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The YN results are presented from the extended soft-core (ESC) interactions. They consist of local and nonlocal
potentials because of (i) one-boson exchanges (OBE), which are the members of nonets of pseudoscalar, vector,
scalar, and axial mesons; (ii) diffractive exchanges; (iii) two-pseudoscalar exchange; and (iv) meson-pair exchange
(MPE). Both the OBE and pair vertices are regulated by Gaussian form factors producing potentials with a soft
behavior near the origin. The assignment of the cutoff masses for the baryon-baryon-meson (BBM) vertices is
dependent on the SU(3) classification of the exchanged mesons for OBE and a similar scheme for MPE. The
particular version of the ESC model, called ESC04 [T. A. Rijken, Phys. Rev. C 73, 044007 (2006)], describes
nucleon-nucleon (NN) and hyperon-nucleon (YN ) interactions in a unified way using broken SU(3) symmetry.
Novel ingredients are the inclusion of (i) the axial-vector meson potentials and (ii) a zero in the scalar- and
axial-vector meson form factors. These innovations made it possible for the first time to keep the parameters
of the model close to the predictions of the 3P0 quark-antiquark creation model. This is also the case for the
F/(F + D) ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound
states. Broken SU(3) symmetry serves to connect the NN and the YN channels, which leaves after fitting NN
only a few free parameters for the determination of the YN interactions. In particular, the meson-baryon coupling
constants are calculated via SU(3) using the coupling constants of the NN analysis as input. Here, as a novel
feature, medium-strong flavor-symmetry breaking (FSB) of the coupling constants was allowed, using the 3P0

model with a Gell-Mann-Okubo hypercharge breaking for the BBM coupling. Very good fits for ESC model
with and without FSB were obtained. The charge-symmetry breaking in the �p and �n channels, which is an
SU(2) isospin breaking, is included in the OBE, TME, and MPE potentials. Simultaneous fits to the NN- and the
YN-scattering data are described, using different options for the ESC model. For the selected 4233 NN data with
energies 0 � Tlab � 350 MeV, a χ 2/Ndata = 1.22 was typically reached. For the usual set of 35 YN data and 3 �+p

cross sections from a recent KEK experiment E289 χ 2/YNdata ≈ 0.63 was obtained. In particular, we were able
to fit the precise experimental datum rR = 0.468 ± 0.010 for the inelastic capture ratio at rest rather well. The
four versions (a,b,c, and d) of ESC04 presented in this article, give different results for hypernuclei. The reported
G-matrix calculations are performed for YN (�N,�N, �N ) pairs in nuclear matter. The obtained well depths
(U�, U�, U�) reveal distinct features of ESC04a–d. The �� interactions are demonstrated to be consistent with
the observed data of 6

��He. The possible three-body effects are investigated by considering phenomenologically
the changes of the vector-meson masses.
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I. INTRODUCTION

This is the second in a series of articles where we present
the recent results obtained with the extended soft-core model,
henceforth referred to as ESC04, model for nucleon-nucleon
(NN), hyperon-nucleon (YN), and hyperon-hyperon (YY). This
article treats the NN and YN (S = −1) systems. In Ref. [1],
in the following referred to as I, many formal aspects have
been described or discussed rather extensively. Therefore, in
this article we will concentrate on items that are in particularly
important in YN and that were not treated in [1]. In part III [2]
the S = −2 channels are described.

In Refs. [3] and [4] it has been shown the a soft-core
(SC) one-boson-exchange (OBE) model, based on Regge-
pole theory [5], provides a satisfactory description of many
aspects of the nucleon-nucleon (NN) and hyperon-nucleon
(YN) channels.

Because for NN the ESC model has provided a big
step forward in the detailed description, one may expect
that a simultaneous and unified treatment of the NN and
YN channels, using broken SU(3), will give a very realistic
model for the baryon-baryon interactions. [In this article by
SU(3) always refers to SU(3) flavor.]

In all previous work of the Nijmegen group, the exploration
of (broken) SU(3) symmetry connects the NN and the
YN channels, leaving after fitting NN only a few free parameters
to be determined in the YN interactions. The latter is important
in view of the scarce experimental YN data. In particular,
the baryon-baryon-meson (BBM) coupling constants are
calculated via SU(3) using the coupling constants of the NN
analysis as input. The first versions of the ESC model, referred
to as ESC00 [6,7], worked along the same procedures. The
aim of the ESC00 work was to demonstrate the ability of
the ESC model to provide a good description of the NN and
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YN data, i.e., a low χ2. Therefore, we left much freedom to the
parameters. However, in the ESC04 version presented here,
we focus on the improvement of the physics of the model
by restricting the coupling constants in the BBM vertices
by the predictions of the quark model (QM) in the form of
the 3P0 antiquark-quark pair creation model (QPC) [8]. Also,
all α = F/(F + D) ratios are taken close to the QPC model
predictions for the BBM and the BB pair vertices. An exception
is made here for the pseudoscalar αPV and the αm

V ratios. The
first because it is interesting to see how close or different it
becomes as compared to the same ratio in weak interactions,
where αPV = 0.355. The second, because it proved to be an
important regulator for the S-wave spin dependence of the �N

interaction [4].
In Ref. [3] the magnetic ratio αm

V for the vector-mesons
was fixed to its SU(6) value, but the spin-spin interaction
needed a correction. This because the S-wave spin-spin
interaction in the �N channels became later well known
from hypernuclear systems [9–11]. In Ref. [4], to improve
the spin-spin interaction, we left αm

V free and made fits for
different values of this parameter. It turned out that in this way
we indeed can construct soft-core YN models that encompass a
range of scattering length’s in the 1S0 and the 3S1 �N channels.
From the NSC97a-f models the sensitivity with respect to αm

V

is evident.
SU(3) symmetry and the QPC-model give strong con-

straints on the coupling parameters. To keep some more
flexibility in distinguishing the NN and the YN(S = −1)
channels, similarly to the NSC97 models [4], we allow for
medium strong breaking of the coupling constants, employing
again the 3P0 model with a Gell-Mann-Okubo hypercharge
breaking for the BBM coupling. This leads to a universal
scheme for SU(3) breaking of the coupling constants for all
meson nonets, in terms of a single extra parameter.

To summarize the different sources of SU(3) breaking,
we include (i) using the physical masses of the mesons
and baryons in the potentials and Schrödinger equation,
(ii) allowing for meson mixing within a nonet (η − η′, ω −
φ, ε − f ′

0), (iii) including charge symmetry breaking CSB
[12] because of �� mixing, which, for example, introduces
a one-pion-exchange (OPE) potential in the �N channel,
(iv) taking into account the Coulomb interaction.

The electromagnetic SU(2) breaking [12], called CSB, in
the �p and �n channels is included, not only for the BBM
but also for the BB pair couplings.

The BBM vertices are described by coupling constants and
form factors, which correspond to the Regge residues at high
energies [5]. The form factors are taken to be of the Gaussian
type, like the residue functions in many Regge-pole models for
high energy scattering. Note that also in (nonrelativistic) quark
models (QMs) a Gaussian behavior of the form factors is most
natural. These form factors evidently guarantee a soft behavior
of the potentials in configuration space at small distances.

In Ref. [4] the assignment of the cutoff parameters in
the form factors was made for the individual BBM vertices,
constrained by broken SU(3) symmetry. This in distinction to
the first attempt to construct soft-core interaction [3], where
cutoffs were assigned per baryon-baryon SU(3)-irrep. The

latter scheme we consider now not natural and we use here
the same scheme as in Ref. [4]. Moreover, this way we
obtain immediately full predictive power for the S = −2,
etc., baryon-baryon channels, e.g., ��,�N channels that
involve the singlet {1}-irrep that does not occur in the NN and
YN channels.

The dynamics of the ESC04 model has been described and
discussed in part I [1], and it is sufficient to refer to this here
for all types of exchanges that are included. Nevertheless,
some more remarks on the scalar mesons are appropriate. An
extensive discussion of the situation with respect to the scalar
mesons is given in Ref. [4]. The question whether the J PC =
0++ mesons are of the Dalitz type (QQ̄) or of the Jaffe type
(Q2Q̄2) is not yet decided. In the coupling to the baryons, we
assume here that the basic process is described by the QPC
model [8]. It has been shown in part I that this seems rather
successful, justifying this assumption.

With a combined treatment of the NN and YN channels
we aim at a high-quality description of the baryon-baryon
interactions. By high quality we understand here a YN fit with
low χ2 such that, while keeping the constraints forced on
the potentials by the NN fit, the free parameters with a clear
physical significance, like, e.g., the F/(F + D) ratios αPV and
αm

V assume realistic values.
Such a combined study of all baryon-baryon interactions,

and especially NN and YN, is desirable if one wants:

(i) To study the assumption of broken SU(3) symmetry. For
example we want to investigate the properties of the scalar
mesons [ε(760), f0(975), a0(980), κ(1000)]. We note that
especially the status of the scalar nonet is at present not
established yet.

(ii) To determine F/(F + D) ratios.
(iii) To extract, in spite of the scarce experimental YN data,

information about scattering lengths, effective ranges, the
existence of resonances, etc.

(iv) To provide realistic baryon-baryon potentials, which
can be applied in few-body computations, nuclear and
hyperonic matter studies.

(v) To extend the theoretical description to the �� and
�N channels, where experiments may be realized in the
foreseeable future.

In the construction of the ESC models there are two important
options:

(i) First, there is the choice of PV or PS coupling for the
pseudoscalar mesons, or some mixture, regulated by the
aPV parameter, of these. This choice affects some 1/M2

terms in the PS-PS exchange potentials.
(ii) Second, medium-strong symmetry breaking of the cou-

plings, regulated by a �FSB parameter.

We have accordingly produced four different solutions,
fitting simultaneously the NN ⊕ YN data, which are
referred to as follows: ESC04a(�FSB �= 0, aPV = 0.5),
ESC04b(�FSB �= 0, aPV = 1.0), ESC04c(�FSB = 0, aPV =
0.5), ESC04d(�FSB = 0, aPV = 1.0). Here, aPV = 1.0 and
aPV = 0.0 means pure pseudovector respectively purely pseu-
doscalar coupling. It appears that there are notable differences

044008-2



EXTENDED-SOFT-CORE BARYON- . . . . II. . . . PHYSICAL REVIEW C 73, 044008 (2006)

between these models, in particularly their properties
for matter, e.g., well-depths U�,U� , and U�, are rather
distinct.

We will display and discuss in this article only the results
for the ESC04a model in detail. With the exception of the
G-matrix results, we will be very brief on ESC04b–d and will
compare these models only very globally. So, in the following,
by ESC04 is meant ESC04a, unless specified otherwise.

As in all Nijmegen models, the Coulomb interaction
is included exactly, for which we solve the multichannel
Schrödinger equation on the physical particle basis. The
nuclear potentials are calculated on the isospin basis to limit
the number of different form factors. This means that we
include only the so-called medium-strong SU(3) breaking in
the potentials.

The contents of this article are as follows. In Sec. II we
describe the S = −1 YN channels on the isospin and particle
basis, and the use of the multichannel Schrödinger equation
is mentioned. The potentials in momentum and configuration
space are defined by referring to the description given in part I.
The BBM couplings are discussed both in the 3 × 3 matrix and
the Cartesian octet representation. The SU(3) couplings of the
OBE and TME graphs are given in a form suitable for a digital
evaluation.

In Sec. III the meson-pair interaction Hamiltonians are
given in the context of SU(3). Expressions for the MPE graphs
are given, again in an immediately programmable form. In
Sec. IV the medium-strong breaking of SU(3) symmetry of the
coupling constants is described. The QPC model is employed
for the development of a universal scheme for this breaking.
Here also the detailed prescription for the handling of the
cutoff parameters is given, in particularly for the cases of
meson mixing.

In Sec. V the simultaneous NN ⊕ YN fitting procedure is
reviewed. In Sec. VI the results for the coupling constants
and F/(F + D) ratios for OBE and MPE are given. They
are discussed and compared with the predictions of the QPC
model. Here, also the values of the BBM couplings are
displayed for pseudoscalar, vector, scalar, and axial-vector
mesons. In Sec. VII the NN results from the combined
NN ⊕ YN fit, model ESC04a, henceforth called ESC04, are
discussed and compared with the results of part I, referred to
ESC04(NN). In Sec. VIII we discuss the fit to the YN-scattering

data from the combined NN ⊕ YN fit. In Sec. IX we compare
very briefly the models ESC04a–d.

In Sec. X, the hypernuclear properties of ESC04a–d
are studied through the G-matrix calculations for YN
(�N,�N,�N ) and their partial-wave contributions. Here,
the implications of possible three-body effects for the nuclear
saturation and baryon well-depths are discussed. Also, the ��

interactions in ESC04a–d are demonstrated to be consistent
with the observed data of 6

��He. In Sec. XI we finish by a final
discussion and draw some conclusions.

II. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Channels and potentials

In this article we consider the hyperon-nucleon reactions
with S = −1

Y (pa, sa) + N (pb, sb) → Y (p′
a, s

′
a) + N (p′

b, s
′
b). (1)

Like in Refs. [3,4] we also refer to Y and Y ′ as particles 1 and
3 and to N and N ′ as particles 2 and 4. For the kinematics
and the definition of the amplitudes, we refer to part I [1] of
this series. Similar material can be found in Ref. [3]. Also, in
part I the derivation of the Lippmann-Schwinger equation in
the context of the relativistic two-body equation is described.

