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Extended-soft-core baryon-baryon model. I. Nucleon-nucleon scattering with the ESC04 interaction
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The NN results are presented from the extended-soft-core (ESC) interactions. They consist of local and
nonlocal potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of pseudoscalar,
vector, scalar, and axial mesons, (ii) diffractive exchanges, (iii) two-pseudoscalar exchanges (PS-PS), and (iv)
meson-pair exchanges (MPE). We describe a fit to the pp and np data for 0 � Tlab � 350 MeV, having a typical
χ 2/Ndata = 1.155. Here, we used ∼20 quasi-free physical parameters, which are coupling constants and cutoff
masses. A remarkable feature of the couplings is that we were able to require them to follow rather closely
the pattern predicted by the 3P0 quark-pair-creation (QPC) model. As a result the 11 OBE couplings are rather
constrained, i.e., quasi free. Also, the deuteron binding energy and the several NN scattering lengths are fitted.
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I. INTRODUCTION

In a series of three papers we present the results re-
cently obtained with the extended-soft-core (ESC) model
[1] for nucleon-nucleon (NN), hyperon-nucleon (YN), and
hyperon-hyperon (YY) data with S = −2. For NN [1–5] it has
been demonstrated that the ESC-model interactions give an
excellent description of the NN-data. Also, for YN the first
attempts [6,7] showed that the ESC approach is potentially
rather promising to give improvements with respect to the one-
boson-exchange (OBE) soft-core models [8,9]. As compared
with the earlier versions of the ESC model, we introduce in
these papers two innovations. First, we introduce a zero in
the form factor of the scalar mesons. Second, we exploit the
exchange of the axial-vector mesons. In this first paper of the
series, we display recent results fitting exclusively the NN data,
giving the NN model presented in this paper, ESC04(NN). In
the second paper, henceforth referred to as II [10], we report
the results for NN ⊕ YN, in a simultaneous fit of the NN and
YN data. This is new with regard to our procedure described in
previous publications on the Nijmegen work. The advantages
will be discussed in II. In the third paper, henceforth referred
to as III [11], we report the predictions for YN and YY with
S = −2.

A general modern theoretical framework for the soft-core
interactions is provided by the so-called standard model (SM).
Starting from the SM, we consider the stage where the heavy
quarks are integrated out, leaving an effective QCD world for
the u, d, s quarks. The generally accepted scenario is now
that the QCD vacuum is unstable for momentum transfers
for which Q2 � �2

χSB ≈ 1 GeV2 [12], causing spontaneous
chiral-symmetry breaking (χSB). A phase transition of the
vacuum generates constituent quark masses via 〈0|ψ̄ψ |0〉 �= 0,
and thereby the gluon coupling αs is reduced substantially.
In view of the small pion mass, the Nambu-Goldstone
bosons associated with the spontaneous χSB are naturally
identified with the pseudoscalar mesons. Also, as a result
of the phase transition the dominating degrees of freedom
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are the baryons and mesons. In this context, low-energy
baryon-baryon interactions are described naturally by meson
exchange by using form factors at the meson-baryon vertices.
This way, the phase transition has transformed the effective
QCD world into an effective hadronic world. To reduce this
complex world with its numerous degrees of freedom, we
consider a next step: envisioning integrating out of the heavy
mesons and baryons by using a renormalization procedure
a la Wilson [13], we restrict ourselves to mesons with M �
1 GeV/c2, arriving at a so-called effective field theory as the
proper arena to describe low-energy baryon-baryon scattering.
This is the general physical basis for the Nijmegen soft-core
models.

Because of the composite nature of the mesons in QCD,
the proper description of meson exchange is quite naturally
in terms of Regge trajectories. For example, in the Bethe-
Salpeter approach to the QQ̄ system any reasonable interaction
leads to Regge poles. Therefore, in the Nijmegen soft-core
approach meson exchange is treated as the dominant part
of the mesonic reggeon exchange. This includes also the
J = 0 contributions from the tensor trajectories (f2, f

′
2, and

A2). In elastic scattering we notice that the most important
exchange at higher energies is pomeron exchange. Therefore
in the soft-core OBE models [14] the traditional OBE model
was extended by including the pomeron, and the pomeron
parameters determined from the low-energy NN data were
in good agreement with those found at high energy. This
feature is also found to persist in the ESC models. For a more
elaborate discussion of the pomeron and its importance for the
implementation of chiral symmetry in the soft-core models,
we refer to Refs. [8,15].

The dynamics in the ESC model is constructed by em-
ploying the following mesons together with flavor SU(3)
symmetry:

(i) The pseudoscalar-meson nonet π, η, η′,K with the η −
η′ mixing angle θP = −23.0◦ from the Gell-Mann-
Okubo mass formula.

(ii) The vector-meson nonet ρ, φ,K
, ω with the φ − ω ideal
mixing angle θV = 37.56◦.

(iii) The axial-vector-meson nonet a1, f1K1, f
′
1 with the f1 −

f ′
1 mixing angle θA = 47.3◦ [4].
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(iv) The scalar-meson nonet a0(962) = δ, f0(993) = S
,

κ, f0(760) = ε with a free S
 − ε mixing angle θS to
be determined in a fit to the YN data.

(v) The diffractive contribution from the pomeron P, and the
tensor mesons f2, f

′
2, and A2. These interactions will

give mainly repulsive contributions of a Gaussian type to
the potentials in all channels. In the present ESC model
we have taken gA2 = gBBf2 = gBBf ′

2
= 0; i.e., only the

pomeron contributes.

The BBM vertices are described by (i) coupling constants
and F/(F + D) ratios obeying broken flavor SU(3)-symmetry
(see paper II for details) and (ii) Gaussian form factors. This
type of form factor is like the often used residue functions
in Regge phenomenology. Also, from the point of view of
the (nonrelativistic) quark models a Gaussian behavior of the
form factors is most natural. Here, we remark that in the ESC
models the two-meson-cut contributions to the form factors are
taken into account by using meson-pair exchanges (MPEs) (see
below). Evidently, with cutoff masses � ≈ 1 GeV, these form
factors ensure a soft behavior of the potentials in configuration
space at small distances. The form factors depend on the
SU(3) assignment of the mesons, as described in detail in
Ref. [9].

The potentials of the ESC model are generated by

(i) One-boson-exchange (OBE). The treatment of the OBE
in the soft-core approach has been given for NN in
Ref. [14], and for YN in Ref. [8]. With respect to these
OBE interactions, the present ESC model contains, as
mentioned above, two innovations. First, in the scalar
meson form factor we have introduced a zero. This zero
is natural in the 3P0-pair-creation (QPC) [16–18] model
for the coupling of the mesonic quark-antiquark (QQ̄)
system to baryons. The scalar meson, being itself in
this picture a 3P0 QQ̄-bound state, gets a zero when it
couples to a baryon. A pragmatic reason to exploit such
a zero is that in this way we were able to avoid a bound
state in �N scattering. Second, for the first time we
incorporated axial-meson exchange into the potentials.
As is well known, they are considered the chiral partners
of the vector mesons. It turned out that the strength
of the axial-meson exchanges is found to agree with
the theoretical determination ga1 ≈ (ma1/mπ )fNNπ

[19,20].
(ii) Two-meson-exchange (TME). The configuration-space

soft-core uncorrelated two-meson exchange for NN has
been derived in Refs. [2,21]. We use these potentials in
this paper for PS-PS exchange. Here, we give a complete
SU(3)-symmetry treatment in NN, as well as in YN
and YY. For example, we include double K exchange
in NN scattering. Similarly, in papers II and III they
are generalized to YN and YY, respectively. The PS-PS
potentials contain the important long-range two-pion
potentials. The other kind of two-meson exchanges such
as pseudoscalar-vector (PS-V) and pseudoscalar-scalar
(PS-S), are supposed to be less important because of
cancellations and can be covered by OBE in an effective
manner. Of course, this gives some contamination in the
meson-baryon coupling constants.

