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Seniority conservation and seniority violation in the g9/2 shell
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The g9/2 shell of identical particles is the first one for which one can have seniority-mixing effects. We consider
three interactions: A delta interaction that conserves seniority, a quadrupole-quadrupole (Q · Q) interaction that
does not, and a third one consisting of two-body matrix elements taken from experiment (98Cd) that also leads to
some seniority mixing. We deal with proton holes relative to a Z = 50, N = 50 core. One surprising result is that,
for a four-particle system with total angular momentum I = 4, there is one state with seniority v = 4 that is an
eigenstate of any two-body interaction—seniority conserving or not. The other two states are mixtures of v = 2
and v = 4 for the seniority-mixing interactions. The same thing holds true for I = 6. Another point of interest is
that, in the single-j-shell approximation, the splittings �E = E(Imax) − E(Imin) are the same for three and five
particles with a seniority conserving interaction (a well-known result), but are equal and opposite for a Q · Q

interaction. We also fit the spectra with a combination of the delta and Q · Q interactions. The Z = 40, N = 40
core plus g9/2 neutrons (Zr isotopes) is also considered, although it is recognized that the core is deformed.
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I. INTRODUCTION

With the advent of nuclei far from stability, there will be
more emphasis on identical particles in given shells, in which
case the concept of seniority will be even more important than
it has been in the past. See for example the work of Lisetskiy
et al. [1]. Also as part of the revival are works on quasispin
and seniority by Rowe and Rosensteel [2,3] and by the present
authors [4].

There are several well known formulas for seniority
selection rules in the nuclear physics and atomic physics
textbooks [5–7]. One of the first things we learn is that for
identical particles in a single j shell, seniority is conserved for
all shells with j � 7/2, no matter what two-body interaction
is used. The first shell, then, where seniority violating effects
can be seen is the g9/2, and this is the shell we shall consider
here.

As noted in Talmi’s review article [8], there have been many
calculations done in the g9/2 region, including calculations
with seniority-conserving interactions by Gloeckner and col-
laborators [9,10], as well as experiment and theory by Oxorn
et al. [11]. Also to be mentioned are Amusa and Law-
son [12,13], and Auerbach and Talmi [14].

Work in a g9/2-p1/2 model space has been done by Brown
and collaborators. In Refs. [15,16], the focus is on the 17/2
state and the possible parity violation, i.e., the admixture of
some 17/2+ with the 17/2− state. In the present work, we
focus on positive-parity states. In Refs. [17,18], Brown et al.
consider some properties of states in a number of nuclei that
are heavier than the ones we consider here.

Our motivation in this work is to see how the effective
interaction depends on what “closed shell” is used.

Some of the well-known statements and theorems concern-
ing states of good seniority are

(i) The seniority is roughly the number of identical particles
not coupled to zero. Hence, for a single nucleon the
seniority v is equal to 1. For two nucleons in a J = 0
state we have v = 0, but for J = 2, 4, 6, etc., v = 2. For

three nucleons there is one state with seniority v = 1,
which must have J = j ; all other states have seniority
v = 3.

(ii) The number of seniority-violating interactions is
[(2j − 3)/6], where the square brackets mean the largest
integer contained therein (see Ref. [19]). For j = 7/2
there are no seniority-violating interactions, while for
j = 9/2 there is one.

(iii) With seniority-conserving interactions, the spectra of
states of the same seniority is independent of the particle
number.

(iv) At midshell we cannot have any mixing of states with
seniorities v and v + 2; one can mix v and v + 4 states.

There are also well-known results for more general inter-
actions which do not necessarily conserve seniority:

(i) For identical particles in a single j shell, the hole spectrum
is the same as the particle spectrum. This will be relevant
to 93Tc and 97Ag, and for 83Zr and 87Zr.

(ii) The magnetic moment of a hole is the same as that
of a particle. The quadrupole moment of a hole is
equal in magnitude but of the opposite sign to that of
a particle. This leads to the result that at midshell all
static quadrupole moments vanish in the single-j-shell
approximation.