On the physical particle basis, there are four charge
channels:

q = +2 : �+p → �+p,

q = +1 : (�p,�+n,�0p) → (�p,�+n,�0p),
(2)

q = 0 : (�n,�0n,�−p) → (�n,�0n,�−p),

q = −1 : �−n → �−n.

Like in Refs. [3,4], the potentials are calculated on an isospin
basis. For S = −1 hyperon-nucleon systems there are only
two isospin channels: (i) I = 1

2 : (�N,�N → �N,�N ) and
(ii) I = 3

2 : �N → �N .
Obviously, the potential on the particle basis for the q = 2

and q = −1 channels are given by the I = 3
2 �N potential

on the isospin basis. For q = 1 and q = 0, the potentials are
related to the potentials on the isospin basis by an isospin
rotation. Using a notation where we only list the hyperons
[V��+ = (�p|V |�+n), etc.], we find for q = 1


 V�� V��+ V��0

V�+� V�+�+ V�+�0

V�0� V�0�+ V�0�0


 =




V��

√
2
3V�� −

√
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(
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 , (3)

whereas for q = 0 we find


 V�� V��0 V��−

V�0� V�0�0 V�0�−

V�−� V�−�0 V�−�−


 =
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√
1
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√
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(
1
2

) + 1
3V��

(
3
2

)


 . (4)
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For the kinematics of the reactions and the various thresh-
olds; see Ref. [4]. In this work we do not solve the Lippmann-
Schwinger equation, but the multichannel Schrödinger equa-
tion in configuration space, completely analogous to Ref. [3].
The multichannel Schrödinger equation for the configuration-
space potential is derived from the Lippmann-Schwinger
equation through the standard Fourier transform, and the
equation for the radial wave function is found to be of the
form [3]

u′′
l,j + (

p2
i δi,j − Ai,j

)
ul,j − Bi,ju

′
l,j = 0, (5)

where Ai,j contains the potential, nonlocal contributions,
and the centrifugal barrier, whereas Bi,j is present only
when nonlocal contributions are included. The solution in the
presence of open and closed channels is given, for example,
in Ref. [13]. The inclusion of the Coulomb interaction in the
configuration-space equation is well known and included in
the evaluation of the scattering matrix.

The momentum space and configuration space potentials
for the ESC04 model have been described in part I [1]
for baryon-baryon in general. Therefore, they apply also to
hyperon-nucleon and we can refer for that part of the potential
to part I. Also in the ESC model, the potentials are of such a
form that they are exactly equivalent in both momentum space
and configuration space. The treatment of the mass differences
among the baryons are handled exactly similar as is done in
Refs. [3,4]. Also, exchange potentials related to strange meson
exchange K,K∗ etc., can be found in these references.

The baryon mass differences in the intermediate states for
TME and MPE potentials has been neglected for YN scattering.
This, although possible in principle, becomes rather laborious
and is not expected to change the characteristics of the baryon-
baryon potentials much.

B. BBM couplings in SU(3) and matrix representations

In previous work of the Nijmegen group, e.g., Refs. [3]
and [4], the treatment of SU(3) has been given in detail for the
BBM interaction Lagrangians and the coupling coefficients of
the OBE graphs. However, for the ESC models we also need
the coupling coefficients for the TME and the MPE graphs.
Because there are many more TME and MPE graphs than
OBE graphs, a computerized computation is desirable. For
that purpose we found the so-called Cartesian octet represen-
tation quite useful. Therefore, we give an exposition of this
representation, its connection with the matrix representation
used in our previous work, and the formulation of the coupling
coefficients used in the automatic computation.

In the matrix representation, the eight JP = 1
2

+
baryons

are described by a traceless matrix, see, e.g., Ref. [14],

B =




�0

√
2

+ �√
6

�+ p

�− − �0

√
2

+ �√
6

n

−�− �0 −2�√
6




. (6)

Similarly, the various meson nonets (we take the pseudoscalar
mesons with JP = 0+ as an example) are represented by

P = P{1} + P{8}, (7)

where the singlet matrix P{1} has elements η0/
√

3 on the
diagonal and the octet matrix P{8} is given by

P{8} =




π0

√
2

+ η8√
6

π+ K+

π− − π0

√
2

+ η8√
6

K0

K− K0 −2η8√
6




. (8)

Exploiting the SU(3)-invariant combinations, see, e.g.,
Refs. [4,14], [BBP]F , [BBP]D , and [BBP]S , the SU(3)-
invariant BBP-interaction Lagrangian can be written as [14]

LI = −g8

√
2{α[BBP]F + (1 − α)[BBP]D}

−g1

√
1
3 [BBP]S, (9)

where g8 and g1 are the singlet and octet couplings, α is
known as the F/(F + D) ratio, and the square-root factors
are introduced for later convenience.

The convention used for the isospin doublets is

N =
(

p

n

)
, � =

(
�0

�−

)
,

K =
(

K+

K0

)
, Kc =

(
K0

−K−

)
, (10)

and for the isovectors in the SU(2)I tensor notation (a, b =
1, 2)

πa
b =

(
π0√

2
π+

π− − π0√
2

)
, �a

b =
(

�0√
2

�+

�− − �0√
2

)
(11)

where we have chosen the phases of the isovector fields
such [14] that

� · π =
3∑

a,b=1

�a
bπb

a = �+π− + �0π0 + �−π+. (12)

The expression of the interaction Lagrangian (9) in terms of the
isospin singlets (I = 0), doublets (I = 1/2), and triplets (I =
1), is given, e.g., in Ref. [4]. Also, the BBM couplings of the
octet members are given in terms of g8 and α = F/(F + D).
See Ref. [4], Eqs. (2.10)–(2.14).

C. Cartesian octet representation

The annihilation operators corresponding to the baryon
and pseudoscalar SU(3) octet representation {8} are given
in Table I. Here we used the Cartesian octet fields. For
baryons these are denoted by ψi(i = 1, 2, . . . , 8), and for
the pseudoscalar mesons by φi(i = 1, 2, . . . , 8) [14–16]. The
particle states are created by these operators are given in
Table II [14].
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TABLE I. Octet representation baryons and
mesons.

�+ = 1√
2
(ψ1 − iψ2) π+ = 1√

2
(φ1 − iφ2)

�− = 1√
2
(ψ1 + iψ2) π− = 1√

2
(φ1 + iφ2)

�0 = ψ3 π 0 = φ3

p = 1√
2
(ψ4 − iψ5) K+ = 1√

2
(φ4 − iφ5)

n = 1√
2
(ψ6 − iψ7) K0 = 1√

2
(φ6 − iφ7)

�− = 1√
2
(ψ4 + iψ5) K− = 1√

2
(φ4 + iφ5)

�0 = 1√
2
(ψ6 + iψ7) K̄0 = 1√

2
(φ6 + iφ7)

� = ψ8 η = φ8

Similar expressions hold for the vector, axial-vector, and
scalar mesons. The connection between the matrix represen-
tation (6) and the Cartesian octet representation is

Ba
b = 1√

2

8∑
i=1

(λi)abψi, ψi = 1√
2

3∑
a,b=1

(λi)abB
a
b , (13)

where λi, i = 1, 8 are the Gell-Mann matrices [14], and where
the indices (a, b = 1, 2, 3). The same expression holds for P a

b

of (8) in terms of the φis. The SU(3) invariants in the Cartesian
octet representation read

[BBP]F =
8∑

i,j,k=1

fijk[ψiψj ]φk, (14a)

[BBP]D =
8∑

i,j,k=1

dijk[ψiψj ]φk, (14b)

[BBP]S =
8∑

i,j=1

δji[ψiψj ]φ9, (14c)

where fijk are the totally antisymmetric SU(3) structure
constants, dijk are the totally symmetric constants, and φ9

denotes the unitary singlet. They are given by the following
commutators and anticommutators

[λi, λj ] = 2ifijkλk, {λi, λj } = 4
3δij + 2dijkλk. (15)

The baryon-baryon matrix elements can now be computed
using the Cartesian octet states

〈B3, B4|M|B1, B2〉 = C∗
3jC

∗
4nM(j, n; i, m)C1iC2m, (16)

where C coefficients relate the particle states to the Cartesian
states, see Table II, and M(j, n; i, m) depends on the structure

TABLE II. Octet particle states.

|π+〉 = −π+†|0〉 |�+〉 = −�+†|0〉
|π−〉 = π−†|0〉 |�+〉 = �−†|0〉
|π 0〉 = π 0†|0〉 |�0〉 = �0†|0〉
|K+〉 = K+†|0〉 |p〉 = p†|0〉
|K0〉 = K0†|0〉 |n〉 = n†|0〉
|K−〉 = K−†|0〉 |�−〉 = �−†|0〉
|K̄0〉 = K̄0†|0〉 |�0〉 = �0†|0〉
|η8〉 = η

†
8|0〉 |�〉 = �†|0〉

of the graph. Below, we work out the M operator for OBE,
TME, and MPE graphs in the Cartesian octet representation.
Then, the physical two-baryon matrix elements in (16) can be
obtained easily.

D. Computations for OBE and TME SU(3) factors

1. One-boson exchange

The SU(3) matrix element for the OBE graph in Fig. 1 is
given by

Mobe(j, n; i, m) =
′∑
p

H
(a)
1 (j, i, p)H (a)

2 (n,m, p), (17)

where a = P, V,A, S and

Ha(j, i, p) = [
2g

(a)
8 {iαfjip + (1 − α)djip} + g

(a)
1 δjiδp9

]
,

(18)

The summation over p determines which mesons contribute
to (18), and the prime indicates that one may restrict this
summation to pick out a particular meson. This is in general
necessary because within an SU(3) nonet the mesons have
different masses, and we need their couplings separately for a
proper calculation of the potentials.

To illustrate this method of computation we consider
π exchange in �N → �N . We have

〈�+n|Mπ |�+n〉 = 1

4

8∑
i,j,m,n=1

3∑
p=1

〈ψ1 − iψ2|ψj 〉 ·

×〈ψ6 − iψ7|ψn〉〈ψjψn|Mπ |ψiψm〉 ·
×〈ψi |ψ1 − iψ2〉〈ψm|ψ6 − iψ7〉

= 1

4

8∑
i,j,m,n=1

3∑
p=1

(δ1j + iδ2j )(δ6n + iδ7n) ·

×(δ1i − iδ2i)(δ6n − iδ7n)〈ψjψn|Mπ |ψiψm〉

= 1

4

2∑
i,j=1

7∑
m,n=6

3∑
p=1

Z(j, i)Z(n − j,m − i) ·

×{
g

(P )
8 [−iαPVfjip + (1 − αPV)djip] + g

(P )
1 δjiδp8

} ·
×{

g
(P )
8 [−iαPVfnmp + (1 − αPV)dnmp] + g

(P )
1 δnmδp8

}
,

(19)

i

m

j

n

p

FIG. 1. Octet representation indices OBE graphs. The solid lines
denote baryons with labels i, m, j, n. The dashed line with label
p refers to the bosons: pseudoscalar, vector, axial-vector, or scalar
mesons.
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i

m

j

n

p q

r

s

FIG. 2. Octet representation indices TME parallel graphs. The
solid lines denote baryons with labels i, m, j, n, r, s. The dashed
lines with labels p, q refer to the pseudoscalar mesons.

where the 2 × 2 matrix Z is defined as

Z =
(

1 −i

i 1

)
. (20)

2. Two-meson exchange

The SU(3) matrix elements for the parallel (// ) and crossed
(X) TME-graphs in Figs. 2 and 3 are given by

M
(//)
tme (j, n; i, m) =

′∑
p,q,r,s

H2(j, r, q)H1(r, i, p)

×H2(n, s, q)H1(s,m, p) (21)

M
(X)
tme(j, n; i, m) =

′∑
p,q,r,s

H2(j, r, q)H1(r, i, p)

×H1(n, s, q)H2(s,m, p) (22)

Again, like in the OBE case, the numerical values of the SU(3)
matrix elements for TME can be computed easily making a
computer program.

III. MPE INTERACTIONS AND SU(3)

A. Pair couplings and SU(3) symmetry

Below, σ, a0, A1, . . . are shorthand for, respectively, the
nucleon densities ψ̄ψ, ψ̄τψ, ψ̄γ5γµτψ, . . . .

i

m

j

n

p q

r

s

FIG. 3. Octet representation indices TME crossed graphs. The
solid lines denote baryons with labels i, m, j, n, r, s. The dashed
lines with labels p and q refer to the pseudoscalar mesons.

The SU(3) octet and singlet mesons, denoted by the
subscripts 8 and 1, respectively, are in terms of the physical
ones defined as follows:

1. Pseudoscalar mesons

η1 = cos θPVη′ − sin θPVη

η8 = sin θPVη′ + cos θPVη

Here, η′ and η are the physical pseudoscalar mesons η(957)
respectively η(548).

2. Vector mesons

φ1 = cos θV ω − sin θV φ

φ8 = sin θV ω + cos θV φ

Here, φ and ω are the physical vector mesons φ(1019)
respectively ω(783).

Then, one has the following SU(3)-invariant pair-
interaction Hamiltonians:

(i) SU(3) singlet couplings Sα
β = δα

βσ/
√

3:

HS1PP = gS1PP√
3

{π · π + 2K†K + η8η8} · σ

(ii) SU(3) octet symmetric couplings I, Sα
β = (S8)αβ ⇒

(1/4)Tr{S[P,P ]+}:

HS8PP = gS8PP√
6

{
(a0 · π )η8 +

√
3

2
a0 · (K†τK)

+
√

3

2
{(K†

0τK) · π + h.c.}− 1

2
{(K†

0K)η8 + h.c.}

+1

2
f0(π · π − K†K − η8η8)

}
(iii) SU(3) octet symmetric couplings II, Sα

β = (B8)αβ ⇒
(1/4)Tr{Bµ[Vµ, P ]+}:

HB8V P = gB8V P√
6

{
1

2
[(Bµ

1 · ρµ)η8 + (Bµ

1 · πµ)φ8]

+
√

3

4
[B1 · (K∗†τK) + h.c.]