(iii) Meson-pair-exchange (MPE). These exchanges been
described for NN and justified in Ref. [3]. Again, in II
and III the generalization is used in YN and YY. Also, the
treatment given is complete as far as SU(3) is concerned.
In Refs. [3,4] it is argued that the MPE potentials are
thought to represent effects of heavy-meson exchange as
well as meson-baryon resonances. Here we in particularly
think about the πN resonances, like �33.

A remarkable achievement with the ESC-model, in the
version as described above, is that for the first time we could
constrain the NNM couplings such that they are close to the
predicted values of the QPC model. With the same parameters
for the quark model, we find relations like gε ≈ gω ≈ 3gρ ≈
3ga0 . Moreover, with the same 3P0 parameters the predicted
ga1 agrees well with that of Ref. [19].

A particular new feature of these new ESC models is that
we can allow for SU(3)-symmetry breaking of the coupling
constants. In this breaking it is assumed that the amplitude for
the creation of strange quarks from the vacuum is different than
for nonstrange quarks. We consider this possibility explicitly
in paper II, but in this paper we will assume, apart from meson
mixing, no such SU(3) breaking.

The contents of this paper is as follows. In Sec. II we
review the definition of the ESC potentials in the context of
the relativistic two-body equations and the Thompson and
Lippmann-Schwinger equations. Here we exploit the Macke-
Klein [22] framework in field theory. For the Lippmann-
Schwinger equation we introduce the usual potential forms
in Pauli spinor space. We include here the central (C), the
spin-spin (σ ), the tensor (T), the spin-orbit (SO), the quadratic
spin-orbit (Q12), and the antisymmetric spin-orbit (ASO)
potentials. For TME exchange, in the approximations made
in Refs. [2,3] only the central, spin-spin, tensor, and spin-orbit
potentials occur. In Sec. III the ESC potentials in momentum
space are given, emphasizing the differences with earlier
publications on the soft-core interactions. We discuss the OBE
potentials, the PS-PS-interactions, and the MPE interactions.
In Sec. IV we discuss the coupling constants from the point of
view of the 3P0 model. In Sec. V the NN results are displayed for
coupling constants, scattering phases, low-energy parameters,
and deuteron properties. Finally, in Sec. VI we give a general
discussion and outlook.

Appendix contains the derivation of the axial-meson-
exchange potentials.

II. TWO-BODY INTEGRAL EQUATIONS IN
MOMENTUM SPACE

A. Relativistic two-body equations

We consider the nucleon-nucleon reactions

N (pa, sa) + N (pb, sb) → N (pa′ , sa′ ) + N (pb′ , sb′ ) (2.1)

with the total and relative four-momenta for the initial and the
final states,

P = pa + pb, P ′ = pa′ + pb′ ,
(2.2)

p = 1
2 (pa − pb), p′ = 1

2 (pa′ − pb′ ),
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which become in the center-of-mass system (c.m. system) for
a and b on mass shell

P = (W, 0), p = (0, p), p′ = (0, p′). (2.3)

In general, the particles are off mass shell in the Green
functions. In the remainder of this section, the on-mass-shell
momenta for the initial and the final states are denoted,
respectively, p and p′. So, p0

a = Ea(p) = √
p2 + M2

a and

p0
a′ = Ea′ (p′) =

√
p′2 + M2

a′ , and similarly for b and b′.
Because of translation-invariance P = P ′ and W = W ′ =
Ea(p) + Eb(p) = Ea′(p′) + Eb′ (p′). The two-particle states
we normalize in the following way:

〈p′
1, p′

2|p1, p2〉 = (2π )32E(p1)δ3(p′
1 − p1)

× (2π )32E(p2)δ3(p′
2 − p2). (2.4)

The relativistic two-body scattering-equation for the scat-
tering amplitude reads as [23–25]

M(p′, p; P ) = I (p′, p; P ) +
∫

d4p′′ I (p′, p′′; P )

×G(p′′; P )M(p′′, p; P ), (2.5)

where M(p′, p; P ) is a 16 × 16 matrix in Dirac space and
the contributions to the kernel I (p, p′) come from the two-
nucleon-irreducible Feynman diagrams. In writing Eq. (2.5)
we have taken out an overall δ4(P ′ − P ) function, and the
total four-momentum conservation is implicitly understood
henceforth.

The two-baryon Green function G(p; P ) in Eq. (2.5) is
simply the product of the free propagators for, in general, the
baryons of the first and second lines. The baryon Feynman
propagators are given by the well-known formula

G
(s)
{µ},{ν}(p) =

∫
d4x〈0|T (

ψ
(s)
{µ}(x)ψ̄ (s)

{ν}(0)
)|0〉eip·x

= �s(p)

p2 − M2 + iδ
, (2.6)

where ψ
(s)
{µ} is the free Rarita-Schwinger field that describes

the nucleon (s = 1
2 ), the �33-resonance (s = 3

2 ), etc. (see, for
example Ref. [26]). For the nucleon, the only case considered
in this paper, {µ} = ∅ and for, e.g., the � resonance {µ} = µ.
For the rest of this paper we deal only with nucleons.

In terms of these one-particle Green functions the two-
particle Green function in Eq. (2.5) is

G(p; P ) = i

(2π )4

[
�(sa )

(
1
2P + p

)(
1
2P + p

)2 − M2
a + iδ

](a)

×
[

�(sb)
(

1
2P − p

)(
1
2P − p

)2 − M2
b + iδ

](b)

. (2.7)

Using now a complete set of on-mass-shell spin s states in
the first line of Eq. (2.6) one finds that the Feynman propagator

of a spin-s baryon off mass shell can be written as [27]

�(s)(p)

p2 − M2 + iδ
= M

E(p)

[
�

(s)
+ (p)

p0 − E(p) + iδ

− �
(s)
− (−p)

p0 + E(p) − iδ

]
, (2.8)

for s = 1
2 , 3

2 , . . . . Here, �
(s)
+ (p) and �

(s)
− (p) are the on-mass-

shell projection operators on the positive- and negative-energy
states. For the nucleon they are

�+(p) =
+1/2∑

σ=−1/2

u(p, σ ) ⊗ ū(p, σ ),

(2.9)

�−(p) = −
+1/2∑

σ=−1/2

v(p, σ ) ⊗ v̄(p, σ ),

where u(p, σ ) and v(p, σ ) are the Dirac spinors for spin-1/2
particles, and E(p) =

√
p2 + M2, with M the nucleon mass.

Then, in the c.m. system, where P = 0 and P0 = W , the Green
function can be written as

G(p; W ) = i

(2π )4

(
Ma

Ea(p)

)[
�

(sa )
+ (p)

1
2W + p0 − Ea(p) + iδ

− �
(sa )
− (−p)

1
2W + p0 + Ea(p) − iδ

] (
Mb

Eb(p)

)

×
[

�
(sb)
+ (−p)

1
2W − p0 − Eb(p) + iδ

− �
(sb)
− (p)

1
2W − p0 + Eb(p) − iδ

]
. (2.10)

Multiplying out Eq. (2.10), we write the ensuing terms in
shorthand notation:

G(p; W ) = G++(p; W ) + G+−(p; W )

+G−+(p; W ) + G−−(p; W ), (2.11)

where G++ etc. corresponds to the term with �
sa+�

sb+ etc.
Introducing the spinorial amplitudes

Mr ′s ′;rs(p
′, p; P ) = ūr ′

(p′
a, s

′
a)ūs ′

(p′
b, s

′
b)M(p′, p; P )

× ur (pa, sa)us(pb, sb), (r, s = +,−),

(2.12)

with (r, s) = + for the positive-energy Dirac spinors and
(r, s) = − for the negative-energy ones. Then, the two-body
equation (2.5) for the spinorial amplitudes becomes

Mr ′s ′;rs(p
′, p; P ) = Ir ′s ′;rs(p

′, p; P )

+
∑
r ′′,s ′′

∫
d4p′′Ir ′s ′;r ′′s ′′ (p′, p′′; P )

×Gr ′′s ′′ (p′′; P )Mr ′′s ′′;rs(p
′′, p; P ).