There have been many calculations in the past in the “g9/2

region,” although perhaps due to a lack of data, some but not
all of the nuclei we consider here have been addressed. Our
intention here is not to do large scale calculations, but rather
to see how far we can go with the simplest of shell model
approaches. As will be seen, there are some surprises even at
this late date, e.g., concerning g9/2 coefficients of fractional
parentage. Furthermore, while most emphasis has been on
seniority-conserving interactions, there are some simplicities
even for seniority-nonconserving interactions, such as the
quadrupole-quadrupole interaction, which we will utilize to
determine the degree of seniority nonconservation. Also newer
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data permits us to go further away from the valley of stability
than was possible at earlier times. This enables us to start
from different cores and to study the core dependance of the
effective interaction.

II. OUR CALCULATIONAL METHOD

We used a program given to us by Bayman to calculate
cfp’s. However, when there is more than one state of a given
seniority, the Bayman program does not give the same cfp’s
as are recorded in the original Bayman-Lande paper [20].
Nevertheless, this is not a cause for concern as will be discussed
in the next section.

What is unusual in our approach is that we do not
consider a system of identical particles, but rather a system of
(n − 1) protons and one neutron. When we perform the matrix
diagonalization, using only isospin-conserving interactions,
we obtain states with isospin Tmin = |N − Z|/2 and also ones
with higher isospins. The latter states are analog states of
systems of identical particles. If we write the wave function as

�I =
∑
JP

DI (JP vP , JN = j )[(jn−1)JP j ]I , (1)

then, for the Tmin + 1 states, the coefficients DI are coeffi-
cients of fractional parentage (jn−1JP vP j |}jnI ). We are also
interested in the spectra of Tmin states, but we will save this for
another day.

III. SPECIAL BEHAVIORS FOR I = 4+ AND
6+ STATES OF THE g4

9/2 CONFIGURATION

For a system of four identical nucleons in the g9/2 shell, the
possible seniorities are v = 0, 2, and 4, with v = 0 occurring
only for a state of total angular momentum I = 0. There is
also a v = 4 state with I = 0.

For I = 4 and 6, we can have three states, one with seniority
v = 2 and two with seniority v = 4. For the two v = 4 states
we have at hand, we can construct different sets of v = 4
states by taking linear combinations of the original ones. If the
original ones are (4)1 and (4)2, we can form

(4)A = a(4)1 + b(4)2,
(2)

(4)B = −b(4)1 + a(4)2,

with a2 + b2 = 1. The set (4)A, (4)B is as valid as the original
set.

However, we here note that if we perform a matrix diagonal-
ization with any two-body interaction—seniority conserving
or not—one state emerges which does not depend on what the
interaction is. The other two states are, in general, mixtures
of v = 2 and v = 4 which do depend on the interaction. The
values of the coefficients of fractional parentage (cfp’s) of
this unique state of seniority 4 are shown in Table I. The
states with J0 �= 4.5 all have seniority v = 3. Note that in
this special v = 4 state there is no admixture of states with
J0 = j = 9/2, be they v = 1 or v = 3. Again, no matter what

TABLE I. A unique J = 4, v = 4 cfp for j = 9/2.

J0 (j 3J0j |}j 4I = 4, v = 4)

1.5 0.1222
2.5 0.0548
3.5 0.6170
4.5 (v = 1) 0.0000
4.5 (v = 3) 0.0000
5.5 −0.4043
6.5 −0.6148
7.5 −0.1597
8.5 0.1853

two-body interaction is used, this I = 4 state remains a unique
state.

Amusingly, this state does not appear in the compilation
of seniority-classified cfp’s of Bayman and Lande [20] or
de Shalit and Talmi [5]. We should emphasize that, although
different, the Bayman–Lande cfp’s are perfectly correct (as are
the ones of de Shalit and Talmi, whose cfp’s are also different
from those of Bayman and Lande [20]). But then, why do they
not obtain the unique state that we have shown above? Bayman
and Lande use group theoretical techniques to obtain the cfp’s,
diagonalizing the following Casimir operator for Sp(2j + 1):

G(Sp2j+1) = 1

2j + 1

2j∑
odd k=1

(−1)k(2k + 1)3/2[UkUk]0
0, (3)

where Uk
q ≡ ∑N

i=1 Uk
q (i) and U is the Racah unit tensor

operator 〈
�

j ′
m′

∣∣Uk
q

∣∣�j
m

〉 = δjj ′(kjqm|j ′m′). (4)

The two seniority v = 4 states are degenerate with such an
interaction and, since there is no seniority mixing, we can have
arbitrary linear combinations of the 4+ states. Only by using
an interaction which removes the degeneracy and violates
seniority, do we learn about the special state in Table I.