+
√

3

4
[(K†

1τK∗) · π + (K†
1τK) · ρ + h.c.]

− 1

4
[(K†

1 · K∗)η8 + (K†
1 · K)φ8 + h.c.]

+ 1

2
H 0

[
ρ · π − 1

2
(K∗† · K + h.c.) − φ8η8

] }
(iv) SU(3) octet a-symmetric couplings I, Aα

β = (V8)αβ ⇒
(−i/

√
2)Tr{V µ[P, ∂µP ]−}:

HV8PP = gA8PP

{
1

2
ρµ · π×

↔
∂µπ + i

2
ρµ · (K†τ

↔
∂µK)

+ i

2

[
K∗†

µ τ (K
↔
∂µπ ) − h.c.

]
+ i

√
3

2

× [
K∗†

µ · (K·
↔
∂µη8) − h.c.

] + i

2

√
3φµ(K†

↔
∂µK)

}
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i

m

j

n

p q

s

FIG. 4. Octet representation indices MPE one-pair graphs. The
solid lines denote baryons with labels i, m, j, n, s. The dashed lines
with labels p and q refer to the pseudoscalar, etc., mesons.

(v) SU(3) octet asymmetric couplings II, Aα
β = (A8)αβ ⇒

(−i/
√

2)Tr{Aµ[P, Vµ]−}:

HA8V P = gA8V P

{
A1 · π × ρ

+ i

2
A1 · [(K†τK∗) − (K∗†τK)]

− i

2
([(K†τKA) · ρ + (K†

AτK∗) · π] − h.c.)

−i

√
3

2
([(K† · KA)φ8 + (K†

A · K∗)η8] − h.c.)

+ i

2

√
3f1[K† · K∗ − K∗† · K]

}
The relation with the pair couplings of Ref. [17] and part I is
gS1PP /

√
3 = g(ππ)0/mπ, gA8V P = g(πρ)1/mπ , etc.

B. Computations of MPE SU(3) factors

The SU(3) matrix elements for the graphs with meson-pair
vertices, the so-called MPE graphs (Figs. 4 and 5) are, using
the Cartesian octet representation in Sec. II C, given by

M(1−pair)(j, n; i, m) =
′∑

p,q,r,s

Hpair(j, i, s)O(q, p, s)

×H2(m, r, q)H1(r,m, p) (23)

i

m

j

n

p q

FIG. 5. Octet representation indices MPE two-pair graphs. The
solid lines denote baryons with labels i, m, j, n. The dashed lines
with labels p and q refer to the pseudoscalar, etc., mesons.

M(2−pair)(j, n; i, m) =
′∑

p,q,r,s=1

Hpair(j, i, s)O(q, p, s)

×O(q, p, r)Hpair(n,m, p), (24)

Again, like in the OBE case, the numerical values of the SU(3)
matrix elements for MPE can be computed straightforwardly
by use of a computer program.

IV. BROKEN SU(3) COUPLINGS AND FORM FACTORS

A. Broken SU(3) BBM couplings

In our models, breaking of the SU(3) symmetry is in-
troduced in several places. First of all, we use the physical
masses for the baryons and mesons. Second, we allow for the
fact that the � and �0 have the same quark content, and so
there is an appreciable mixing between the isospin-pure �

and �0 states [12]. Although exact SU(2) ⊂ SU(3) symmetry
requires that f��π0 = 0,�-�0 mixing and the interaction
�0 → � + π0 result in a nonzero coupling constant for the
physical �-hyperon, derived by Dalitz and von Hippel [12].
This �-�0 mixing leads also to a nonzero coupling of the �

to the other I = 1 mesons: ρ(760), a0(980), a1(1270), as well
as to the I = 1 pairs. For the details of these OBE couplings
see, e.g., Ref. [4], Eqs. (15)–(17). The corresponding so-called
CSB potentials are included in the ESC model for OBE, TME,
and MPE.

In paper I of this series we have shown that the NNM
coupling constants are described pretty well by the 3P0

mechanism [8,18,19]. In this article we use the predictions
of the 3P0 model for the F/(F + D) ratios as well. Therefore,
it is most natural to use for the description of a possible
flavor symmetry breaking of the coupling constants the 3P0

mechanism as well, like in Ref. [4]. In Ref. [4] it is argued that
a symmetric treatment of the “moving” quarks and the pair
quarks in the 3P0-coupling process is appropriate, because
this leads to a covariant vertex. Therefore, in Ref. [4] the 3P0

Hamiltonian for the BBM couplings is taken as follows

HI =
∫

d3x

∫
d3yF (x − y) ·

×[q̄(x)Oq̄qq(x)](1) ⊗ [q̄(y)Oq̄qq(y)](2), (25)

where the quark-field operators are vectors in flavor space, with
components qi = (u, d, s) and q̄i = (ū, d̄, s̄). (In the following
we refer to the nonstrange quarks u and d as n quarks.) It is
understood in Eq. (25) that the first factor creates or annihilates
a quark pair, whereas the second factor “moves” a quark from
the baryon into the meson or vice versa. O is a matrix in quark-
flavor space, which, supposing no quark mixing, is diagonal.
However, because it will in general break SU(3) and SU(2)
symmetry by using the form

(Oq̄q)i,j =




γu 0 0

0 γd 0

0 0 γs


, (26)

where the pair-creation constants γu, γd , and γs in principle
could be unequal. The CSB described above is on the quark-
level because of γu �= γd . For a more detailed description of
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some properties of the Hamiltonian in (25) and (Oq̄q)i,j we
refer to Ref. [4].

Here, we assume that there is, also flavor-symmetry break-
ing (FSB) of the medium-strong kind, i.e., γn = γu = γd �= γs .
We introduce this medium strong SU(3) breaking according
to the 3P0 model by a modification of the ss̄ coupling, using
the ratio �FSB = γs/γn − 1. For �FSB = 0 there is no SU(3)
breaking, whereas for �FSB �= 0.

The I = 1 meson couplings for NN are determined in the
process of NN fitting. This fixes γn. In the coupling of the
I = 1/2 mesons, K,K∗, κ , only one ss̄ operator is active and
the SU(3) breaking of the coupling is given by

�g�NK = �FSBĝ�NK, (27)

and completely similar expressions for �g�NK , �g��K , and
�g��K . Here, ĝ�NK , etc., are calculated as usual in terms
of gNNπ and the SU(3) scheme with αPV. Similar formulas
we used for the SU(3) breaking in the case of the vector,
axial-vector, and scalar mesons.

In the case of the I = 0-mesons two ss̄ operators are active
in the baryon-baryon coupling. Now, the I = 0-mesons have a
nn̄ and a ss̄ component. In our scheme only the coupling of the
ss̄ is affected by the SU(3) breaking. Therefore, it is natural
to transform first to the so-called ideal qq̄ basis, applying the
SU(3) breaking, and transform back to the physical basis. This
scheme is as follows:

(i) The I = 0 |nn̄〉 = |uū + dd̄〉/√2 and the −|ss̄〉 states
are in SU(3) linear combinations of the {1} and {8} octet
states. Likewise, the coupling of the nn̄ and ss̄ quark pairs
to baryons are the same linear combinations, i.e.,

ĝnn̄ = cos θI ĝ1 + sin θI ĝ8,
(28)

ĝss̄ = − sin θI ĝ1 + cos θI ĝ8,

where cos θI = √
2/3 and sin θI = √

1/3.
(ii) Because for the ss̄ coupling process two strange quark

pairs are involved, and none in the nn̄ coupling, the FSB
is given on the level of the quark-pair coupling by:

gnn̄ → ĝnn̄, gss̄ → (1 + �FSB)2 ĝss̄ . (29)

(iii) The translation of this breaking to the level of the {1} and
{8} octet couplings is the inverse transformation of (29),
and from there to the physical mesons. For example, in
the case of the vector mesons we have

gω = cos �θV gV
1 + sin �θV gV

8 ,
(30)

gφ = − sin �θV gV
1 + cos �θV gV

8 ,

where �θV = θV − θI . The similar procedure is used for
the pseudoscalar, scalar, and axial-vector mesons.

This breaking applies to the NNM, YNM, and YYM cou-
plings, containing the free parameter �PS for the pseudoscalar
mesons and one parameter �V , which is used for the vector,
axial-vector, and scalar mesons.

We note that this breaking somewhat differs from that used
in NSC97 [4], which was based on an SU(6)W scheme. The
problem with the latter, from our viewpoint is, that the states
of, for example, the vector nonet are a mixture of W = 0 and

W = 1, making the implementation of SU(3) breaking less
straightforward as in the scheme described above.

The implementation of this scheme in practice is done as
follows. We start, for example, in the case of the vector mesons
for the g couplings, with the parameter set (ĝρ, ĝω, θV , αV )
and compute all couplings in the usual SU(3) scheme, giving
ĝNNρ, ĝ��ρ , etc. This defines the singlet {1} couplings

ĝ1 = [ĝω − sin θV ĝ8] / cos θV

where the octet {8} coupling for nucleons is given by ĝ8 =
(4αV − 1)ĝNNρ/

√
3 and similarly for �,�, and �. Then, we

compute ĝnn̄ and ĝss̄ using (29). Subsequently we compute the
symmetry breaking by the transformation, etc., as described
above, and finally we compute the coupling constants gω, gφ ,
etc.

We finish this discussion by noticing that for the I = 1
mesons π, ρ, a0, a1 for all baryon couplings g = ĝ, because
then only n quarks are “active.”

B. Form factors

Also in this work, like in the NSC97 models [4], the form
factors depend on the SU(3) assignment of the mesons, In
principle, we introduce form-factor masses �8 and �1 for the
{8} and {1} members of each meson nonet, respectively. In the
application to YN and YY , we allow for SU(3) breaking, by
using different cutoffs for the strange mesons K,K∗, and κ .
Moreover, for the I = 0-mesons we assign the cutoffs as if
there were no meson mixing. For example, we assign �1 for
η′, ω, ε, and �8 for η, φ, S∗, etc. For the axial mesons we use
a single cutoff �A.

V. ESC04 MODEL: FITTING NN ⊕ YN DATA

Like in the NN fit, described in part I, also in the
simultaneous χ2 fit of the NN and YN data, it appeared again
that the OBE couplings could be constraint successfully by
the “naive” predictions of the QPC model [18]. Although these
predictions, see part I, Sec. IV, are “bare” ones, we tried to keep
during the searches many OBE couplings rather closely in the
neighborhood of the predicted values. Also, it appeared that
we could either fix the F/(F + D) ratios to those as suggested
by the QPC model, or apply the same restraining strategy as
for the OBE couplings.

In the simultaneous χ2 fit of the NN and YN data a single
set of parameters was used. Of course, it is to be expected that
the accurate and very numerous NN data essentially fix most
of the parameters. Only some of the parameters, for example,
certain F/(F + D) ratios, are influenced by the YN data.

A. Parameters and nucleon-nucleon fit

For the cutoff masses � we used as free parameters
�P

8 ,�V
8 ,�V

1 , and �A. The I = 0 cutoff masses for the
pseudoscalar and scalar mesons were fixed to �P

1 = 900 MeV
and �S

1 ≈ 1100 MeV.
The treatment of the broad mesons ρ and ε is similar to

that in the OBE models [3,20]. For the ρ meson the same
parameters are used as in these references. However, for the
ε = f0(760) assuming mε = 760 MeV and �ε = 640 MeV
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the Bryan-Gersten parameters [21] are used. For the chosen
mass and width they are: m1 = 496.39796 MeV, m2 =
1365.59411 MeV, and β1 = 0.21781, β2 = 0.78219. The
“mass” of the diffractive exchanges were all fixed to mP =
309.1 MeV.

Summarizing the parameters we have for NN:

(i) QPC constrained: gNNρ, gNNω, fNNρ, fNNω, fNNa1 , ga0 ,

gNNε, gNNA2 , gNNP ,

(ii) Pair couplings: gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 , gNNπω,

gNNπη, gNNπε ,

(iii) Cutoff masses: �P
8 ,�V

8 ,�S
8 ,�V

1 ,�A.

Of course, also the couplings for the pseudoscalar mesons
fNNπ , fNNη′ were fitted. The pair coupling gNN(ππ)0 was kept
fixed at a small, but otherwise arbitrary, value.

The NN data used are the same as in part I, and we refer
the reader to this article for a description of the employed
phase-shift analysis [22,23]. Differences with part I are that
here we did not fit the NN low-energy parameters and the
deuteron binding energy explicitly.

B. Parameters and hyperon-nucleon fit

All “best” low-energy YN data are included in the fitting,
This is a selected set of 35 low-energy YN data, the same set has
been used in Refs. [3] and [4]. We added three (preliminary)
total �+p cross sections from the recent KEK experiment
E289 [24]. In Sec. VIII these are given together with the
results. Next to these we added pseudodata for the �p and
�� scattering lengths and effective ranges, in fm:

â�p(1S0) = −1.95 ± 0.10, r̂�p(1S0) = 2.90,

â�p(3S1) = −1.86 ± 0.10, r̂�p(1S0) = 2.70, (31)

â��(1S0) = −3.00 ± 0.10,

These �p values are suggested by the experience in several
hypernuclear applications of the NSC97 models. Also, during
the fitting checks were done to prevent the occurrence of bound
states. Parameters, typically strongly influenced by the YN
data, are

(i) F/(F + D) parameters: αPV, αm
V , αS ,

(ii) SU(3) symmetry breaking: �FSB.

