
excellent agreement with the experimental findings. The
situation for the 4+ state is much less satisfactory. There are
essentially two possible sources for this discrepancy. In the
case of the J = 4 state, the large angular momentum might
give the spin-orbit component of the potential a relevant role.
The presence of spin-orbit terms tends to heavily modify the
nodal structure of the wave function. In particular, it was
recently shown by Brualla et al. [28] that the nodal structure
of the homogeneous neutron liquid is much improved when
explicit backflow effects are introduced into the determinantal
part of the wave function. It is possible that a similar effect
might be observed here.

The excitation energies for the 21O isotope are shown in
Fig. 5. We compare our AFDMC results with experiments and
with shell-model calculations by Brown [29]. In this case the
agreement between AFDMC results and experiments is very
good for all the states considered.
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FIG. 4. Low-lying excitation energies of the 18O isotope com-
pared with experimental values from Ref. [26]. All energies are in
mega-electron-volts. Results are compared with MDHF results of
Ref. [27].
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FIG. 5. Low-lying excitation energies of the 21O isotope com-
pared with experimental values from Ref. [1]. All energies are
in mega-electron-volts. Results are compared with the shell-model
results of Ref. [29].

V. CONCLUSIONS

We used the AFDMC method to study properties of
off-shell neutrons in oxygen isotopes, including a realistic
NN potential. The approximate treatment of the 16O core as
an external potential well computed by the HF method does
not compromise at all the quality of the result for the energy
differences between isotopes in the 1D5/2 (and in the 1D3/2 in
the case of 19O) shell. The same procedure was applied to the
computation of low-lying excited states in 18O. When a more
significant deviation with respect to the experimental results

is present, it can be attributed to the low-quality description of
the nodal structure of the nucleus, which enters the calculation
through the constrained path approximation. Results confirm
that the NN interaction is dominant with respect to mean-field
effects in determining the structure of the energy levels of
the external neutrons. Calculations within the same scheme
could be extended to the case of F and Ne isotopes for which
experimental results are available. It is also possible, by the
addition of the contribution from the 2S1/2 shell, to move up
to the drip line. This, however, implies a better treatment of
the effective potential well near the center of the nucleus. In
fact, a plain inclusion of S neutrons in the present calculation
would lead to a jump in the binding energy because the neutron
density in the center of the nucleus is not well treated. Work
in this direction is in progress.
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