IV. THE ENERGY SPLITTING E(Imax) − E(Imin)
WITH A Q · Q INTERACTION

A well-known result for identical particles in a single
j shell is that, if one uses a seniority-conserving interaction,
then the relative spectra of states of the same seniority are
independant of the number of particles [5–7]. Thus, for n = 3
and n = 5, the seniority v = 3 states have the same relative
spectrum; for n = 2, 4, and 6, the seniority v = 2 states have
the same spectrum. These results hold, in particular, for the
delta interaction used here.

Now the Q · Q interaction does not conserve seniority and
the above results do not hold. However, we have noticed an
interesting result for n = 3 and n = 5. Consider the split-
ting �E = E(Imax) − E(Imin), v = 3, where for g9/2, Imax =
21/2 and Imin = 3/2. For a seniority-conserving interaction,
�E(n = 5) = �E(n = 3), whereas for a Q · Q interaction,
�E(n = 5) = −�E(n = 3). This will be discussed quantita-
tively later.
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TABLE II. Values of the even-J two-body matrix elements
(m.e.) for the different interactions mentioned throughout the paper:
quadrupole-quadrupole (Q · Q), surface delta (SDI), m.e. taken from
experimental spectrum of 98Cd [V(98Cd)], and m.e. taken from
experimental spectrum of 82Zr [V(82Zr)].

J Q · Q SDI V(98Cd) V(82Zr)

0 0.0000 0.0000 0.0000 0.0000
2 0.3485 2.0063 1.3947 0.4070
4 0.9848 2.3149 2.0823 1.0408
6 1.4848 2.4507 2.2802 1.8879
8 1.1818 2.5415 2.4275 2.9086

V. THE TWO-PARTICLE (TWO-HOLE) SYSTEMS

In order to perform calculations, we must know the two-
body matrix elements E(J ) = 〈(g2

9/2)J |V |(g2
9/2)J 〉. Since in

this work we consider only two identical nucleons, we need
simply the even-J matrix elements (J = 0, 2, 4, 6, and 8). In
Table II and Fig. 1 we give four sets of two-body matrix el-
ements. These are seniority-violating quadrupole-quadrupole
interaction, seniority-conserving delta interaction, matrix el-
ements taken from the two-proton-hole system (relative to a
Z = 50, N = 50 core) 98Cd, and matrix elements taken from
the two-neutron-particle system (relative to Z = 40, N = 40)
82Zr.
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FIG. 1. (Color online) Values of the even-J two-body matrix el-
ements (m.e.) for the following interactions: quadrupole-quadrupole
(Q · Q), surface delta (SDI), m.e. taken from experimental spectrum
of 98Cd [V(98Cd)], and m.e. taken from experimental spectrum of
82Zr [V(82Zr)].

It should be said at the outset, however, that Z =
40, N = 40 is not a good closed shell. Experiments by Lister
et al. [21] showed that 80Zr is strongly deformed. Skyrme–
Hartree-Fock calculations by Bonche et al. [22] and by Zheng
and Zamick [23] are in agreement with experiment. In Ref. [23]
it was noted that, in the intrinsic deformed ground state of 80Zr,
there were 12 nucleons in the g9/2 shell. In the spherical limit,
there would not be any. For this reason, we will not show
single-j-shell fits to the Zr isotopes.

VI. GROUND STATE SPINS

For identical particles in the g9/2 shell, the delta interaction
yields a ground state spin I = j = 9/2+ for odd-even or
even-odd nuclei. In contrast, the Q · Q interaction yields
I = 7/2+. Experimentally, it turns out (as will be shown in
the next section) that some nuclei have ground-state spins
I = 9/2+ and others have I = 7/2+. The latter nuclei are
closer to the Z = 40, N = 40 “closed shell”, while the former
are closer to the Z = 50, N = 50 closed shell. This shows that
both the delta and Q · Q interactions are important for a proper
description of these nuclei.