(2.13)

Invoking dynamical pair suppression, as discussed in
Ref. [21], Eq. (2.13) reduces to a 4 × 4-dimensional equation
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for M++;++, i.e.,

M++;++(p′, p; P ) = I++;++(p′, p; P )

+
∫

d4p′′ I++;++(p′, p′′; P )

×G++(p′′; P )M++;++(p′′, p; P ),

(2.14)

with the Green function

G++(p; W ) = i

(2π )4

[
MaMb

Ea(p)Eb(p)

]
×

[
1

2
W + p0 − Ea(p) + iδ

]−1

×
[

1

2
W − p0 − Eb(p) + iδ

]−1

. (2.15)

B. Three-dimensional equation

In Ref. [21] we introduced starting from the Bethe-Salpeter
equation for the two-baryon wave function ψ(pµ) and apply-
ing the Macke-Klein procedure [22]. In this paper we employ
the same procedure, but now for the two-baryon scattering
amplitude M(p′, p; P ). For any function f (p1, . . . , pn) we
define the projection [28]

PR,pi
f (p1, . . . , pn) = f (p1, . . . , pn)PL,i

≡
∮

UHP
dpi,0AW (pi)f (. . . , pi, . . .),

(2.16)

where the contour consists of the real axis and the infinite
semicircle in the upper half-plane (UHP), and with Macke’s
right-inverse of the

∫
dp0 operation

AW (p) = (2πi)−1

(
1

p0 + Ep − W − iδ

+ 1

−p0 + Ep − W − iδ

)
= − 1

2πi

W − W(p)

F
(a)
W (p, p0)F (b)

W (−p,−p0)
. (2.17)

Here we used the frequently used notation

FW (p, p0) = p0 − E(p) + 1
2W + iδ,

(2.18)
W(p) = Ea(p) + Eb(p).

Notice that the Green function (2.15) can be written as

G++(p; W ) = 1

(2π )3

[
MaMb

Ea(p)Eb(p)

]
×AW (p) (W − W(p) + iδ)−1 . (2.19)

Now we make the rather solid assumption that for the
scattering amplitudes the UHP contains no poles or branch
points in the p0 variable. Then one sees from Eq. (2.16) that as
a result of the PR,pi

operation the argument pi0 → W − E(pi),

and similarly for PL,pi
. Introducing the projections

PR,p′M++;++(p′, p; P )PL,p ≡ M(p′, p|W ), (2.20a)

PR,p′I++;++(p′, p; P )PL,p ≡ K irr(p′, p|W ), (2.20b)

we apply this to Eq. (2.14). This gives

M(p′, p|W ) = K irr(p′, p|W ) +
∫

d3p′′

(2π )3

×
[

MaMb

Ea(p′′)Eb(p′′)

]
(W − W(p′′) + iδ)−1

×
{∫ ∞

−∞
dp′′

0I++;++(p′, p′′; P )|p′
0=W−E(p′)

×AW (p′′) M++;++(p′′, p; P )|p0=W−E(p)

}
.

(2.21)

Next, we redefine M(p′′, p|W ) as

M(p′, p|W ) →
√

MaMb

Ea(p′)Eb(p′)
M(p′, p|W )

√
MaMb

Ea(p)Eb(p)
,

(2.22)

and similarly for K irr(p′′, p|W ). The thus redefined quantities
again obey Eq. (2.21), except for the factor [. . .] on the right-
hand side. Closing now the contour of the p′′

0 integration in the
upper half-plane, one again picks up only the contribution at
p′′

0 = W − E(p′′), which means that Eq. (2.21) becomes the
Thompson equation [29]:

M(p′, p|W ) = K irr(p′, p|W ) +
∫

d3p′′

(2π )3
K irr

× (p′, p′′|W )E(+)
2 (p′′; W )M(p′′, p|W ),

(2.23)

where E
(+)
2 (p′′; W ) = (W − W(p′′) + iδ)−1 . Written explic-

itly, we have from Eq. (2.20b) that the two-nucleon irreducible
kernel is given by

K irr(p′, p|W ) = − 1

(2π )2

√
MaMb

Ea(p′)Eb(p′)

√
MaMb

Ea(p)Eb(p)

× [W − W(p′)][W − W(p)]

×
∫ +∞

−∞
dp′

0

∫ +∞

−∞
dp0

{[
F

(a)
W (p′, p′

0)

×F
(b)
W (−p′,−p′

0)
]−1

[I (p′
0, p′; p0, p)]++,++

× [
F

(a)
W (p, p0)F (b)

W (−p,−p0)
]−1}

, (2.24)

which is the same expression that we exploited in our previous
papers, e.g., Refs. [2,5,21]. In the latter we exploited the
three-dimensional wave function according to Salpeter [30]
combined with the Macke-Klein ansatz [22]. For the scattering
amplitude the derivation given above is more direct. For
a discussion and comparison with other three-dimensional
reductions of the Bethe-Salpeter equation we refer to Ref. [28].
In case one does not assume strong pair suppression, one
must study instead of Eq. (2.14) a more general equation
with couplings between the positive and the negative-energy
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spinorial amplitudes. Also, to this more general case one can
apply the described three-dimensional reduction, and we refer
the reader to Ref. [28] for a treatment of this case.

The M/E factors in Eq. (2.24) are due to the difference
between the relativistic and the nonrelativistic normalization
of the two-particle states. In the following we simply put
M/E(p) = 1 in the kernel K irr, Eq. (2.24). The corrections
to this approximation would give (1/M)2 corrections to the
potentials, which we neglect in this paper. In the same approx-
imation there is no difference between the Thompson [29]
and the Lippmann-Schwinger equations when the connection
between these equations is made by using multiplication
factors. Henceforth, we will not distinguish between the two.

The contributions to the two-particle irreducible kernel K irr

up to second order in the meson exchange are given in detail
in Refs. [2,3].

C. Lippmann-Schwinger equation

The transformation of Eq. (2.23) to the Lippmann-
Schwinger equation can be effectuated by defining

T (p′, p) = N (p′)M(p′, p|W )N (p), (2.25a)

V (p′, p) = N (p′)K irr(p′, p|W )N (p), (2.25b)

where the transformation function is

N (p) =
√

p2
i − p2

2MN [E(pi) − E(p)]
. (2.26)

Application of this transformation yields the Lippmann-
Schwinger equation,

T (p′, p) = V (p′, p) +
∫

d3p′′

(2π )3

×V (p′, p′′)g(p′′; W ) T (p′′, p) (2.27)

with the standard Green function

g(p; W ) = MN

p2
i − p2 + iδ

. (2.28)

The corrections to the approximation E
(+)
2 ≈ g(p; W ) are of

order 1/M2, which we neglect hencforth.
The transition from Dirac spinors to Pauli spinors is given in

Appendix C of Ref. [21], where we write for the the Lippmann-
Schwinger equation in the four-dimensional Pauli-spinor space

T (p′, p) = V(p′, p) +
∫

d3p′′

(2π )3

×V(p′, p′′)g(p′′; W )T (p′′, p). (2.29)

The T operator in Pauli spinor space is defined by

χ
(a)†
σ ′

a
χ

(b)†
σ ′

b
T (p′, p) χ (a)

σa
χ (b)

σb
= ūa(p′, σ ′

a)ūb(−p′, σ ′
b)

× T̃ (p′,p) ua(p,σa)ub(−p,σb),

(2.30)

and similarly for the V operator. As in the derivation of the
OBE potentials [14,31], we make off shell and on shell the ap-
proximations E(p) = M + p2/2M and W = 2

√
p2

i + M2 =
2M + p2

i /M everywhere in the interaction kernels, which, of

course, is fully justified only for low energies. In contrast to
these kind of approximations, of course, the full k2 dependence
of the form factors is kept throughout the derivation of
the TME. Notice that the Gaussian form factors suppress
the high-momentum transfers strongly. This means that the
contribution to the potentials from intermediate states that are
far off energy shell can not be very large.