Notice that the strange octet mesons K, etc., were given
the same form factors as their nonstrange companions. So,
because of YN we have introduced four extra free parameters.
We notice that the need to avoid bound states in the YN and YY
systems has in particularly some influence on the trio gε, gω,
and gP . Of particular importance of this was the introduction
of the zero in the scalar-meson form factors, see part I for a
detailed description. Like in part I, also here we used a fixed
zero by taking U = 750 MeV.

VI. COUPLING CONSTANTS, F/(F + D) RATIOS, AND
MIXING ANGLES

Like in part I, we constrained the OBE couplings by the
“naive” predictions of the QPC model [8]. We kept during
the searches all OBE couplings in the neighborhood of these
predictions, but a little less so than in part I. The same has been

TABLE III. Meson couplings and meson masses and cut-off
parameters employed in the ESC04 potentials. Coupling constants
are at k2 = 0. An asterisk denotes that the coupling constant is not
searched, but constrained via SU(3) are simply put to some value
used in previous work. The used widths of the ρ and ε are 146 and
640 MeV respectively.

Meson Mass g/
√

4π f/
√

4π � (MeV)
(MeV)

π 138.04 0.2631 833.63
η 548.80 0.1933∗ 833.63
η 957.50 0.1191 900.00
ρ 770.00 0.7800 3.4711 839.53
φ 1019.50 −0.3788 −0.0494∗ 839.53
ω 783.90 3.0138 0.4467 869.84
a1 1270.00 2.5426 945.66
f1 1420.00 0.8896∗ 945.66
f ′

1 1285.00 1.2544 945.66
a0 962.00 0.9251 1159.88
f0 993.00 −0.8162 1159.88
ε 760.00 3.4635 1101.61
a2 309.10 0.0000
f2 309.10 0.0000
f ′

2 309.10 0.0000
Pomeron 309.10 1.9651

done for all α = F/(F + D) ratios, i.e., for BBM and the BB
pair couplings. In fact, all F/(F + D) ratios were fixed, except
the ratio αm

V for vector mesons and αS for the scalar mesons.
The mixing for the pseudoscalar, vector, and scalar mesons,

as well as the handling of the diffractive potentials, have been
described elsewhere, see, e.g. [3,4]. The mixing, etc., of the
axial-vector mesons is completely the same as for the vector,
etc., mesons and therefore need not be discussed here.

In Table III we give the fitted ESC04 meson couplings and
parameters.

In Table IV we compare the fitted meson coupling constants
with the “naive” predictions of the QPC model. For the QPC
predictions in Table IV; see part I. One sees that the fitted
parameters are rather close to those of the QPC model and
even more so than in paper part I. Notice that we omitted
here the pion coupling, which requires a different γM factor
in the QPC model; see remarks in part I. Also, we see that
the deviation between the scalar and vector couplings from the
QPC model relations, gε − gω ≈ 3(ga0 − gρ), which seems a
purely isospin factor.

In Table V the SU(3) singlet and octet couplings are listed,
i.e., ĝ, etc., as well as F/(F + D) ratios and mixing angles.

TABLE IV. NN + YN: ESC04 couplings and 3P0-model relations.

Meson rM [fm] XM γM
3P0 ESC04

ρ(770) 0.56 1/2 1.53 g = 0.78 g = 0.78
ω(783) 0.56 3/2 1.53 g = 2.40 g = 3.01
a0(962) 0.56

√
3/2 1.53 g = 0.79 g = 0.92

ε(760) 0.56 3
√

3/2 1.53 g = 2.11 g = 3.46
a1(1270) 0.56 3

√
3/2 1.53 g = 2.73 g = 2.54
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TABLE V. Coupling constants, F/(F + D) ratios, mixing angles,
etc. The values with a superscript a have been determined in the fit to
the YN data. The other parameters are theoretical input or determined
by the fitted parameters and the constraint from the NN analysis.

Mesons {1} {8} F/(F + D) Angles

ps-scalar f 0.1852 0.2631 αPV = 0.4668a θP = −23.00◦

Vector g 2.6218 0.7800 αe
V = 1.0 θV = 37.50◦

f 0.3845 3.4711 αm
V = 0.2760a

Axial g 1.5023 2.5426 αA = 0.2340 θA =
−23.00◦ a

Scalar g 3.1688 0.9251 αS = 0.8410 θS = 40.32◦a

Diffractive g 1.9651 0.0000 αD = 1.000 ψD = 0.0◦a

In Tables VI and VII we list the couplings of the
physical mesons to the nucleons (Y = 1), and the hyperons
with Y = 0. These were computed using the FSB scheme,
described above. We found (ESC04a) �FSB(PV) = −0.258
and �FSB(V, S,A) = −0.267.

In Table VIII we listed the fitted pair couplings for the MPE
potentials. We recall that only one-pair graphs are included, to
avoid double counting; see part I. The F/(F + D) ratios are all
fixed, assuming heavy-boson domination of the pair vertices.
The ratios are taken from the QPC model for QQ̄ systems
with the same quantum numbers as the dominating boson. The
BB pair couplings are computed, assuming unbroken SU(3)
symmetry, from the NN pair coupling and the F/(F + D) ratio
using SU(3).

Unlike in Ref. [17], we did not fix pair couplings using a
theoretical model, based on heavy-meson saturation and chiral
symmetry. So, in addition to the 14 parameters used in Ref. [17]
we now have six pair-coupling fit parameters. In Table VIII
the fitted pair couplings are given. Note that the (ππ )0 pair
coupling gets contributions from the {1} and the {8s} pairs as
well, giving in total g(ππ) = 0.10, which has the same sign as

TABLE VI. Coupling constants for pseudoscalar and vector
meson Y = 0 and Y = ±1 exchanges.

M NNM ��M ��M ��M �NM �NM

π g 3.57602 CSB 2.47895 4.23203 — —
f 0.26306 CSB 0.16196 0.24559 — —

η f 0.19333 −0.02028 — 0.21534 — —
η′ f 0.11908 0.14213 — 0.11671 — —

K g — — — — −3.22933 0.19837
f — — — — −0.21786 0.01296

ρ g 0.78000 CSB — 1.56000 — —
f 3.47113 CSB 2.90094 1.91768 — —

φ g −0.37884 −0.94125 — −0.94125 — —
f −0.04944 −1.34461 — 1.07066 — —

ω g 3.01376 2.21121 — 2.21121 — —
f 0.44671 −1.40149 — 2.04507 — —

K� g — — — — −0.99079 −0.57203
f — — — — −2.28171 1.13927

a1 g 2.54264 CSB 2.24770 1.19215 — —
f1 g 0.88961 −0.66726 — 2.57849 — —
f ′

1 g 1.25438 1.40489 — 1.09111 — —
K1 f — — — — −1.58137 0.99042

TABLE VII. Coupling constants for scalar meson and “diffrac-
tive” Y = 0 and Y = ±1 exchanges. Nomenclature scalar mesons:
δ = a0(962), ε = f0(760), S∗ = f0(993), κ = K∗

0 (900).

M NNM ��M ��M ��M �NM �NM

δ g 0.92511 CSB 0.16975 1.55621 — —
S∗ g −0.81620 −1.36993 — −1.23870 — —
ε g 3.46354 2.58418 — 2.79258 — —
κ g — — — — −1.05063 −0.46283
A2 g 0.00000 CSB 0.00000 0.00000 — —
P g 1.96510 1.96510 — 1.96510 — —
K��

2 g — — — — 0.00000 0.00000

in Ref. [17]. The f(ππ)1 pair coupling has opposite sign as com-
pared to Ref. [17]. In a model with a more complex and realistic
meson dynamics [25] this coupling is predicted as found in
the present ESC fit. The (πρ)1 coupling agrees nicely with A1

saturation; see Ref. [17]. We conclude that the pair couplings
are in general not well understood and deserve more study.

In the ESC model described here, is fully consistent with
SU(3) symmetry using a straightforward extension of the
NN model to YN and YY. For example, g(πρ)1 = gA8VP, and
in addition to (πρ) pairs one sees also that KK∗(I = 1)
and KK∗(I = 0) pairs contribute to the NN potentials. All
F/(F + D) ratios are taken fixed with heavy-meson saturation
in mind. The approximation we have made in this article is
to neglect the baryon mass differences, i.e., we put m� =
m� = mN . This because we have not yet worked out the
formulas for the inclusion of these mass differences, which
is straightforward in principle.

VII. ESC04 MODEL, NN RESULTS

A. Parameters and nucleon-nucleon fit

For a more detailed discussion on the NN fitting we refer to
part I. Here, we fit only to the 1993 Nijmegen representation
of the χ2 hypersurface of the NN-scattering data below
Tlab = 350 MeV [22,23]. This in contrast to part I where
also low-energy parameters are fitted for np and nn. In this
simultaneous fit of NN and YN, we obtained for the phase
shifts a χ2/N data = 1.22. In Table III the meson parameters
are given for the ESC04a model. In Table IX the distribution of
the χ2 is shown for the 10 energy bins, which can be compared
with a similar table in part I. Also, for a comparison with part I,
and for use of this model for the description of NN, we give in

TABLE VIII. Pair-meson coupling constants employed in the
ESC04 MPE potentials. Coupling constants are at k2 = 0.

J PC SU(3)-irrep (αβ) g/4π F/(F + D)

0++ {1} g(ππ )0 — —
0++ {1} g(σσ ) — —
0++ {8}s g(πη) −0.1860 1.000
1−− {8}a g(ππ )1 −0.0024 1.000

f (ππ )1 0.1310 0.400
1++ {8}a g(πρ)1 0.8864 0.643
1++ {8}a g(πσ ) −0.0241 0.643
1++ {8}a g(πP ) 0.0 —
1+− {8}s g(πω) −0.1722 0.467
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TABLE IX. χ 2 and χ 2 per datum at the 10 energy bins for the
Nijmegen93 partial-wave analysis. Ndata lists the number of data
within each energy bin. The bottom line gives the results for the
total 0–350 MeV interval. The χ 2 access for the ESC04 model in the
NN + YN fit is denoted by �χ 2 and �χ̂ 2, respectively.

Tlab � data χ 2
0 �χ 2 χ̂ 2

0 �χ̂ 2

0.383 144 137.5549 22.9 0.960 0.159
1 68 38.0187 53.2 0.560 0.783
5 103 82.2257 7.1 0.800 0.068

10 209 257.9946 53.1 1.234 0.183
25 352 272.1971 62.5 0.773 0.177
50 572 547.6727 240.3 0.957 0.420

100 399 382.4493 73.6 0.959 0.184
150 676 673.0548 104.4 0.996 0.154
215 756 754.5248 214.4 0.998 0.284
320 954 945.3772 333.1 0.991 0.349

Total 4233 4091.122 1164.6 0.948 0.268

Tables X and XI the nuclear-bar phases for pp in case I = 1
and for np in case I = 0. The deuteron was not fitted, and we
have for the binding energy EB = 2.224797 MeV, which is
very close to the EB(experiment) = 2.224644.

VIII. ESC04 MODEL, YN RESULTS

In combined NN and YN fit, the used YN-scattering data
from Refs. [26–31], are shown in Table XII. Because we know
from the experience with the NSC97 models rather well the
favored s-wave scattering lengthes for �N , we added values
for these as pseudodata, see Sec. V B. The NN interaction puts
very strong constraints on most of the parameters, and so we
are left with only a limited set of parameters which have some
freedom to steer the YN channels. Like in the NSC97 models

TABLE X. ESC04 pp and np nuclear-bar phase shifts in degrees.

Tlab 0.38 1 5 10 25
� data 144 68 103 290 352
�χ 2 24 53 7 53 62

1S0 14.62 32.62 54.71 55.07 48.39
3S1 159.39 147.77 118.23 102.70 80.78
ε1 0.03 0.11 0.66 1.13 1.71
3P0 0.02 0.13 1.56 3.69 8.58
3P1 −0.01 −0.08 −0.87 −2.01 −4.85
1P1 −0.05 −0.19 −1.52 −3.12 −6.46
3P2 0.00 0.01 0.21 0.64 2.44
ε2 −0.00 −0.00 −0.05 −0.19 −0.79
3D1 0.00 −0.01 −0.19 −0.69 −2.85
3D2 0.00 0.01 0.22 0.85 3.72
1D2 0.00 0.00 0.04 0.16 0.67
3D3 0.00 0.00 0.00 0.00 0.01
ε3 0.00 0.00 0.01 0.08 0.56
3F2 0.00 0.00 0.00 0.01 0.10
3F3 0.00 0.00 −0.00 −0.03 −0.22
1F3 0.00 0.00 −0.01 −0.07 −0.42
3F4 0.00 0.00 0.00 0.00 0.02
ε4 0.00 0.00 0.00 −0.00 −0.05

TABLE XI. ESC04 pp and np nuclear-bar phase shifts in degrees.