VII. THE THREE AND FIVE PARTICLE (HOLE) SPECTRA

The nuclei we consider are broken into two groups: One
in which g9/2 protons are removed from a Z = 50, N = 50
core and a second in which g9/2 neutrons are added to a Z =
40, N = 40 core. We shall see a significant and systematic
difference in the behavior in the two cases. The nuclei we
consider and the number of proton holes or neutron particles
are shown in Table III.

In Fig. 2 we show the empirical spectra of nuclei for n =
3, 5, and 7 protons removed from the Z = 50, N = 50 core—
these are 97Ag, 95Rh, and 93Tc, respectively. In Fig. 3 we show
the corresponding spectra for n = 3, 5, and 7 neutrons relative
to a Z = 40, N = 40 core (which we had pointed out was
deformed).

In an idealized world where the shell model worked
perfectly, we would expect the spectra of the three-particle
system to be identical to that of the seven-particle system
(i.e., three holes). Hence, 97Ag and 93Tc would have the same
spectrum. If furthermore the interaction conserved seniority,
then the spectrum of states with v = 1 and v = 3 would be the
same for three particles and five particles.

We could go even further and say that, if the interaction for
two proton holes were the same as that for two neutrons, then

TABLE III. Nuclei we consider in this work.

(Z = 50, N = 50) core (Z = 40, N = 40) core

No. of holes Nucleus No. of particles Nucleus

2 98Cd 2 82Zr
3 97Ag 3 83Zr
5 95Rh 5 85Zr
7 93Tc 7 87Zr
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FIG. 2. (Color online) Experimental energies of 93Tc, 95Rh, and
97Ag.

the spectra of 93Tc, 97Ag, 83Zr, and 87Zr would all be the same.
(If the spectra of 93Tc and 83Zr are different, it does not mean
that we have a violation of charge symmetry, of course.) But
that is really pushing the envelope.

Looking at the experimental spectra of Fig. 2, we can see
that, although the agreement for three holes (97Ag) and seven
holes (93Tc) is not perfect, it is still quite good. Also the fact
that there is close agreement with 95Rh indicates that we are
not far away from the seniority-conserving limit.

Looking at Fig. 3, we see that the spectra of the Zr isotopes
are significantly different from those of 93Tc, 95Rh, and 97Ag.
This undoubtedly is due to the fact that Z = 40, N = 40 is
deformed. The J = 7/2+ ground state spins of 83Zr and 85Zr
agree with the predictions of the Q · Q interaction, but not the
delta interaction.

Note the nearly degenerate doublet structure in the ex-
perimental spectrum of 83Zr in Fig. 3, taken from the work
of Hüttmeier et al. [24]. The known doublets have angular
momenta (7/2, 9/2), (11/2, 13/2), (15/2, 17/2), . . . , up to
(47/2, 49/2), although we only show up to (31/2, 33/2).
However, for a j 3 configuration of identical particles, there
are no states with J = Jmax − 1 or J > Jmax, where Jmax =
21/2 for j = 9/2. Hence, those states must have different
configurations.

In the Hüttmeier reference [24], a theoretical analysis using
a Woods-Saxon cranking model was performed. A triaxial
shape was predicted, which was the main cause of a signature
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FIG. 3. (Color online) Experimental energies of 83Zr, 85Zr, and
87Zr.

splitting that leads to the deviation from a simple rotational
spectrum. Discussions of signature splitting for triaxial nuclei
can be found in several places, e.g., Mottelson [25], Chen
et al. [26], and Hamamoto and Mottelson [27].