Because of rotational invariance and parity conservation,
theT and matrix, which is a 4 × 4 matrix in Pauli-spinor space,
can be expanded into the following set of, in general, eight
spinor invariants; see for example Ref. [32]. Introducing [33]

q = 1
2 (p′ + p), k = p′ − p, n = p × p′, (2.31)

with, of course, n = q × k, we choose for the operators Pj in
spin space

P1 = 1, (2.32a)

P2 = σ 1 · σ 2, (2.32b)

P3 = (σ 1 · k)(σ 2 · k) − 1

3
(σ 1 · σ 2)k2, (2.32c)

P4 = i

2
(σ 1 + σ 2) · n, (2.32d)

P5 = (σ 1 · n)(σ 2 · n), (2.32e)

P6 = i

2
(σ 1 − σ 2) · n, (2.32f)

P7 = (σ 1 · q)(σ 2 · k) + (σ 1 · k)(σ 2 · q), (2.32g)

P8 = (σ 1 · q)(σ 2 · k) − (σ 1 · k)(σ 2 · q). (2.32h)

Here we follow Ref. [8], where in contrast to Ref. [14], we have
chosen P3 to be a purely tensor-force operator. The expansion
in spinor invariants reads as

T (p′, p) =
8∑

j=1

T̃j (p′2, p2, p′ · p)Pj (p′, p). (2.33)

Similarly to in Eq. (2.33), we expand the potentials V. Again
following Eq. [8], we neglect the potential forms P7 and P8

and also the dependence of the potentials on k · q. Then the
expansion (2.33) reads for the potentials as follows:

V =
4∑

j=1

Ṽj (k 2, q 2)Pj (k, q). (2.34)

III. EXTENDED-SOFT-CORE POTENTIALS
IN MOMENTUM SPACE

The potential of the ESC model contains the contributions
from (i) one-boson exchanges, Fig. 1, (ii) uncorrelated two-
pseudoscalar-exchange, Fig. 2 and Fig. 3, and (iii) meson-pair-
exchange, Fig 4. In this section we review the potentials and
indicate the changes with respect to earlier papers on the OBE
and ESC models.

A. One-boson-exchange interactions in momentum space

The OBE potentials are the same as given in Refs. [8,14],
with the exception of (i) the zero in the scalar form factor
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p

p’

-p

-p’

k

(a)

p

p’

-p

-p’

k

(b)

FIG. 1. One-boson-exchange graphs: the dashed lines with mo-
mentum k refers to the bosons: pseudoscalar, vector, axial-vector, or
scalar mesons.

and (ii) the axial-vector-meson potentials. Here we review
the OBE potentials briefly and give those potentials that are
not incuded in the above references. The local interaction
Hamilton densities for the various couplings follow:

(i) Pseudoscalar-meson exchange,

HPV = i
fP

mπ+
ψ̄γµγ5ψ∂µφP , (3.1)

(ii) Vector-meson exchange,

HV = igV ψ̄γµψφ
µ

V + fV

4M ψ̄σµνψ
(
∂µφν

V − ∂νφ
µ

V

)
. (3.2)

(iii) Axial-vector-meson exchange,

HA = gAψ̄γµγ5ψφ
µ

A + ifA

M [ψ̄γ5ψ]∂µφ
µ

A. (3.3)

We take fA = 0 and notice that for the A1 meson
interaction (3.3) is part of the interaction

L(A)
I = 2gA

[
ψ̄γ5γµ

τ

2
ψ + (π∂µσ

− σ∂µπ) + fπ∂µπ

]
· Aµ, (3.4)

which is such that the A1 couples to an almost conserved
axial current (PCAC). Therefore the A1 coupling used
is compatible with broken SU(2)V × SU(2)A symmetry
[20].

(iv) Scalar-meson exchange

HS = gSψ̄ψφS. (3.5)

Here, we used the conventions of Ref. [27], where σµν =
[γµ, γν]/2i. The scaling masses mπ+ and M are chosen
to be the charged pion and the proton mass, respectively.
Note that the vertices for diffractive exchange have
the same Lorentz structure as those for scalar-meson
exchange.

p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’

-p’’

k

k’

(b)

p

p’

-p

-p’

p’’

-p’’

k

k’

(c)

p

p’

-p

-p’

p’’
-p’’

k

k’

(d)

FIG. 2. BW two-meson-exchange graphs: (a) planar and (b)–(d)
crossed box. The dashed line with momentum k refers to the pion,
and the dashed line with momentum k′ refers to one of the other
(vector, scalar, or pseudoscalar) mesons. To these we have to add the
mirror graphs and the graphs where we interchange the two meson
lines.

p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’ -p’’

k

k’

(b)

FIG. 3. Planar-box TMO two-meson-exchange graphs. Same
notation as in Fig. 2. To these we have to add the mirror graphs
and the graphs where we interchange the two meson lines.
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(a)
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(b)

p

p’

-p

-p’

-p’’

k
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(c)

p

p’

-p

-p’

k

k’

(d)

FIG. 4. One- and two-pair exchange graphs. To these we have to
add the mirror graphs and the graphs where we interchange the two
meson lines.

Including form factors f (x′ − x), the interaction
Hamiltonian densities are modified to

HX(x) =
∫

d3x ′f (x′ − x)HX(x′) (3.6)

for X = PV, V,A, S, or D. Because of the convolutive
nonlocal form, the potentials in momentum space are the same
as for point interactions, except that the coupling constants are
multiplied by the Fourier transform of the form factors.

In the derivation of the Vi we employ the same approxima-
tions as in Refs. [8,14], i.e.,

(i) We expand in 1/M: E(p) = [k2/4 + q2 + M2]1/2 ≈
M + k2/8M + q2/2M and keep only terms up to first
order in k2/M and q2/M , except for the form factors,
where the full k2 dependence is kept throughout the
calculations. Notice that the Gaussian form factors
suppress the high k2 contributions strongly.

(ii) In the meson propagators [−(p1 − p3)2 + m2] ≈
(k2 + m2).

(iii) When two different baryons are involved at a BBM-
vertex their average mass is used in the potentials, and

the nonzero component of the momentum transfer is
accounted for by using an effective mass in the meson
propagator (for details see Ref. [8]).

Due to the approximations, we get only a linear dependence
on q2 for V1. In the following we write

Vi(k2, q2) = Via(k2) + Vib(k2)q2, (3.7)

where in principle i = 1, 8.
The OBE potentials are now obtained in the standard way

(see e.g., Refs. [8,14]) by evaluating the BB interaction in the
Born approximation. We write the potentials Vi of Eqs. (2.34)
and (3.7) in the form

Vi(k 2, q 2) =
∑
X

�
(X)
i (k 2) · �(X)(k2,m2,�2), (3.8)

where X = P, V,A, S, and D (P = pseudoscalar, V =
vector, A = axial-vector, S = scalar, and D = diffractive).
Furthermore for X = P, V

�(X)(k2,m2,�2) = e−k2/�2
/(k2 + m2), (3.9)

and for X = S,A a zero in the form factor

�(S)(k2,m2,�2) = (1 − k2/U 2)e−k2/�2
/(k2 + m2), (3.10)

and for X = D

�(D)(k2,m2,�2) = 1

M2
e−k2/(4m2

P ). (3.11)

In the latter expression M is a universal scaling mass, which
is again taken to be the proton mass. The mass parameter mP

controls the k2 dependence of the pomeron-, f-, f ′-, A2-, and
K

-potentials.

Next, we point out the differences in the potentials of this
work as compared with earlier soft-core model papers.