Tlab 50 100 150 215 320
� data 572 399 676 756 954
�χ 2 240 74 104 214 333

1S0 38.40 24.05 13.51 2.79 −10.60
3S1 63.01 43.67 31.44 19.93 6.42
ε1 1.94 2.18 2.56 3.22 4.57
3P0 11.65 9.84 5.19 −1.31 −10.86
3P1 −8.23 −13.19 −17.25 −21.85 −28.09
1P1 −9.75 −14.12 −17.78 −22.09 −28.12
3P2 5.75 11.02 14.21 16.29 16.96
ε2 −1.68 −2.68 −2.97 −2.83 −2.17
3D1 −6.58 −12.61 −17.06 −21.36 −26.14
3D2 8.92 17.08 21.90 24.70 24.83
1D2 1.66 3.80 5.88 8.09 10.16
3D3 0.18 1.05 2.15 3.42 4.60
ε3 1.62 3.52 4.88 6.02 6.97
3F2 0.32 0.74 0.98 0.97 0.13
3F3 −0.66 −1.46 −2.09 −2.74 −3.73
1F3 −1.13 −2.20 −2.90 −3.58 −4.65
3F4 0.10 0.42 0.88 1.57 2.71
ε4 −0.19 −0.52 −0.81 −1.12 −1.46
3G3 −0.27 −0.99 −1.89 −3.10 −4.88
3G4 0.72 2.13 3.54 5.16 7.23
1G4 0.15 0.40 0.65 1.00 1.60
3G5 −0.06 −0.21 −0.36 −0.49 −0.58
ε5 0.21 0.72 1.26 1.91 2.75

we exploit here (i) the magnetic vector-meson F/(F + D)
ratio αm

V , (ii) the scalarmeson F/(F + D) ratio αS , and the
flavor-symmetry-breaking parameter�FSB. We did not break
SU(3) by introducing independent cutoff parameters for the
strange mesons K,K∗, etc., but �K = �π and similar for
the other meson nonets. The fitted parameters are given in
Tables III and VIII.

The aim of the present study was to construct a realistic
potential model for baryon-baryon with parameters that are
optimal theoretically, but at the sametime describes the baryon-
baryon scattering data very satisfactory.

This model can then be used with a great deal of confidence
in calculations of hypernuclei and in their predictions for
the S = −2,−3, and −4 sectors. Especially for the latter
application, these models will be the first models for the
S < −1 sector to have their theoretical foundation in the NN
and YN sectors.

The χ2 on the 38 YN-scattering data for the ESC04 model
is given in Table XII. The capture ratio at rest, given in the
last column of the table, for its definition see, e.g., Ref. [4].
This capture ratio turns out to be rather constant in the
momentum range from 100 to 170 MeV/c. Obviously, for
very low momenta the cross sections are almost completely
dominated by S waves. For a discussion of the capture ratio at
rest rR; see Ref. [32–34]. We obtained rR = 0.473, which is
close to the experimental value r

exp
R = 0.468 ± 0.010.

The �+p nuclear-bar phase shifts as a function of energy
are given in Table XIII. Notice that the 3S1 phase shows
repulsion, except for very low energies. This means that the
the potential has a weak long range attractive tail.
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TABLE XII. Comparison of the calculated and experimental
values for the 38 YN data that were included in the fit. The superscipts
RH and M denote, respectively, the Rehovoth-Heidelberg Ref. [26]
and Maryland data Ref. [27]. Also included are 3 �+p cross sections
at plab = 400, 500, and 650 MeV from Ref. [23]. The laboratory
momenta are in MeV/nucleon, and the total cross sections in mb.

�p → �p χ 2 = 0.8 �p → �p χ 2 = 3.3

p� σ RH
exp σth p� σM

exp σth

145 180±22 182.1 135 209.0±58 195.6
185 130±17 135.7 165 177.0±38 157.4
210 118±16 112.6 195 153.0±27 125.9
230 101±12 97.1 225 111.0±18 100.8
250 83±9 84.4 255 87.0±13 81.0
290 57±9 63.2 300 46.0±11 59.0

�+p → �+p χ 2 = 4.7 �−p → �−p χ 2 = 4.3

p�+ σexp σth p�− σexp σth

145 123±62 104.3 142.5 152±38 133.7
155 104±30 94.3 147.5 146±30 128.9
165 92±18 85.4 152.5 142±25 124.4
175 81±12 77.4 157.5 164±32 120.0
400 75±25 26.6 162.5 138±19 115.9
500 26±20 24.9 167.5 113±16 111.9
650 52±40 21.9

�−p → �0n χ 2 = 6.4 �−p → �n χ 2 = 4.4

p�+ σexp σth p�− σexp σth

110 396±91 183.2 110 174±47 219.9
120 159±43 160.0 120 178±39 188.7
130 157±34 141.1 130 140±28 163.6
140 125±25 125.5 140 164±25 143.0
150 111±19 112.3 150 147±19 126.0
160 115±16 101.1 160 124±14 111.7

r
exp
R = 0.468 ± 0.010 r th

R = 0.473 χ 2 = 0.2

The �N nuclear-bar phase shifts as a function of energy
are given in Table XIV. The 3S1 phase shows that there is a
resonance below the �N threshold, the so-called analog of the

TABLE XIII. ESC04 nuclear-bar �+p phases in degrees.

p�+ 200 400 600 800 1000
Tlab 16.7 65.5 142.8 244.0 364.5

1S0 39.05 26.07 10.11 −4.50 −17.46
3S1 1.26 −0.21 −3.75 −6.80 −10.11
ε1 −3.38 −4.54 −2.89 0.57 3.82
3P0 5.91 10.76 3.87 −7.62 −19.84
1P1 4.62 21.50 35.55 38.36 35.06
3P1 −3.28 −9.20 −13.96 −17.52 −19.59
3P2 1.29 7.61 14.89 19.30 20.58
ε2 −0.44 −1.26 −2.72 −2.61 −0.20
3D1 0.34 1.54 1.73 −0.63 −5.70
1D2 0.36 2.22 5.276 8.20 9.51
3D2 −0.53 −2.81 −5.48 −8.49 −11.95
3D3 0.06 0.97 3.18 5.91 8.40

TABLE XIV. ESC04 nuclear-bar �p phases in degrees.

p� 100 200 300 400 500 600 633.4
Tlab 4.5 17.8 39.6 69.5 106.9 151.1 167.3

1S0 22.30 29.20 27.49 22.59 16.68 10.62 8.65
3S1 17.72 26.17 28.37 28.95 32.25 55.52 102.55
ε1 0.07 0.30 0.48 0.25 −1.18 −8.43 17.32
3P0 0.03 0.15 0.06 −0.79 −2.74 −5.66 −6.76
1P1 −0.02 −0.12 −0.52 −1.45 −3.01 −5.09 −5.86
3P1 0.03 0.13 0.14 −0.17 −0.90 −1.93 −2.23
3P2 0.13 0.89 2.41 4.32 6.10 7.47 7.84
ε2 0.00 0.00 −0.04 −0.14 −0.30 −0.52 −0.64
3D1 0.00 0.02 0.12 0.40 1.04 3.11 2.19
1D2 0.00 0.07 0.24 0.74 1.54 2.51 2.84
3D2 0.00 0.06 0.30 0.82 1.62 2.53 2.82

deuteron. This signals the fact that in the �N (3S1, I = 1/2)
state there is a strong attraction.

In Fig. 6 we plot the total potentials for the S-wave channels
�N → �N,�N → �N , and �N → �N . The same is done
in Figs. 7, 8, and 9 for respectively the OBE, TME, and
MPE contributions. In Figs. 10 and 11 we show for the same

-120

-100

-80

-60

-40

-20

0

 20

 40

 0.6  0.8 1  1.2  1.4

V
 [M

eV
]

 x [fm]

 Total V(ΛN -> ΛN) ESC04

 V(1S0) 
 V(3S1) 

-200

-150

-100

-50

0

 50

 100

 150

 0.6  0.8 1  1.2  1.4

V
 [M

eV
]

 x [fm]

 Total V(ΛN -> ΣN) ESC04

 V(1S0) 
 V(3S1) 

-200

-100

0

 100

 200

 300

 400

 500

 0.6  0.8 1  1.2  1.4

V
 [M

eV
]

 x [fm]

 Total V(ΣN -> ΣN) ESC04

 V(1S0) 
 V(3S1) 

-100

-50

0

 50

 100

 150

 200

 0.6  0.8 1  1.2  1.4

V
 [M

eV
]

 x [fm]

 Total V(Σ+P-> Σ+P)  ESC04

 V(1S0) 
 V(3S1) 

FIG. 6. Total potentials in the partial waves 1S0 and 3S1, for the
I = 1/2 and I = 3/2 states.
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FIG. 7. OBE potentials in the partial waves 1S0 and 3S1, for the
I = 1/2 and I = 3/2 states.

channels the OBE contributions from the different types of
mesons: The pseudoscalar, the vector, the scalar, and the
axial-vector mesons. From these figures one can notice e.g.
(i) the total potentials are dominated by the OBE and MPE
contributions and (ii) the OBE and MPE potentials are often
opposite to each other. For example, the �N elastic potentials
are attractive because of the sizable attractive contributions
from the MPE potentials overcoming the OBE ones.

Finally, all ESC potentials described in this article are
available on the Internet [35].

IX. BRIEF COMPARISON ESC04 MODELS

In this section we display some global comparison between
the different ESC04a–d models emerging from the different
options, mentioned above.

In Table XV we give the FSB and aPV parameters and the
χ2 obtained in the simultaneous NN ⊕ YN fitting.

TABLE XV. �FSB-, aPV parameters, and the χ 2s for NN and YN.

aPV �FSB(PV) �FSB(V ) χ 2
p.d.p.(NN) χ 2(YN)

ESC04a 0.5 −0.258 −0.267 1.22 24.2
ESC04b 1.0 −0.214 −0.280 1.20 49.5
ESC04c 0.5 0.000 0.000 1.28 23.0
ESC04d 1.0 0.000 0.000 1.33 26.0
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FIG. 8. TPS potentials in the partial waves 1S0 and 3S1, for the
I = 1/2 and I = 3/2 states.
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FIG. 9. Pair potentials in the partial waves 1S0 and 3S1, for the
I = 1/2 and I = 3/2 states.
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FIG. 10. OBE potentials in the 1S0 partial
waves, for pseudoscalar (PS), vector (VC), scalar
(SC), and axial-vector (AX) exchange, in the
I = 1/2 and I = 3/2 states.

In Table XVI we give the F/(F + D) ratios and θS . The
latter because in these models there is no imposed constraint
on the parameters (αS, θS). The vector mixing angle θV is
for all models the same. This is also the case for the axial
mixing angle where we fixed θA = θPS = −23.0◦. In this table
it is remarkable that, whereas αS is constant, there is a big
difference with respect to θS . Furthermore, one notices that

TABLE XVI. F/(F + D) ratios for OBE couplings, and the
scalar-meson mixong angle θS in degrees.

αPV αe
V αm

V αA αS θS

ESC04a 0.467 1.0 0.276 0.234 0.841 40.32
ESC04b 0.403 1.0 0.316 0.246 0.841 40.31
ESC04c 0.510 1.0 0.306 0.234 0.841 22.09
ESC04d 0.499 1.0 0.430 0.234 0.841 11.45

for most models αm
V is close to the estimates from static and

nonstatic SU(6) [36]. As a final point we mention that the
F/(F + D) ratios for the pair couplings are very similar to the
values of ESC04b, given above.

In Table XVII we list the �N -scattering lengths and
effective ranges. Here, (as, rs) are these quantities for �N (1S0)
and (at , rt ) for �N (3S1). Here we repeat the different options
used to distinguish the different models.

TABLE XVII. �N scattering lengths and effective ranges in fm.

SFB aPV as at rs rt

ESC04a yes 0.5 −2.073 −1.537 2.998 2.773
ESC04b yes 1.0 −1.957 −1.689 3.156 2.823
ESC04c no 0.5 −1.946 −1.850 3.473 2.900
ESC04d no 1.0 −1.941 −1.858 3.570 3.133
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FIG. 11. OBE potentials in the 3S1 partial
waves, for pseudoscalar (PS), vector (VC), scalar
(SC), and axial-vector (AX) exchange, in the
I = 1/2 and I = 3/2 states.

In Table XVIII we list the scattering lengths and effective
ranges for �+p and ��.

X. G-MATRIX INTERACTIONS AND HYPERNUCLEI

A. Properties of �N and �N G matrices

The free-space YN-scattering data are too sparse to dis-
criminate clearly the YN interaction models. Then, it is very

TABLE XVIII. �+p and �� scattering lengths and effective
ranges in fm.

as at rs rt as(��) rs(��)

ESC04a −4.09 −0.020 3.49 −3356 −1.149 4.482
ESC04b −2.87 +0.179 4.10 −34.20 −1.245 4.453
ESC04c −3.87 +0.077 3.72 −253.5 −1.081 4.463
ESC04d −3.43 +0.217 3.98 −28.94 −1.323 4.401

helpful to test the interaction models in analyses of various
hypernuclear phenomena. Effective YN interactions used in
models of hypernuclei can be derived from the free-space
YN interactions most conveniently using the G-matrix theory.
In the previous work [4], the G-matrix results were used as
an important guidance to discriminate especially the spin-
dependent parts in the interaction models. Here, the versions
a ∼ f of the NSC97 model were designed so as to specify
their different strengths of �N spin-spin interactions, and
among them those of NSC97e and NSC97f were demonstrated
to be consistent with the hypernuclear data. Afterwards, the
plausibility of our approach has been confirmed by successful
calculations for s-shell hypernuclei [37–39] using NSC97e/f
or their simulated versions.