VIII. CALCULATIONS WITH MATRIX ELEMENTS
FROM EXPERIMENT

The success and limitations of the “Talmi” procedure of
taking matrix elements from experiment can be discussed
in terms of Goldstone diagrams. For two nucleons, the
experimental spectrum includes not only the bare interaction,
but effectively all sorts of higher order corrections, including
hard-core correlations on the one hand and the exchange of
a Bertsch-Kuo-Brown bubble on the other hand. If we have
three-nucleon lines, we see that something is missing. This
is a diagram in which two particles interact and one gets
excited to a higher shell. Then the excited nucleon is deexcited
by the third nucleon. This looks like an effective three-body
interaction. Evidently, for the states we are considering here
with an N = 50 core, these effective three-body effects are not
sufficiently strong to destroy the simple shell-model picture,
but in general there is no a priori reason why they cannot be
large. Indeed, in 43Ca there is a significant deviation of the
excitation energy of the J = 3/2− state from the single-j-shell
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FIG. 4. (Color online) Experimental and calculated spectra of 97Ag.

prediction in which two-body matrix elements are taken from
the spectrum of 42Ca.

We can get two-body matrix elements for a Z = 50, N =
50 core from the two-proton-hole spectrum of 98Cd—we will
call it V(98Cd). If the excitation energy of the lowest state of
angular momentum J (J = 0, 2, 4, 6, and 8) is E(J ), then we
make the association 〈(ḡ2

9/2)J |V |(ḡ2
9/2)J 〉 = E(J ). And now

we can proceed to do calculations for n holes, with n > 2. Note
that, except for an overall constant, the hole-hole spectrum is
the same as the particle-particle spectrum.

In Figs. 4, 5, and 6, we show a comparison of the calculated
spectra for V(98Cd) with experiment for n = 3, 5, and 7 proton
holes corresponding to 97Ag, 95Rh, and 93Tc, respectively. The
results, although not perfect, are quite reasonable considering
the simplicity of the model.

IX. LINEAR COMBINATION OF A DELTA AND
Q · Q INTERACTION

The formula for the two-body matrix elements of the Q · Q

interaction is

〈[jj ]J |VQ·Q|[jj ]J 〉 = (−1)J V0
5

4π
〈r2〉1〈r2〉2(2j + 1)

×
(

j2
1

2
0

∣∣∣∣ j 1

2

)2 {
j j J

j j 2

}
. (5)
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FIG. 5. (Color online) Experimental and calculated spectra of 95Rh.
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FIG. 6. (Color online) Experimental and calculated spectra of 93Tc.
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FIG. 7. (Color online) Experimental and calculated spectra of
93Tc. x = 0 means pure Q · Q interaction; x = 1, pure delta interac-
tion; and x = 0.689 is our best linear combination of both interactions
for this nucleus.

The formula for the surface delta interaction of Moszkowski
and collaborators [28–30] is

〈[jj ]JT |VSD|[jj ]JT 〉 = −W0
(2j + 1)2

4(2J + 1)

×
[
{1 + (−1)T }

(
jj

1

2

1

2

∣∣∣∣J1

)2

+ {1 − (−1)J+T }
(

jj
1

2
− 1

2

∣∣∣∣ J0

)2
]

.

(6)

In a single j shell, there is no distinction between a delta
interaction and a surface delta interaction.

In Figs. 7–9, we give results for the Q · Q and delta
interactions, choosing optimum V0 and W0, respectively. Then,
we form the linear combination [xVQ·Q + (1 − x)VSD] and
show the optimum x to fit experiment. Thus, x = 0 in the
figures corresponds to pure Q · Q, while x = 1 means pure
delta. The values of V0,W0, and x are shown in Table IV.

Because 80Zr is deformed, we do not show figures for single
j shell fits to 83,85,87Zr. However, from Figs. 7–9 (proton holes
relative to Z = 50, N = 50), we can get some feeling for what
is happening. In Fig. 7 (93Tc) we focus on the pure Q · Q

(x = 0) and surface delta (x = 1) limits.
Whereas in 93Tc the J = 9/2+ is the lowest state, in 83Zr

the J = 7/2+ is the lowest. The Q · Q interaction displays
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FIG. 8. (Color online) Same as Fig. 7 for 95Rh.

this feature—E(7/2) < E(9/2)—, but the surface delta does
not. So, if we were naively to try to fit the 83Zr spectrum with
a g3

9/2 configuration, we would need much more Q · Q than
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FIG. 9. (Color online) Same as Fig. 7 for 97Ag.
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TABLE IV. Values of the optimum V0, W0, and x (see text) for
each isotope considered in the paper; F (x) gives an estimate of how
well our calculated energies fit experiment (the closer to zero, the
better); g.s. stands for the experimental ground state.