(i) For pseudoscalar mesons, the graphs of Fig. 1 give for
the second-order potential VPS(k, q) ≈ K

(2)
PS(p′, p|W ),

VPS(k, q) = −f13f24

m2
π

[
1 − (q2 + k2/4)

2MY MN

]
× (σ 1 · k)(σ 2 · k)

ω(k)[ω(k) + a]
exp(−k2/�2), (3.12)

where a ≈ (q2 + k2/4) − p2
i . Here, pi is the on-energy-

shell momentum. On energy shell a = 0, and henceforth
we neglect the nonadiabatic effects, i.e., a �= 0, in the
OBE potentials. However, we do include the nonlocal
term in Eq. (3.12), to which we refer in the following
as the Graz-correction [34]. From Eq. (3.12) we find for
�

(P )
i

�
(P )
2a = gP

13g
P
24

(
k2

12MY MN

)
, (3.13a)

�
(P )
2b = −gP

13g
P
24

(
k2

24M2
Y M2

N

)
, (3.13b)

�
(P )
3a = −gP

13g
P
24

(
1

4MY MN

)
, (3.13c)

�
(P )
3a = +gP

13g
P
24

(
1

8M2
Y M2

N

)
. (3.13d)
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The �
(P )
2b,3b contributions were not included in

Refs. [8,14].
(ii) For vector and diffractive OBE exchange we refer the

reader to Ref. [8], where the contributions to the different
�

(X)
i ’s for baryon-baryon scattering are given in detail.

Also, it is trivial to obtain from Ref. [8] the scalar meson
�i , making the substitutions

�
(S)
i → (1 − k2/U 2)�(S)

i

which now evidently have a zero for k2 = U 2.
(iii) For the axial-vector mesons, the detailed derivation of

�
(A)
i is given in Appendix. Using approximations (1)–(5),

from the first term in the axial-meson propagator, we get
[see Eq. (A11)] the following contributions:

�
(A)
2a = −gA

13g
A
24

(
1 + k2

24MY MN

)
, (3.14a)

�
(A)
2b = −gA

13g
A
24

1

6MY MN

, (3.14b)

�
(A)
3 = +gA

13g
A
24

3

4MY MN

, (3.14c)

�
(A)
4 = −gA

13g
A
24

1

2MY MN

, (3.14d)

�
(A)
6 = −gA

13g
A
24

M2
N − M2

Y

4M2
Y M2

N

. (3.14e)

From the second-term propagator we get [see Eq. (A13)]

�
(A)
2a = −gA

13g
A
24

(
1 − k2

8MY MN

)
· k2

3m2
, (3.15a)

�
(A)
2b = +gA

13g
A
24

1

2MY MN

· k2

3m2
, (3.15b)

�
(A)
3a = −gA

13g
A
24

(
1 − k2

8MY MN

)
· 1

m2
, (3.15c)

�
(A)
3b = +gA

13g
A
24

1

2MY MN

· 1

m2
. (3.15d)

For the inclusion of the zero in the axial-vector meson
form factor here we also make the changes

�
(A)
i → (1 − k2/U 2)�(A)

i

with the same U mass as used for the scalar mesons.
The inclusion of a zero in the form factor here is again
motivated by the quark model, because for the axial-
vector mesons one has the configuration QQ̄(3P1).

As in Ref. [8] in the derivation of the expressions
for �

(A)
i , given above, MY and MN denote the mean hy-

peron and nucleon mass, respectively, MY = (M1 + M3)/2
and MN = (M2 + M4)/2, and m denotes the mass of the
exchanged meson. Moreover, the approximation 1/M2

N +
1/M2

Y ≈ 2/MNMY is used, which is rather good, since the
mass differences between the baryons are not large.

B. One-boson-exchange interactions in configuration space

(i) For X = P the local configuration-space potentials are
given in Ref. [8]. Here, we give the nonlocal Graz
corrections. From the Fourier transform of the �

(P )
2b,3b

contributions and Eq. (3.13d) we have

�VPS(r) = f13f24

4π
· m3

m2
π

·
[

1

3
(σ 1 · σ 2)

(∇2φ1
C + φ1

C∇2
)

+ (∇2φ0
T S12 + φ0

T S12∇2)] /
(4MY MN ),

(3.16)

where φ0
C, φ1

C, φ0
T are defined in Refs. [8,14] and are

functions of (m, r,�).
(ii) Again, for X = V,D we refer to the configuration-space

potentials in Ref. [8]. For X = S we give here the
additional terms with respect to those in Ref. [8], which
are due to the zero in the scalar form factor. They are

�VS(r) = − m

4π

m2

U 2

{
gS

13g
S
24

[(
φ1

C − m2

4MY MN

φ2
C

)
+ m2

2MY MN

φ1
SOL · S + m4

16M2
Y M2

N

φ1
T Q12

+ m2

4MY MN

M2
N − M2

Y

MY MN

φ
(1)
SO · 1

2
(σ 1 − σ 2) · L

]}
.

(3.17)

(iii) For the axial-vector mesons, the configuration-space
potential corresponding to Eq. (3.14e) is

V
(1)
A (r) = − g2

A

4π
m

[
φ0

C(σ 1 · σ 2) − 1

12MY MN

× (∇2φ0
C + φ0

C∇2)(σ 1 · σ 2) + 3m2

4MY MN

φ0
T S12

+ m2

2MY MN

φ0
SO(m, r)L · S + m2

4MY MN

× M2
N − M2

Y

MY MN

φ
(0)
SO · 1

2
(σ 1 − σ 2) · L

]
. (3.18)

The configuration-space potential corresponding to
Eq. (3.15d) is

V
(2)
A (r) = g2

A

4π
m

[
1

3
(σ 1 · σ 2)φ1

C + 1

12MY MN

(σ 1 · σ 2)

× (∇2φ1
C + φ1

C∇2
) + S12φ

0
T

+ 1

4MY MN

(∇2φ0
T S12 + φ0

T S12∇2)]. (3.19)

The extra contribution to the potentials coming from
the zero in the axial-vector meson form factor are
obtained from expression (3.18) by making substitutions
as follows:

�V
(1)
A (r)=V

(1)
A

(
φ0

C → φ1
C, φ0

T → φ1
T , φ0

SO → φ1
SO

) · m2

U 2
.

(3.20)

Note that we do not include the similar �V
(2)
A (r), since

they involve k4 terms in momentum space.
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C. PS-PS-exchange interactions in configuration space

In Figs. 2 and 3 the included two-meson exchange graphs
are shown schematically. The Bruckner-Watson (BW) graphs
[35] contain in all three intermediate states both mesons and
nucleons. The Taketani-Machida-Ohnuma (TMO) graphs [36]
have one intermediate state with only nucleons. Explicit
expressions for K irr(BW) and K irr(TMO) were derived in
Ref. [21], where the terminology BW and TMO is also
explained. The TPS potentials for nucleon-nucleon pairs
have been given in detail in Ref. [2]. The generalization
to baryon-baryon pairs is similar to that for the OBE po-
tentials. So, we substitute M → √

MY MN , and include all
PS-PS possibilities with coupling constants as in the OBE
potentials. As compared with nucleon-nucleon pairs in Ref.
[2], here we have included in addition the potentials with
double K exchange. The masses are the physical pseudoscalar
meson masses. For the intermediate two-baryon states we
take into account the different thresholds. We have not
included uncorrelated PS-vector, PS-scalar, or PS-diffractive
exchange. This because the range of these potentials is similar
to those of the vector, scalar, and axial-vector potentials.
Moreover, for potentially large potentials, in particularly
those with scalar mesons involved, there will be very
strong cancellations between the planar and the crossed-box
contributions.

D. MPE-exchange interactions

In Fig. 4 both the one-pair graphs and the two-pair graphs
are shown. In this work we include only the one-pair graphs.
The argument for neglecting the two-pair graph is to avoid
some double-counting. Viewing the pair vertex as containing
heavy-meson exchange means that the contributions from
ρ(750) and ε = f0(760) to the two-pair graphs is already
accounted for by our treatment of the broad ρ and ε OBE
potential. For a more complete discussion of the physics
behind MPE, we refer to our previous papers [1,3]. The
MPE potentials for nucleon-nucleon pairs have been given in
Ref. [3]. The generalization to baryon-baryon pairs is similar
to that for the TPS potentials. For the intermediate two-
baryon states we neglect the different two-baryon thresholds.
This because, although in principle they are possible, they
complicate the computation of the potentials considerably.
The generalization of the pair couplings to baryon-baryon
pairs is described in paper II [10], Sec. III. Also here in
NN , we have in addition to [3] included the pair potentials
with K ⊗ K-, K ⊗ K∗-, and K ⊗ κ exchange. The con-
vention for the MPE coupling constants is the same as in
Ref. [3].