Let us perform the G-matrix analyses for ESC04a–d in the
same way. The G-matrix equations for YN pairs in nuclear
matter are solved with the simple QTQ prescription (the gap
choice) for the intermediate-state spectra, which means that no
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TABLE XIX. Values of U� at normal density and partial wave
contributions for ESC04a–d and NSC97e/f obtained from the G-
matrix calculations with the QTQ intermediate spectra. All entries
are in MeV.

1S0
3S1

1P1
3P0

3P1
3P2 D U�

ESC04a −13.7 −20.5 0.6 0.2 0.5 −4.5 −1.0 −38.5
ESC04b −13.3 −22.6 0.5 −0.0 0.6 −4.3 −1.1 −40.2
ESC04c −13.9 −28.5 2.9 0.0 1.3 −6.5 −1.3 −46.0
ESC04d −13.6 −26.6 3.2 −0.2 0.9 −6.4 −1.4 −44.1
NSC97e −12.7 −25.5 2.1 0.5 3.2 −1.3 −1.2 −34.8
NSC97f −14.3 −22.4 2.4 0.5 4.0 −0.7 −1.2 −31.8

potential term is taken into account in the off-shell propagation.
As discussed for NSC97 [4], the QTQ prescription is accurate
enough to investigate properties of YN G-matrix interactions.
The nucleon energy spectra in the YN G-matrix equation are
obtained from the NN G matrices for ESC04(NN), where the
phenomenological three-nucleon interaction (TNI) is taken
into account so as to assure nuclear saturation. The details
for TNI are explained in the next subsection.

In this work, the properties of the G-matrix interactions
derived from ESC04a–d models are compared often with those
of NSC97e/f. The calculated values for NSC97e/f in this work
are slightly different from those in Ref. [4] because of different
choice of the nucleon spectra. Hereafter, a two-particle state
with isospin (T), spin (S), orbital and total angular momenta
(L and J) is represented as 2T +1,2S+1LJ . An isospin quantum
number is often omitted, when it is evident.

In Table XIX we show the potential energies U� for
a zero-momentum � and their partial-wave contributions
U�(2S+1LJ ) at normal density ρ0 (kF = 1.35 fm−1). A
statistical factor (2J + 1) is included in U�(2S+1LJ ). The total
contributions U� should be compared to the experimental
value of about −30 MeV. In an appearance, the values for
ESC04a–d seem to be rather worse than those for NSC97e/f.
It should be noted, however, that the shallower values of U� for
NSC97e/f are owing to the strongly repulsive contributions of
their P-state interactions. The sums of even-state contributions
for ESC04a/b (ESC04c/d) are similar to (slightly larger than)
those for NSC97e/f. One should notice here that the even-state
strengths of NSC97e/f are proved to be attractive enough
to reproduce appropriately � binding energies in s-shell
hypernuclei [37–39]. Thus, we can say that the remarkable
difference between ESC04a–d and NSC97e/f appears in
the P-state interactions: Those of ESC04a–d and NSC97e/f
are attractive and repulsive, respectively. If the attractive
P-state interactions of ESC04a–d are considered to be rea-
sonable, one should take into account another repulsive
contribution to reproduce the value of U� ∼ −30 MeV, as
discussed later. Though there are no clear-cut data for �N

P-state interactions, an important consideration was given
by Millener, supporting attractive P-state interactions [40].
He claims that the attractive P-state interaction is consistent
with the 6.0 MeV separation observed in the (K−, π−)
reaction for the two (1/2−) states of 13

� C composed of the
12C(0+, 2+) ⊗ p� configurations.

TABLE XX. Contributions to U� at normal density from spin-
independent, spin-spin, LS, and tensor parts of the G-matrix inter-
actions derived from ESC04a–d and NSC97e/f. All entries are in
MeV.

U0(S) Uσσ (S) U0(P ) Uσσ (P ) ULS(P ) UT (P )

ESC04a −8.55 1.73 −0.27 −0.25 −0.45 0.08
ESC04b −8.96 1.44 −0.27 −0.22 −0.41 0.10
ESC04c −10.6 1.09 −0.19 −0.86 −0.65 0.18
ESC04d −10.1 1.19 −0.20 −0.96 −0.58 0.17
NSC97e −9.55 1.06 0.38 −0.44 −0.46 0.17
NSC97f −9.18 1.71 0.52 −0.50 −0.48 0.23

To see the spin-dependent features of the �N G-matrix
interactions more clearly, it is convenient to derive contribu-
tions to U� from the spin-independent, spin-spin, LS, and
tensor components of the G matrices, which are denoted as
U0, Uσσ , ULS, UT , respectively. These quantities in S and P
states can be transformed from values of U�(2S+1LJ ) using
Eq. (7.1) in Ref. [4]. The obtained values are shown in
Table XX. The S-state contributions U0(S) for ESC04a–d are
found to be not remarkably different from those for NSC97e/f.
The relative ratio of U�(1S0) and U�(3S1) is related to the
contribution Uσσ (S) from the spin-spin interaction. Various
analyses suggest that the reasonable strength of the S-state
spin-spin interaction is between those of NSC97e/f. Then, the
spin-spin parts of ESC04a–d are found to be in this region,
though they are slightly different from each other.

The features of the P-state interactions are indicated
by the values of U0(P ), Uσσ (P ), ULS(P ), and UT (P ) in
Table XX. The negative (positive) values of U0(P ) for
ESC04a–d (NSC97e/f) are because of the attractive (repul-
sive) interactions. The spin-spin, LS, and tensor strengths
of ESC04a/b are slightly weaker than those of NSC97e/f.
However, the spin-spin and LS strengths of ESC04c/d are
rather stronger than the others. Let us discuss here the LS parts
more in detail, because the clear data of the spin-orbit splittings
have been obtained in the γ -ray experiments. The values of
ULS(P ) are composed of the contributions of two-body SLS
interaction (attractive) and ALS interaction (repulsive). To
compare clearly the SLS and ALS components, it is convenient
to derive the strengths of the � l-s potentials in hypernuclei. In
the same way as in Ref. [4], we use the following expression
derived with the Scheerbaum approximation [41],

U ls
�(r) = K�

1

r

dρ

dr
l · s,

K� = −π

3
(SSLS + SALS), (32)

SSLS,ALS = 3

q̄

∫ ∞

0
r3j1(q̄r)GSLS,ALS(r) dr,

where GSLS(r) and GALS(r) are SLS and ALS parts of
G-matrix interactions in configuration space, respectively, and
ρ(r) is a nuclear density distribution. We take here q̄ =
0.7 fm−1. Table XXI shows the values of K� and SSLS,ALS

obtained from the SLS and ALS parts of the �N G-matrix
interactions calculated at kF = 1.0 fm−1 in the cases of
ESC04a–d and NSC97e/f. It is found here that the obtained
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TABLE XXI. Strengths of � spin-orbit splittings for ESC04a–d
and NSC97e/f. See the text for the definitions of K� and SSLS,ALS.

SSLS SALS K�

ESC04a −24.9 12.1 13.4
ESC04b −22.3 13.2 9.5
ESC04c −36.6 10.2 27.6
ESC04d −32.7 10.1 23.6
NSC97e −26.0 9.8 16.9
NSC97f −26.9 9.5 18.1

values for ESC04a/b are smaller than those for NSC97e/f,
because the SLS (ALS) parts of the former are less attractive
(more repulsive) than those of the latter. However, the spin-
orbit strengths of ESC04c/d are rather stronger than the others.
In comparison of the experimental data, even the smallest K�

value in the case of ESC04b is too large [42,43].
In Fig. 12, the calculated values of U� are drawn as

a function of ρ/ρ0 up to the high-density region. Their S
and P contributions are shown in the left and right sides of
Fig. 13, respectively. In these figures, solid, dashed, dotted,
and dot-dashed curves are for ESC04a–d, respectively. For
comparison, the result for NSC97f is drawn by the thin dashed
curve. The U� values for ESC04a–d are found to become far
more attractive with increase of density than those of NSC97f.
Comparing the partial-wave contributions for ESC04a–d with
those for NSC97f, we find that the S-state contributions are
more or less similar to each other and the distinct difference
comes from the P-state contributions. The difference between
the P-state interactions in ESC04 and NSC97 models turn out
to be magnified dramatically in the high-density region.

The � effective mass M∗
� in nuclear matter is an important

quantity that is related to the property of the underlying �N

interaction. Here, we calculate a global effective mass defined

FIG. 12. Calculated values of U� as a function of ρ/ρ0 for
ESC04a (solid curve), ESC04b (dashed curve), ESC04c (dotted
curve), and ESC04d (dot-dashed curve). The thin dashed curve is
for NSC97f.

by

M∗
�

M�

=
(

1 + dU�

dT�

)−1

, (33)

where T� denotes � kinetic energy. The calculated values
of m∗

� = M∗
�/M� at normal density are 0.81 (ESC04a),

0.79 (ESC04b), 0.77 (ESC04c), 0.74 (ESC04d), 0.67
(NSC97e), and 0.66 (NSC97f). In Fig. 14 the calculated values
of m∗

� are drawn as a function of ρ/ρ0 by solid (ESC04a),
dashed (ESC04b), dotted (ESC04c), and dot-dashed (ESC04d)
curves. The thin dashed curve is for NSC97f. We find here
that the calculated values for NSC97f are distinctively smaller
than the values for ESC04a–d. The reason why the m∗

� values
for NSC97e/f are small is because their repulsive P-state
interactions contribute to the derivatives dU�/dT� as large
positive quantities. In Ref. [44], one of authors (Y.Y.) and
collaborators analyzed the measured �-energy spectra in
heavy hypernuclei with special attention to � effective masses.
They concluded that the small value of m∗

� obtained from
NSC97f leads to too broad level distances, and the adequate
value of m∗

� is around 0.8 at normal density. Thus, the m∗
�

values for ESC04a–d turn out to be more reasonable than
those for NSC97 models.

Next, let us show the properties of �N G-matrix inter-
actions. We solve here the �N starting channel G-matrix
equation in the QTQ prescription. In this treatment, there
appears no imaginary part, because of an energy-conserving
�N − �N transition. Although it is possible to derive the
� conversion width �� by taking into account the � and N
potentials in the intermediate states, we choose not to discuss
this rather complex issue in this article. In Table XXII we show
the calculated values of U� at normal density for ESC04a–d
and NSC97f. Here, the U� values for ESC04a–d are found
to be far more attractive than that for NSC97f, because the
3S1(�N, I = 1/2) [1S0(�N, I = 1/2)] contributions for the
former are remarkably more attractive (less repulsive) than
that for the latter.

It has been pointed out that the � wells in nuclei might
actually be repulsive, based on the �-atomic data [45] and
the quasifree spectrum of the (K−, π ) reaction [46]. Recently,
the (π−,K−) experiment has been performed to study the �-
nucleus potentials [47]. They demonstrated that the observed
spectrum can be reproduced with a strongly repulsive potential.
The theoretical analyses for this data also indicate that the
�-nucleus potential most likely is repulsive [48]. If we
consider these analyses seriously, it is rather problematic how
to understand repulsive �-nucleus potentials on the basis of
the ESC model. It should be noted, however, that there is
no decisive evidence for the repulsive �-nucleus potential
experimentally in the present.

B. Three-body and nuclear medium effects

A natural possibility is the presence of three-body forces
(3BF) in hypernuclei generating effective two-body forces,
which could (partially) solve this well-depth issue. Because
a thorough investigation is outside the scope of this article,
we discuss three-body and nuclear medium effects here in a
simple phenomenological way. As discussed in, for example,
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FIG. 13. S- and P-state contributions to U�

are shown in the left and right panels, re-
spectively, as a function of ρ/ρ0. The solid,
dashed, dotted, and dot-dashed curves are for
ESC04a–d, respectively. The thin dashed curve
is for NSC97f.

Ref. [49], three-body effects in a nuclear medium could be
described roughly by using effective triple-meson vertices, like
in Fig. 15. Here, the meson lines could be, e.g., scalar, vector,
pomeron exchanges, etc. In view of the big cancellations in
the two-body case for ω + P + ε potentials, one expects also
similar cancellations to take place in Fig. 15. One also expects
that the density-dependent corrections in the nuclear medium
give intermediate range (weak) attraction and short-range
repulsion. In this short and simple discussion of the possible
implications, we only consider the repulsive component.
Figure 15 could be viewed on as the exchange of a meson
between two-nucleons, whereas it is scattered intermediately
by a third one. Then, it is natural to describe such an effect by
a change in the propagator, i.e., by a change of the mass. Here,
we analyze the effects by taking into account the change of the
vector-meson masses using the form

mV (ρ) = mV exp(−αV ρ), (34)

where αV is treated as an adjustable parameter.
On the basis of the SU(3) properties of the ESC model, the

changes of vector-meson masses in a nuclear medium induce

the density-dependent effective repulsions in a rather universal
manner in NN, YN, and YY channels. Then, our first step is to
investigate this effect in usual nuclear matter. Because we
expect big cancellations for the scalar exchanges ε + P , as
well as in the many-body case, we here for simplicity change
only the vector-meson masses for an analysis of the sensitivity
of, e.g., the well-depths with respect to medium effects.

For convenience, our medium-induced effects are handled
in comparison with the three-nucleon interaction (TNI) intro-
duced by Lagaris-Pandharipande [50], which is represented
in simple forms of density-dependent two-body interac-
tions. Here, we refer their parameter sets TNI2 and TNI3,
reproducing nuclear incompressibility 250 and 300 MeV,
respectively. Their TNI is composed of the attractive part
(TNA) and the repulsive part (TNR). Our modeling for the
repulsive component through the change of vector-meson
masses corresponds only to their TNR. Hereafter, TNR (TNA)
parts of TNI2 and TNI3 are denoted as TNR2 and TNR3
(TNA2 and TNA3), respectively.