Z N x F (x) W0 V0 g.s.

43 50 0.6286 0.0830 0.4969 0.0296 9/2+

45 50 0.6887 0.1865 0.5066 0.0270 9/2+

47 50 0.4021 0.0016 0.5023 0.0272 9/2+

40 43 0.0471 0.0307 0.3037 0.0190 (7/2+)
40 45 0.0495 0.4521 0.9060 0.0271 7/2+

40 47 0.2808 0.2774 0.4624 0.0316 9/2+

we needed for the fit to 93Tc. On the other hand, some of
the near doublet structure seen in the experimental spectrum
of 83Zr (11/2, 13/2) and (15/2, 17/2) is also a property of
the delta interaction. However, introducing a lot of Q · Q

will destroy the near degeneracy of these doublets. Thus,
it is essentially impossible to fit both features of the 83Zr
spectrum—a J = 7/2+ ground state and nearly degenerate
doublets—with a combination of Q · Q and delta in a g3

9/2
configuration.

The best way to explain why N = 50 is a better closed
shell than N = 40 is to invoke the Nilsson model. Relative
to a spherical N = 40, the first unoccupied Nilsson level is
g9/2,K=1/2. As a function of prolate deformation, this level
goes rapidly down in energy. There is a crossover with the
level emanating from p1/2,K=1/2 and so it pays to transfer many
particles to the positive-parity orbit. However, for N = 50 we
have filled the g9/2 shell. As we try to turn on the deformation,
some newly occupied levels go up in energy. Furthermore,
excitations from lower shells are blocked.

X. THE E(Imax) − E(Imin) SPLITTING FOR n = 3 AND
n = 5 : 97AG VERSUS 95RH AND 83ZR VERSUS 85ZR

As mentioned in a previous section, the splitting �E =
E(Imax = 21/2+) − E(Imin = 3/2+) is the same for three
particles as it is for five particles (or three holes and five
holes) if one has a seniority-conserving interaction. How-
ever, for a pure Q · Q interaction, we have �E(n = 5) =
−�E(n = 3).

Using the V(98Cd) interaction for 97Ag and 95Rh, we find

�E(n = 3) = 0.77058 MeV,

�E(n = 5) = 0.87818 MeV.

They are both positive, an indication that the seniority-
conserving delta interaction is much more important than the
seniority-violating Q · Q interaction.

Talmi had previously concluded, from an analysis of h11/2

nuclei with a closed shell of neutrons (N = 82), that seniority
conservation held to a high degree [7,31].

Unfortunately, for the g9/2 nuclei that we are here con-
sidering (93Tc, 95Rh, 97Ag, as well as the zirconium isotopes
83Zr, 85Zr, and 87Zr), although the high spin states including
I = 21/2+ have been identified, the I = 3/2+ states have
not been found yet. So our analysis provides very strong
motivation for an experimental search for the I = 3/2+ states
in 97Ag, 95Rh, and 93Tc, as well as for the Zr isotopes.

For 83Zr and 85Zr, with a fitted interaction (despite
misgivings of using a single j model space), we find for
�E = E(Imax) − E(Imin)

�E(83Zr) = 0.48742 MeV,

�E(85Zr) = −0.59355 MeV.

They have opposite signs, which shows that for these fitted
interactions the Q · Q interaction is much more important for
this case—neutrons beyond a Z = 40, N = 40 core—than it
is for the case of proton holes relative to a Z = 50, N = 50
core.

But it should be emphasized that the I = 3/2+ state is not
part of the fit because it has not been identified experimentally.
If more levels were known in the Zr isotopes, and in particular
the low spin level I = 3/2+ (but also 5/2+ and 1/2+), then
the picture might change. We strongly urge that experimental
work be done on all the nuclei considered here in order to
locate the missing states, especially I = 3/2+

1 and also 5/2+
1 .
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