E. Schrödinger equation with nonlocal potential

The nonlocal potentials are of the central-, spin-spin,
and tensor type. The method of solution of the Schrödinger
equation for nucleon-nucleon pairs is described in Ref. [14]
and [34]. Here the nonlocal tensor is in momentum space of
the form q2ṽT (k). For a more general treatment of the nonlocal
potentials, see Ref. [37].

IV. ESC COUPLINGS AND THE QPC MODEL

According to the quark-pair-creation (QPC) model, in the
3P0 version [16], the baryon-baryon-meson couplings are given
in terms of the quark-pair creation constant γM , and the radii
of the (constituent) Gaussian quark wave functions by [17,18]

gBBM(∓) = 2 (9π )1/4 γMXM (IM,LM, SM, JM ) F
(∓)
M

where XM (. . .) is a isospin, spin, etc. recoupling coefficient
and

F (−) = (mMRM )3/2

(
3R2

B

3R2
B + R2

M

)3/2 (
4R2

B + R2
M

3R2
B + R2

M

)
F (+) = (mMRM )1/2

(
3R2

B

3R2
B + R2

M

)3/2
4R2

M

(3R2
B + R2

M )
,

are coming from the overlap integrals. Here, the superscripts ∓
refer to the parity of the mesons M: (−) for J PC = 0+−, 1−−,
and (+) for J PC = 0++, 1++. The radii of the baryons, in this
case nucleons, and the mesons are respectively denoted by RB

and RM .
The QPC(3P0) model gives several interesting relations,

such as

gω = 3gρ, gε = 3ga0 ,
(4.1)

ga0 ≈ gρ, gε ≈ gω.

We see here an interesting link between the vector-meson and
the scalar-meson couplings, which is not totally surprising,
because the scalar polarization vector ε0 of the vector mesons
in the quark model is realized by a QQ̄(3P0) state. This is the
same state as for the scalar mesons in the QQ̄ picture.

From ρ → e+e−, employing the current field identities
(C.F.I’s) one can derive (see for example Ref. [38]) the
following relation with the QPC model:

fρ = m
3/2
ρ√

2|ψρ(0)| ⇔ γM

(
2

3π

)1/2
m

3/2
ρ

|′ψρ(0)′| , (4.2)

which, neglecting the difference between the wave functions
on the left- and right-hand sides, gives for the pair creation
constant γM → γ0 = 1

2

√
3π = 1.535. However, since in the

QPC model Gaussian wave functions are used, the QQ̄

potential is a harmonic-oscillator one. This does not account
for the 1/r behavior, due to one-gluon-exchange (OGE), at
short distance. This implies a OG correction [39] to the wave
function, which gives for γM [40]

γM = γ0

[
1 − 16

3

α(mM )

π

]−1/2

. (4.3)

In Table I γM (µ) is shown, using from Ref. [41] the
parametrization

αs(µ) = 4π
/[

β0 ln
(
µ2

/
�2

QCD

)]
, (4.4)

with �QCD = 100 MeV and β0 = 11 − 2
3nf for nf = 3.

From this table one sees that at the scale of mM ≈
1 GeV a value γM = 2.19 is reasonable. This value we will
use later when comparing the QPC-model predictions and the
ESC04-model coupling constants. As remarked in Ref. [40],
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TABLE I. Pair-creation constant γM as function of αs .

µ [GeV] αs(µ) γM (µ)

∞ 0.00 1.535
80.0 0.10 1.685
35.0 0.20 1.889

1.05 0.30 2.191
0.55 0.40 2.710
0.40 0.50 3.94
0.35 0.55 5.96

the correction to γ0 is not small, and therefore should be seen
as an indication.

In Table II we show the 3P0-model results and the values
obtained in the ESC04 fit. In this table we fixed γM = 2.19
for the vector, scalar, and axial-vector mesons, for RB =
0.54 fm. This effective radius is choosen from Ref. [17], where
it was determined by using the Regge slopes. Here, one has
to realize that the QPC predictions are kind of bare couplings,
which allows vertex corrections from meson exchange. For the
pseudoscalar, a different value has to be used, showing indeed
some running behavior as expected from QCD. In Ref. [40],
for the decays ρ, ε → 2π , etc., was found γπ = 3.33, whereas
here we need γπ = 4.84. Of course, there are several ways
to change this by, for example, using other effective meson
radii. For the mesonic decays of the charmonium states γψ =
1.12, one notices the similarity between the QPC(3P0)-model
predictions and the fitted couplings.

Finally, we notice that the Schwinger relation [19]

gNNa1 ≈ ma1

mπ

fNNπ (4.5)

is also rather well satisfied, both in the QPC model and the
ESC04 fit.

V. ESC-MODEL RESULTS

A. Parameters and nucleon-nucleon fit

During the searches fitting the NN data with the present
ESC-model ESC04, it was found that the OBE couplings could
be constrained successfully by using the naive QPC predictions
as guidance [16]. Although these predictions (see Sec. IV) are
bare ones, we kept during the searches all OBE couplings
rather closely in the neighborhood of these predictions. Also,
it appeared that we could either fix all F/(F + D) ratios to

TABLE II. ESC04 couplings and 3P0 model relations.

Meson rM [fm] XM γM
3P0 ESC04

π (140) 0.66 5/6 4.84 f = 0.26 f = 0.26
ρ(770) 0.66 1 2.19 g = 0.93 g = 0.78
ω(783) 0.66 3 2.19 g = 2.86 g = 3.12
a0(962) 0.66 1 2.19 g = 0.93 g = 0.81
ε(760) 0.66 3 2.19 g = 2.47 g = 2.87
a1(1270) 0.66 5

√
2/6 2.19 g = 2.51 g = 2.42

those suggested by the QPC model or apply the same strategy
as for the OBE couplings.

The meson nonets contain rm SU(3) octet and mixed octet-
singlet members. We assign in principle cutoffs �8 and �1 to
the octets and singlets, respectively. However, because of the
octet-singlet mixings for the I = 0 members, and the use of
the physical mesons in the potentials, we use �1 for all I = 0
mesons. We have as free cutoff parameters (�P

8 ,�V
8 ,�S

8 ), and
similarly a set for the singlets. For the axial-vector mesons we
use a single cutoff �A.

The treatment of the broad mesons ρ and ε is the same as
in the OBE models [8,14]. In this treatment a broad meson is
approximated by two narrow mesons. The mass and width of
the broad meson determines the masses m1,2 and the weights
β1,2 of these narrow ones. For the ρ meson the same parameters
are used as in Refs. [8,14]. However, for ε = f0(760),
assuming [14]mε = 760 MeV and �ε = 640 MeV, the Bryan-
Gersten parameters [42] are used: m1 = 496.39796 MeV,
m2 = 1365.59411 MeV, and β1 = 0.21781, β2 = 0.78219.

The mass of the diffractive exchanges were all fixed to
mP = 309.1 MeV.

Summarizing the parameters we have for NN are

(i) QPC constrained, fNNπ , fNNη′ , gNNρ, gNNω, fNNρ,

fNNω,

gNNa1 , ga0 , gNNε, gNNA2 , gNNP ;
(ii) Pair couplings, gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 , gNNπω,

gNNπη, gNNπε ;
(iii) Cutoff masses, �P

8 ,�V
8 ,�S

8 ,�V
1 ,�S

1 ,�A.

The pair coupling gNN(ππ)0 was kept fixed at a small, but
otherwise arbitrary value.

Together with the fit to the 1993 Nijmegen representation
of the χ2 hypersurface of the NN-scattering data below Tlab =
350 MeV [43], also some low-energy parameters were also
fitted: the np and nn scattering lengths and effective ranges for
the 1S0, and the binding energy of the deuteron EB .