In the left panel of Fig. 16, we show the saturation curves of
symmetric nuclear matter, namely binding energy per nucleon
as a function of ρ, which are obtained from the G-matrix

TABLE XXII. Values of U� at normal density and partial wave contributions for ESC04a–d and NSC97f (in MeV).

T 1S0
3S1

1P1
3P0

3P1
3P2 D U�

ESC04a 1/2 11.6 −26.9 2.4 2.7 −6.4 −2.0 −0.8
3/2 −11.3 2.6 −6.8 −2.3 5.9 −5.1 −0.2 −36.5

ESC04b 1/2 9.6 −25.3 1.8 1.6 −5.4 −2.1 −0.7
3/2 −9.6 9.9 −5.5 −1.9 5.4 −4.6 −0.2 −27.1

ESC04c 1/2 6.4 −20.6 2.4 2.9 −6.7 −1.6 −0.9
3/2 −10.7 6.9 −8.8 −2.6 6.0 −5.8 −0.2 −33.2

ESC04d 1/2 6.5 −21.0 2.6 2.4 −6.7 −1.7 −0.9
3/2 −10.1 14.0 −8.5 −2.6 5.9 −5.7 −0.2 −26.0

NSC97f 1/2 14.9 −8.3 2.1 2.5 −4.6 0.5 −0.5
3/2 −12.4 −4.1 −4.1 −2.1 6.0 −2.8 −0.1 −12.9
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FIG. 14. Calculated values of m∗
� as a function of ρ/ρ0 for

ESC04a (solid curve), ESC04b (dashed curve), ESC04c (dotted
curve), and ESC04d (dot-dashed curve). The thin dashed curve is
for NSC97f.

calculations with ESC04 (NN). Here, the upper curve denoted
as “QTQ” is calculated with the QTQ prescription. The
lower one denoted as “CIES” is obtained with the choice of
a continuous intermediate-energy spectrum in the G-matrix
equation. The CIES result is known to simulate well the
result, including the three-hole line contributions [51]. In the
following procedure, however, we use the QTQ result because
our G-matrix analyses for hypernuclear systems are based on
the QTQ prescription in this article. The box in the figure
show the area where nuclear saturation is expected to occur
empirically, and the energy minimums of both curves of QTQ
and CIES are found to deviate from this area. To realize the
nuclear saturation, three-body effects should be added on the
contributions of ESC04 (NN) in the same way as the cases
of using the other NN interaction models: Here, we use the
above mentioned TNI. The dashed curves in the right panel
of Fig. 16 are obtained by adding the TNI contributions on
the (QTQ) G-matrix results, where the reduction factor 0.8 is
multiplied on the TNA part so as to give the energy minimum
at an adequate value of −15 ∼ −16 MeV. The two curves
in the figure correspond to the cases of adopting TNI2 and
TNI3. Then, the saturation condition is found to be satisfied
nicely. Hereafter, when we use the TNI together with ESC04

FIG. 15. Triple-meson three-body interaction.

(NN), the factor 0.8 is always multiplied on the TNA part. In
addition, the nucleon energy spectra obtained in the case of
adopting TNI2 are adopted in the YN G-matrix equations in this
work.

Next, we perform the G-matrix calculations with ESC04
(NN) in which the vector-meson masses are changed according
to Eq. (32). Hereafter, the medium-corrected versions of
ESC04 are denoted as ESC04∗(αV ), including the parameter
αV . In the right side of Fig. 16, the two solid curves are
obtained by adding the contributions of TNA2 and TNA3
multiplied by 0.8 to the G-matrix results. It should be noted
here that the TNR parts are switched off because they are
substituted by our medium-induced repulsions. Namely the
TNA parts are used here as phenomenological substitutes for
the three-body attractive effects that are out of our present
scope. The parameter αV in Eq. (32) is chosen so as to simulate
the TNR contributions: The two solid curves in the figure
are obtained by choosing αV = 0.07 fm3 and αV = 0.18 fm3,
which turn out to be quite similar to the dashed curves obtained
by adding the TNI2 and TNI3 contributions, respectively, on
the original G-matrix result. Thus, it turns out that the density
dependence of our medium-induced repulsion is very similar
to that of TNR. Although this similarity is of no fundamental
meaning, it is nicely demonstrated that our medium-induced
repulsion plays the same role as TNR for nuclear saturation.

Let us study the effects of the medium corrections in the
YN sectors of the ESC models. Then, a prospective way is to
perform calculations for the values of αV = 0.07 fm3 and αV =
0.18 fm3 that induce repulsions similar to TNR2 and TNR3,
respectively, in nucleon matter. In the following analysis, we
investigate mainly the case of αV = 0.18 fm3. In Table XXIII,
the calculated values of U� and U� at normal density and their
S-state contributions are shown in the case of taking αV =
0.18 fm3. Comparing these values with those in Table XIX

TABLE XXIII. Calculated values of U� and U� at normal density for ESC04a–
d∗(αV = 0.18). Their S-state contributions are also given. All entries are in MeV.

1/2,1S0
1/2,3S1 U�

1/2,1S0
1/2,3S1

3/2,1S0
3/2,3S1 U�

ESC04a∗ −12.0 −15.8 −30.6 12.2 −26.4 −11.0 8.6 −27.9
ESC04b∗ −11.6 −18.5 −33.0 10.1 −25.5 −9.0 15.2 −19.7
ESC04c∗ −12.3 −25.1 −39.3 7.9 −20.0 −10.3 12.7 −23.6
ESC04d∗ −12.0 −23.0 −37.2 8.3 −20.3 −9.6 19.1 −16.6
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FIG. 16. Binding energy per nucleon B/A

in symmetric nuclear matter as a function of
ρ/ρ0 (saturation curve). The box represents the
area in which saturation occurs empirically. (Left
panel) The two solid curves show the G-matrix
results for ESC04 (NN) with the QTQ and CIES
prescriptions. (Right panel) The dashed curves
are obtained by adding the TNI contributions on
the QTQ result, and the solid curves are for the
medium-corrected versions ESC04∗ (NN). See
the text for the detail.

and Table XXII, we find that the repulsive contributions are
substantial both for U� and U� . In the case of U�, the U�

values for ESC04a–d are too attractive in comparison with the
empirical indication of U� ∼ −30 MeV. These overbinding
values turn out to be improved substantially by our medium-
induced repulsion. Especially, the values for ESC04a/b∗(αV )
are noted to agree well with the above empirical value. Similar
repulsive contributions are seen also in the case of U� , though
the resulting values are still negative. However, it is important
that the repulsive contribution is large in the 3S1(I = 3/2)
state, as discussed later.

It should be emphasized here that the spin-dependent
features of the �N G-matrix interaction are not really affected
by our medium-induced repulsion. For instance, the values of
Uσσ (S) become small only by 0.05 MeV (ESC04a), 0.09 MeV
(ESC04b), 0.10 MeV (ESC04c), and 0.11 MeV (ESC04d)
in the case of taking αV = 0.18 fm3. In the cases of the
P-state contributions such as Uσσ (P ), ULS(P ), and UT (P ), the
changes are negligibly small. The change of the effective mass
m∗

� is also small: The m∗
� values for ESC04a–d∗(α = 0.18) are

smaller than those for ESC04a–d by only 0.01 ∼ 0.02. These
facts suggest interesting possibilities of using ESC04a–d∗(αV )
in various spectroscopic studies of � hypernuclei, where the
parameter αV can be adjusted so as to reproduce experimental
values of B� with almost no influence on spin-dependent
structures of � hypernuclei. Then, we stress that the meaning
of the above choice αV = 0.18 fm3 is only for its similarity to
TNR3.

Our medium-induced repulsions are related intimately
to the problem of maximum masses of neutron stars. As
well known, the repulsive three-body force in high-density
neutron matter, embodied in TNR, plays an essential role
for a stiffening of the EOS of neutron-star matter, assuring
the observed maximum mass of neutron stars. However,
the hyperon mixing in neutron-star matter brings about the
remarkable softening of the EOS, which cancels the effect
of the repulsive three-body force for the maximum mass.

To avoid this serious problem, Nishizaki, Takatsuka, and
one of the authors (Y.Y.) [52,53] introduced the conjecture
that the TNR-type repulsions work universally for YN and
YY as well as for NN. They showed that the role of the
TNR for stiffening the EOS can be recovered clearly by
this assumption. Our model of the medium-induced repulsion
explains their assumption quite naturally. In Fig. 17, we draw
the values of U� as a function of ρ/ρ0 in some cases: The three
solid curve are for ESC04b and ESC04b∗(αV = 0.07) and
ESC04b∗(αV = 0.18), and the two dashed curves are obtained
by adding the TNR2 and TNR3 contributions on the result for

FIG. 17. Calculated values of U� as a function of ρ/ρ0. The
three solid curves are for ESC04b, ESC04b∗(αV = 0.07), and
ESC04b∗(αV = 0.18). The two dashed curves are obtained by adding
the TNR2 and TNR3 contributions on the result for ESC04b. See the
text for the detail.
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ESC04b. It is found, here, our medium-induced repulsions for
αV = 0.07 and αV = 0.18 are very similar to the TNR2 and
TNR3 contributions, respectively, as well as the case of nuclear
saturation curves. Thus, it is clearly demonstrated that our
medium-induced repulsions, which works universally among
octet baryons, will assure the stiffening of the EOS.

In neutron-star matter, the chemical equilibrium condition
for �− given by µ�− = µn + µe− makes �− mixing more
favorable than � mixing controlled by µ� = µn in cases of
neglecting strong interactions. Then, it is an important problem
whether the well depth of �− is attractive or repulsive in
neutron matter. As shown in Table XXIII, our medium-induced
repulsion for �N contributes dominantly in the 3S1(I = 3/2)
state with the largest statistical weight. Thus, this repulsive
effect appears most strongly in the �− well depth in neutron
matter given by the I = 3/2 �N interaction.

In our analysis for hypernuclear systems, we do not
consider the three-body attraction, such as TNA, which
plays an important role for nuclear saturation as well as the
three-body repulsion such as TNR and our medium-induced
effect. The origin of such a part is considered to be in
meson-exchange three-body correlations, being initiated by
Fujita-Miyazawa [54]. Possible counterparts in our hyperonic
matter will be studied in future.

C. Double-� states

Here, we study the �� (11S0) interactions, for which the
experimental information can be obtained from the data of
double-� hypernuclei. In the past, NHC-D [55] has been
used popularly as a standard meson-theoretical model for
S = −2 interactions. The reason was because this interaction is
compatible with strong �� attraction (�B�� = 4 ∼ 5 MeV)
supported by earlier data on double-� hypernuclei. This strong
�� attraction of NHC-D is because of its specific feature that
only the scalar singlet meson is taken into account. Because the
discovery of NAGARA event identified uniquely as 6

��He [56]
in 2001, the �� interaction is established to be rather less
attractive (�B�� ≈ 1 MeV). Then, it is quite important to
investigate what values of �B�� are obtained for ESC04
models.

Let us here evaluate the values of �B��( 6
��He), taking

account of the ��−�N coupling effect explicitly. For
this purpose, we adopt the three-body model composed of
the α+�+� and α+�+N configurations. The effective
��−�� and ��−�N interactions [57] are derived in the
G-matrix framework as follows: We solve the ��−�N−��

coupled-channel G-matrix equation for a �� pair in nuclear
matter, and represent the resultant ��−�� and ��−�N

G matrices as local potentials in coordinate space. These G-
matrix interactions depend on the nucleon Fermi momentum
kF of nuclear matter. Then, it is a problem what value of
kF should be chosen in our calculation for 6

��He. In similar
calculations for 5

�He, the value of kF parameter included in the
�N G-matrix interaction was chosen around 1.0 fm−1 [58].
This value of kF ∼ 1.0 fm−1 agree qualitatively with the value
derived from the average nuclear density felt by the � particle
in 5

�He. Because a sophisticated estimation of the kF value
is not necessary for our purpose of demonstrating features of

the interaction models, we choose this plausible value of kF =
1.0 fm−1 in the present calculations for 6

��He.
Using our ��−�� and ��−�N G-matrix interactions,

three-body variational calculations are performed in the
Gaussian basis functions [59], where the �N−�N interaction
is not taken into account for simplicity. It should be noted that
in our approach high-lying ��−�N−�� correlations are
renormalized into the ��−�� and ��−�N G matrices, and
low-lying ��−�N correlations are treated in the model space
composed of α+�+� and α+�+N configurations. To avoid
the double counting of the ��−�N coupling interaction, it
is necessary that the high-lying ��−�N correlations are not
included in our three-body model space. A practical way for
this problem is to take the two � (� and N) coordinates from
the center of mass of α core, not the relative coordinate between
them explicitly, because the short-range correlations are taken
into account unfavorably in this model space.

As for the interactions between the α cluster and valence
particles (�,�,N), we adopt the phenomenological poten-
tials: For α−� and α−� interactions, we use the two-range
Gaussian potentials given in Ref. [57]. Here, the former is fitted
so as to reproduce the � binding energies of 4

�H and 4
�He.

The strength of the latter (named as Xa1 [57]) is determined
in consideration of the experimental indication that the �

well depth is roughly half of the � one. However, we use
the Kanada-Kaneko potential [60] for the α−N interaction,
designed so as to reproduce scattering phase shifts. In the
α+�+N channel, we take into account the orthogonality
condition between α and N.