We obtained for the phase shifts χ2/Ndata = 1.155. The
phase shifts are shown in Tables III and IV and also in
Figs. 5–8. In Table VIII below the distribution of the χ2

for ESC04 is shown for the ten energy bins used in the
single-energy (s.e.) phase shift analysis and compared with
that of the updated partial-wave analysis [45].

We emphasize that we use the single-energy (s.e.) phases
and χ2-surfaces [45] only as a means to fit the NN data. As
stressed in Ref. [43] the Nijmegen s.e. phases have not much
significance. The significant phases are the multienergy (m.e.)
ones; see the dashed curves in the figures. One notices that
the central value of the s.e. phases do not correspond to the
m.e. phases in general, illustrating that there has been a certain
amount of noise fitting in the s.e. partial wave (PW)-analysis;
see, e.g., ε1 and 1P1 at Tlab = 100 MeV. The m.e. PW
analysis reaches χ2/Ndata = 0.99, using 39 phenomenological
parameters plus normalization parameters, in total more
than 50 free parameters. The related phenomenological PW
potentials NijmI, II and Reid93 [46], have, respectively, 41,
47, and 50 parameters, all with χ2/Ndata = 1.03. This should
be compared with the ESC model, which has χ2/Ndata = 1.155
for 20 parameters. These are 11 QPC-constrained meson-
nucleon-nucleon couplings, 6 meson-pair-nucleon-nucleon
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TABLE III. ESC04 pp and np nuclear-bar phase shifts in degrees.

Tlab

0.38 1 5 10 25

No. of data 144 68 103 290 352
�χ 2 20 38 17 34 12

1S0(np) 54.58 61.89 63.04 59.13 49.66
1S0 14.62 32.63 54.76 55.16 48.58
3S1 159.38 147.76 118.21 102.66 80.76
ε1 0.03 0.11 0.67 1.14 1.72
3P0 0.02 0.13 1.55 3.67 8.50
3P1 −0.01 −0.08 −0.87 −1.98 −4.78
1P1 −0.05 −0.19 −1.52 −3.12 −6.49
3P2 0.00 0.01 0.22 0.66 2.49
ε2 −0.00 −0.00 −0.05 −0.19 −0.78
3D1 0.00 −0.01 −0.19 −0.69 −2.85
3D2 0.00 0.01 0.22 0.86 3.73
1D2 0.00 0.00 0.04 0.16 0.68
3D3 0.00 0.00 0.00 0.00 0.04
ε3 0.00 0.00 0.01 0.08 0.56
3F2 0.00 0.00 0.00 0.01 0.10
3F3 0.00 0.00 −0.00 −0.03 −0.22
1F3 0.00 0.00 −0.01 −0.07 −0.42
3F4 0.00 0.00 0.00 0.00 0.02
ε4 0.00 0.00 0.00 −0.00 −0.05

TABLE IV. ESC04 pp and np nuclear-bar phase shifts in degrees.

Tlab

50 100 150 215 320

No. of data 572 399 676 756 954
�χ 2 118 29 114 137 337

1S0(np) 38.81 24.24 13.80 3.27 −9.80
1S0 38.77 24.71 14.42 3.97 −9.05
3S1 63.03 43.79 31.66 20.27 6.93
ε1 1.96 2.18 2.50 3.08 4.21
3P0 11.51 9.68 5.14 −1.13 −10.19
3P1 −8.16 −13.22 −17.43 −22.24 −28.81
1P1 −9.92 −14.65 −18.67 −22.37 −29.87
3P2 5.78 10.94 14.09 16.26 17.28
ε2 −1.66 −2.63 −2.92 −2.77 −2.13
3D1 −6.58 −12.67 −17.29 −21.90 −27.41
3D2 8.97 17.20 22.06 24.92 25.15
1D2 1.67 3.77 5.76 7.82 9.65
3D3 0.27 1.28 2.53 3.94 5.24
ε3 1.62 3.52 4.87 6.01 6.93
3F2 0.32 0.75 1.00 0.97 0.07
3F3 −0.65 −1.42 −2.02 −2.65 −3.63
1F3 −1.12 −2.18 −2.87 −3.56 −4.70
3F4 0.11 0.46 0.95 1.67 2.84
ε4 −0.19 −0.51 −0.81 −1.11 −1.44
3G3 −0.27 −0.99 −1.88 −3.10 −4.92
3G4 0.72 2.14 3.56 5.20 7.29
1G4 0.15 0.40 0.67 1.02 1.63
3G5 −0.05 −0.19 −0.32 −0.42 −0.43
ε5 0.21 0.72 1.26 1.90 2.75
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FIG. 5. Solid curves, proton-proton I = 1 phase shifts (degrees),
as a function of Tlab(MeV), for the ESC04 model. Dashed curves, the
m.e. phases of the Nijmegen93 PW analysis [43]. Dots, s.e. phases
of the Nijmegen93 PW analysis. Pentagons, Bugg s.e. [44].

couplings, and 3 Gaussian cutoff parameters. From the figures
it is obvious that the ESC model deviates from the m.e.
PW analysis at the highest energy for some partial waves.
If we evaluate the χ2 for the first 9 energies only, we obtain
χ2/Ndata = 1.10.

In Table V the results for the low-energy parameters are
given. In order to discriminate between the 1S0 wave for pp,
np, and nn, we introduced some charge independence breaking
by taking gppρ �= gnpρ �= gnnρ . With this device we fitted the
difference between the 1S0 (pp) and 1S0 (np) phases, and the
different scattering lengths and effective ranges as well. We
found gnpρ = 0.71, gnnρ = 0.74, which are not far from gppρ =
0.78; see Table VI.

For ann(1S0) we have used in the fitting the value from an
investigation of the n-p and n-n final state interaction in the
2H(n, nnp) reaction at 13 MeV [47]. The value for ann(1S0) is
still somewhat under discussion. Another recent determination
[48] obtained, e.g., ann(1S0) = −16.27 ± 0.40 fm. Fitting
with the latter value yields for the ESC04 model the value
−16.74 fm. Then the quality of the fit to the phase shift analysis
is the same, with small changes to the parameters and phase
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FIG. 6. Solid curves, proton-proton I = 1 phase shifts (degrees),
as a function of Tlab(MeV), for the ESC04 model. Dashed curves,
m.e. phases of the Nijmegen93 PW analysis [43]. Dots, s.e. phases
of the Nijmegen93 PW analysis. Pentagons, Bugg s.e. [44].
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FIG. 7. Solid curves, neutron-proton I = 0 phase shifts (degrees),
as a function of Tlab(MeV) for the ESC04 model. Dashed curves, m.e.
phases of the Nijmegen93 PW analysis [43]. Dots, s.e. phases of the
Nijmegen93 PW analysis. Pentagons, Bugg s.e. [44].

0

40

80

120

160

0 100 200 300

 3S1

0

2

4

6

0 100 200 300

 3D3

0

2

4

6

8

0 100 200 300

 ε1

0

2

4

6

8

0 100 200 300

 ε3

-30

-20

-10

0

0 100 200 300

 3D1

-6

-4

-2

0

0 100 200 300

 3G3

FIG. 8. Solid curves, neutron-proton I = 0 phase shifts (degrees),
as a function of Tlab(MeV) for the ESC04 model. Dashed curves, m.e.
phases of the Nijmegen93 PW analysis [43]. Dots, s.e. phases of the
Nijmegen93 PW analysis. Pentagons, Bugg s.e. [44].

shifts. For a discussion of the theoretical and experimental
situation with respect to these low-energy parameters, see also
Ref. [49].

TABLE V. ESC04 low-energy parameters: S-wave scattering
lengths and effective ranges, deuteron binding energy EB , and
electric quadrupole Qe.