In Table XXIV we show the calculated values of
�B��( 6

��He) and �N admixture probabilities P�N in the
cases of using ESC04a–d, NSC97f, and NHC-D. (In the
calculation for NHC-D, the hard-core radius in the 11S0

state is taken as 0.53 fm, and the �� channel is not taken
into account.) The effect of the medium-induced repulsion
is not so remarkable in this case, because the �� G matrix
is calculated at low density (kF = 1.0 fm−1). For instance,
the calculated values for ESC04a∗(α = 0.18) are �B�� =
1.24 MeV and P�N = 0.44%. The calculated �B�� values
should be compared with the experimental value 1.01 ±
0.20+0.18

−0.11 MeV [56]. Then, the calculated values for ESC04a–d
are considered to be more or less reasonable in the present
scope of our simple three-body model.

However, the value of �B�� for NSC97f turns out to be
rather too small compared with the experimental value: The
�� interaction of NSC97f is concluded to be too weak. It
is interesting that our result for NSC97f is quite similar to
the Yamada’s result [61], obtained from the sophisticated
variational calculation with direct use of NSC97f. This
means that our model-space approach with G-matrix effective
interactions simulates nicely the real space approach with
free-space interactions. It was pointed out by Yamada that
the ��−�N−�� coupling treatment leads to the less ��

binding than the ��−�N one because of the existence of a
pseudo bound state in the case of NSC97f. It should be noted
that such a pseudo bound state does not appear in the case
of ESC04a–d. In Ref. [62] the similar result was obtained for
NSC97f by the G-matrix calculation. However, the importance
of the rearrangement effect of the α core for �B��( 6

��He)
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TABLE XXIV. �B��( 6
��He) values (in MeV) are calculated with

G-matrix interactions derived from ESC04a–d, NSC97, and NHC-D.
(The hard-core radius in NHC-D is taken as 0.53 fm.)

�B�� (MeV) P�N (%)

ESC04a 1.36 0.44
ESC04b 1.37 0.45
ESC04c 0.97 1.15
ESC04d 0.98 1.18
NSC97f 0.34 0.19
NHC-D 1.05 0.14

has been pointed out in Refs. [63–65]. It is an open problem
to study core-rearrangement effects on the basis of the
ESC04 models.

The most striking feature of ESC04a–d is the far stronger
��−�N coupling than NSC97f and NHC-D. In Table XXIV,
this feature is seen in larger value of P�N in the case of
ESC04a–d. In particular, it is very curious that the ��−�N

couplings of ESC04c/d are extremely strong. As shown in
Ref. [57], such a coupling effect appears dramatically in 5

��H
and 5

��He because of the small energy differences between
ground �−� states and �−α states. A comprehensive study
on the ��−�N coupling is now in progress on the basis of
ESC04a–d.

D. Properties of �N G matrix

There is no �N-scattering data at present. We have only un-
certain information on �-nucleus interactions experimentally.
We consider that the most reliable data in the present stage
was given by the BNL-E885 experiment [66], in which they
measured the missing mass spectra for the 12C(K−,K+)X
reaction. Reasonable agreement between this data and theory is
realized by assuming a �-nucleus potential U�(ρ) = −V0f (r)
with well depth V0 ∼ 14 MeV within the Wood-Saxon (WS)
prescription.

Let us here derive the potential energies U� using the G-
matrix theory in the same way as the cases of U� and U� . In
the past, NHC-D gave rise to attractive values of U�, whereas
strongly repulsive values were obtained for the other Nijmegen
models. Then, it is very curious what values of U� are obtained
for ESC04a–d.

In the same way as in the �N case, we solve the �N

starting channel G-matrix equation in the QTQ prescription.
Likewise, the � conversion width ��, because of an energy-
conserving �N−�� transition, is not calculated here. In
this case, the channel-coupling treatments are performed for
��−�N−�� and �N−��−�� channels.

In Table XXV we show the calculated values of U�

at normal density and their partialwave contributions for
ESC04a–d and ESC04d∗(αV = 0.18). For comparison, the
result for NHC-D is also given, where the hard-core radii are
taken as 0.50 fm in all channels and the �� and �� channels
are not taken into account. Now, the remarkable difference
among ESC04a–d is revealed: These four versions turn out to
give rise to completely different values of U�. It should be
noted that the ESC models such as ESC04c/d can bring about

TABLE XXV. Values of U� at normal density and partial
wave contributions for ESC04a–d and ESC04d∗(αV = 0.18). For
comparison, the result for NHC-D is also shown (hard-core radii
are taken as 0.50 fm in all channels.). All entries are in MeV.

T 1S0
3S1

1P1
3P0

3P1
3P2 U�

ESC04a 0 8.1 −10.0 1.0 −0.3 −0.4 −0.7
1 −4.5 21.8 −0.7 0.7 −0.1 0.3 +15.1

ESC04b 0 5.9 −2.4 0.7 0.7 1.0 −0.4
1 0.5 27.9 0.6 0.9 −0.3 1.2 +36.3

ESC04c 0 5.9 −15.7 1.2 −0.1 −1.8 −1.2
1 6.8 1.9 −0.8 0.1 −0.3 −1.7 −5.5

ESC04d 0 6.4 −19.6 1.1 1.2 −1.3 −2.0
1 6.4 −5.0 −1.0 −0.6 −1.4 −2.8 −18.7

ESC04d∗ 0 6.3 −18.4 1.2 1.5 −1.3 −1.9
1 7.2 −1.7 −0.8 −0.5 −1.2 −2.5 −12.1

NHC-D 0 −4.5 2.6 −1.8 −0.2 −0.6 −1.7
1 0.2 5.3 −2.6 0.0 −2.9 −5.6 −11.9

attractive �-nucleus potentials predicting the existence of �

hypernuclei. It is very interesting that ESC04d∗, including the
medium-induced repulsion, leads to the � well depth similar
to the above “experimental” value. Though the attractive value
of U� is obtained also in the case of NHC-D, its partial-wave
contribution is completely different from those in the case
of ESC04c/d. In the former case, the attractive U� is owing
to the strong P-state attraction. In the latter case, however,
the strong attraction in the 13S1 state plays an essential role
for it. Because of this reason, various � hypernuclear states
will be predicted even in light s-shell systems on the basis of
ESC04c/d. Level structures of these � states have to reflect the
peculiar spin and isospin dependences of the underlying �N

interactions. The detailed analysis will be given in our next
article.

XI. DISCUSSION AND CONCLUSIONS

We have shown in this article that the ESC approach to the
nuclear force problem is able to make a connection between
on the one hand the presently available baryon-baryon data
and on the other hand the underlying quark structure of the
baryons and mesons. Namely a successfull description of both
the NN- and YN-scattering data is obtained with meson-baryon
coupling parameters that are almost all explained by the
QPC model. This at the same time in obediance of the
strong constraint of no bound states in the S = −1 systems.
Therefore, the ESC04 models of this article are an important
step in the determination of the baryon-baryon interactions
for low-energy scattering and the description of hypernuclei
in the context of broken SU(3) symmetry. The values for
many parameters, which in previous work were considered
to free to large extend, are now limited strongly, and tried
to be made consistent with the present theoretical view on
low-energy hadron physics. This is in particularly the case
for the F/(F + D) ratios of the MPE interactions. These
ratios for the vector- and scalar-mesons are rather close to
the QPC-model predictions. This holds also for the values of
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the coupling constants. Here, the introduction of a zero in
the form factor is important, leading to a sizable reduction
in the scalar couplings. It is interesting that the features of σ

exchange with a zero in the form factor are very similar to
those obtained in a chiral unitary approach [67].

The application of the QQ̄-pair creation to baryon-meson
couplings using a 3S1 model [68] for pseudoscalar and vector-
meson couplings, and the nucleon-nucleon interactions has
first been attempted by Fujiwara and Hecht [69]. We did not
explore this possibility, but it is not unlikely that this alternative
leads to a similar scheme of couplings as the 3P0 model.

The G-matrix results show that basic features of hyper-
nuclear data are reproduced nicely by ESC04, improving
some weak points of the soft-core OBE models NSC89 [3]
and NSC97 [4]. In spite of this superiority of ESC04 for
hypernuclear data, perhaps not every aspect of the effective
(two-body) interactions in hypernuclei can be described by
this model. For example, this could be the case for the well
depth U� . From the results it is clear that a good fit to the
scattering data not necessarily means success in the G-matrix
results. To explain this one can think of two reasons: (i) the
G-matrix results are sensitive to the two-body interactions
below 1 fm, whereas the present YN-scattering data are not,
(ii) other than two-body forces play an important role. How-
ever, since the NN ⊕ YN fit is so much superior for ESC04-
than for OBE-models, we are inclined to look for solutions to
the mentioned problems outside the two-body forces. A natural
possibility is the presence of 3BFs in hypernuclei which can be
viewed as generating effective two-body forces, which could

solve the well-depth issues. In the case of the �B�� also 3BF
could be operating. This calls for an evaluation of the 3BFs
NNN,�NN, �NN,��N , etc., for the soft-core ESC model,
consistent with its two-body forces.

The �N p waves seem to be better, which is the result of the
truly simultaneous NN + YN fitting. This is also reflected in
the better K� value, making the well-known small spin-orbit
splitting smaller.

Finally, we mention the extensive work on baryon-baryon
interactions using the resonating group method (RGM),
exploiting quark-gluon exchange (QGE) in conjunction with
OBE, taking full account of the antisymmetrization of the
six quarks in the two-baryon systems [70]. A remarkable
difference with the ESC models is that QGE leads to strong
repulsion in the �N (3S1, I = 3/2)- and the �N (1S0, I =
1/2) channels. In contrast, in this article we have assumed
that QGE is very suppressed dynamically.
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[19] M. Chaichain and R. Kögerler, Ann. Phys. (NY) 124, 61 (1980).
[20] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev. D 17,

768 (1978).
[21] R. A. Bryan and A. Gersten, Phys. Rev. D 6, 341 (1972).
[22] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J.

de Swart, Phys. Rev. C 48, 792 (1993).
[23] R. A. M. Klomp (private communication).
[24] J. K. Ahn et al., Nucl. Phys. A761, 41 (2005); H. Kanda (private

communication).
[25] V. G. J. Stoks and T. A. Rijken, Nucl. Phys. A613, 311

(1997).
[26] G. Alexander, U. Karshon, A. Shapira, G. Yekutieli,

R. Engelmann, H. Filthuth, and W. Lughofer, Phys. Rev. 173,
1452 (1968).

[27] B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein, Phys.
Rev. 175, 1735 (1968).

[28] F. Eisele, H. Filthuth, W. Fölisch, V. Hepp, E. Leitner, and
G. Zech, Phys. Lett. B37, 204 (1971).

[29] R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge, Phys. Lett.
21, 587 (1966).

[30] V. Hepp and M. Schleich, Z. Phys. 214, 71 (1968).
[31] D. Stephen, Ph.D. thesis, University of Massachusetts, 1970;

Z. Phys. 214, 71 (1968).
[32] J. J. de Swart and C. Dullemond, Ann. Phys. 19, 458 (1962).

044008-23



TH. A. RIJKEN AND Y. YAMAMOTO PHYSICAL REVIEW C 73, 044008 (2006)

[33] J. J. de Swart, M. M. Nagels, T. A. Rijken, and P. A. Verhoeven,
Springer Tracts Mod. Phys. 60, 138 (1971).

[34] Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki, Prog. Theor.
Phys. 100, 957 (1998).

[35] ESC04 YN potentials, see http://nn-online.org.
[36] B. Sakita and K. C. Wali, Phys. Rev. 139, B1355 (1965).
[37] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and

Y. Yamamoto, Phys. Rev. C 65, 011301(R) (2001).
[38] A. Nogga, H. Kamada, and W. Glöckle, Phys. Rev. Lett. 88,
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[58] Y. Yamamoto and H. Bandō, Prog. Theor. Phys. Suppl. 81, 9

(1985).
[59] Y. Yamamoto, H. Takaki, and K. Ikeda, Prog. Theor. Phys. 82,

13 (1989).
[60] H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto, Prog. Theor.

Phys. 61, 1327 (1979).
[61] T. Yamada, Phys. Rev. C 69, 044301 (2004).
[62] I. Vidaña, A. Ramos, and A. Polls, Phys. Rev. C 70, 024306

(2004).
[63] M. Kohno, Y. Fujiwara, and Y. Akaishi, Phys. Rev. C 68, 034302

(2003).
[64] Q. N. Usmani, A. R. Bodmer, and B. Sharma, Phys. Rev. C 70,

061001(R) (2004).
[65] H. Nemura, S. Shinmura, Y. Akaishi, and Khin Swe Myint, Phys.

Rev. Lett. 94, 202502 (2005).
[66] P. Khaustov et al., Phys. Rev. C 61, 054603 (2000).
[67] E. Oset, H. Toki, M. Mizobe, and T. T. Takahashi, Prog. Theor.

Phys. 103, 351 (2000).
[68] Y. W. Yu and Z. Y. Zhang, Nucl. Phys. A426, 557

(1984).
[69] Y. Fujiwara, Prog. Theor. Phys. 88, 933 (1992), and the

references cited here.
[70] Y. Fujiwara, T. Fujita, M. Kohno, C. Nakamoto, and Y. Suzuki,

Phys. Rev. C 65, 014002 (2002), and cited references.

044008-24