Experimental data ESC04

app(1S0) −7.823 ± 0.010 −7.770
rpp(1S0) 2.794 ± 0.015 2.753
anp(1S0) −23.715 ± 0.015 −23.860
rnp(1S0) 2.760 ± 0.030 2.787
ann(1S0) −18.70 ± 0.60 −18.63
rnn(1S0) 2.75 ± 0.11 2.81
anp(3S1) 5.423 ± 0.005 5.404
rnp(3S1) 1.761 ± 0.005 1.749
EB −2.224644 ± 0.000046 −2.224933
Qe 0.286 ± 0.002 0.271
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TABLE VI. Meson parameters employed in the potentials shown
in Figs. 1–4. Coupling constants are at k2 = 0. An asterisk denotes
that the coupling constant is not searched, but constrained via SU(3)
or simply set to some value used in previous work. The widths of ρ

and ε used are 146 and 640 MeV, respectively.

Meson Mass (MeV) g/
√

4π f/
√

4π � (MeV)

π 138.04 0.2621 829.90
η 548.80 0.1673∗ 900.00
η′ 957.50 0.1802 900.00
ρ 770.00 0.7794 3.3166 782.38
ω 783.90 3.1242 0.0712 890.23
φ 1019.50 −0.6957 1.2686∗ 890.23
a1 1270.00 2.4230 968.23
f1 1420.00 1.4708 968.23
f ′

1 1285.00 0.5981∗ 968.23
a0 962.00 0.8111 1161.27
ε 760.00 2.8730 1101.62
f0 993.00 −0.9669 1101.62
a2 309.10 0.0000
Pomeron 309.10 2.2031

B. Coupling constants

In Table VI we show the OBE coupling constants and the
Gaussian cutoffs �. The used α =: F/(F + D) ratios for
the OBE couplings are pseudoscalar mesons αpv = 0.388;
vector mesons αe

V = 1.0, αm
V = 0.387; and scalar mesons

αS = 0.852, which is computed by using the physical S∗ =
f0(993) coupling etc. In Table VII we show the MPE coupling
constants. The used α =: F/(F + D) ratios for the MPE
couplings are (πη), etc. (πω) pairs α({8s}) = 1.0, (ππ )1,
etc; pairs αe

V ({8}a) = 1.0, αm
V ({8}a) = 0.387, (πρ)1 etc; pairs

αA({8}a) = 0.652.
Unlike in Refs. [2,3], we did not fix pair couplings by using

a theoretical model, based on heavy-meson saturation and
chiral symmetry. So, in addition to the 14 parameters used in
Refs. [2,3], we now have 6 pair-coupling fit parameters. In
Table VII the fitted pair couplings are given. Note that the
(ππ )0 pair coupling gets contributions from the {1} and the {8s}
pairs as well, giving in total g(ππ) = 0.10, which has the same
sign as in Ref. [3]. The f(ππ)1 pair coupling has the opposite
sign compared with Ref. [3]. In a model with a more complex
and realistic meson dynamics [4] this coupling is predicted,

TABLE VII. Pair-meson coupling constants employed in the
ESC04 MPE potentials. Coupling constants are at k2 = 0.

J PC SU(3) irrep (αβ) g/4π f/4π

0++ {1} (ππ )0 0.0000
0++ ,, (σσ ) —
0++ {8}s (πη) −0.440
0++ (πη′) —
1−− 8a (ππ )1 0.000 0.119
1++ ,, (πρ)1 0.835
1++ ,, (πσ ) 0.022
1++ ,, (πP ) 0.0
1+− {8}s (πω) −0.170

TABLE VIII. χ 2 and χ 2 per datum at the ten energy bins for
the Nijmegen93 partial-wave-analysis. Ndata lists the number of data
within each energy bin. The bottom line gives the results for the total
0–350 MeV interval. The χ 2 excess for the ESC model is denoted
�χ 2 and �χ̂ 2, respectively.

Tlab No. of data χ 2
0 �χ 2 χ̂ 2

0 �χ̂ 2

0.383 144 137.5549 20.7 0.960 0.144
1 68 38.0187 52.4 0.560 0.771
5 103 82.2257 10.0 0.800 0.098

10 209 257.9946 27.5 1.234 0.095
25 352 272.1971 29.2 0.773 0.083
50 572 547.6727 141.1 0.957 0.247

100 399 382.4493 32.4 0.959 0.081
150 676 673.0548 85.5 0.996 0.127
215 756 754.5248 154.6 0.998 0.204
320 954 945.3772 350.5 0.991 0.367

Total 4233 4091.122 903.9 0.948 0.208

as is found in the present ESC fit. The (πρ)1 coupling agrees
nicely with A1 saturation; see Ref. [3]. We conclude that the
pair couplings are in general not well understood and deserve
more study.

The ESC model described here is fully consistent with
SU(3) symmetry. For the full SU(3) contents of the pair
interaction Hamiltonians, we refer to paper II, Sec. III. Here,
one finds, for example, that g(πρ)1 = gA8V P , and besides (πρ)
pairs one sees also that (KK∗(I = 1) and KK∗(I = 0) pairs
contribute to the NN potentials. All F/(F + D) ratios are
taken to be fixed with heavy-meson saturation in mind, which
implies that these ratios are 0.4 or 1.0, depending on the
heavy-meson type. The approximation we have made in this
paper is to neglect the baryon mass differences; i.e., we set
m� = m� = mN . This because we have not yet worked out
the formulas for the inclusion of these mass differences, which
is straightforward in principle.

VI. DISCUSSION AND CONCLUSIONS

We mentioned that we do not include negative-energy-state
contributions. It is assumed that strong pair suppression is
operative at low energies in view of the composite nature
of the nucleons. This leaves for us the pseudoscalar mesons
with two essential equivalent interactions: The direct and the
derivative one. In expanding the NNπ etc. vertex in 1/MN ,
these two interactions differ in the 1/M2

N terms; see Ref. [2],
Eqs. (3.4) and (3.5). This gives the possibility of using instead
of the interaction in Eq. (3.1) the linear combination

Hps = 1
2 [(1 − aPV )gNNπψ̄iγ5τψ · π

+ aPV (fNNπ/mπ )γµγ5τψ · ∂µπ], (6.1)

where gNNπ = (2MN/mπ )fNNπ . In ESC04 we have fixed
aPV = 1, i.e., a purely derivative coupling.

The presented ESC model is successful in describing the
NN data, even in this QPC-constrained version. Allowing total
freedom in the couplings and cutoff masses, and without
fitting the low-energy parameters, we reached the lowest
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χ2
p.d.p. = 1.10. However, in that case some couplings look

rather artificial. With less freedom, a typical fit with the ESC
model has χ2

p.d.p. = 1.15, see e.g., Ref. [5]. This means that
by constraining the parameters rather strongly, in the present
NN-model ESC04 we we reached χ2

p.d.p. = 1.155, i.e., we
have only an extra �χ2 ≈ 250, showing the feasibility of the
QPC-inspired couplings.

The advantage of this is that we have physically motivated
OBE couplings etc. We will see in the next paper of this series,
where we study the S = −1 YN channels, that this feature
persists when we fit NN and YN simultaneously. Then the
advantage is that, going to the S = −2 YN and YY channels,
it is reasonable to believe that the predictions made for these
channels are realistic ones. So far, there did not exist a realistic
NN model with sizable axial-vector mesons couplings as
predicted by Schwinger [19]. Also, the zero in the scalar form
factor has moderated the f0(760) coupling such that it fits with
the QPC model.

A momentum-space version of ESC04 is readily available,
using the material in Ref. [5]. We only have to add the
momentum-space potentials for the axial-vector mesons and
the Graz corrections [34], which is rather straightforward.

Finally, the potentials of this paper are available on the
Internet [50].
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APPENDIX: AXIAL-VECTOR-MESON
COUPLING TO NUCLEONS

The coupling of the axial mesons (J PC = 1++) to the
nucleons is given by

LANN = gA[ψ̄γ5γµτψ] · Aµ + i
fA

M [ψ̄γ5τψ] · ∂µAµ

≈ gA[ψ̄γ5γµτψ] · Aµ. (A1)

Here, M = 1 GeV is again a scaling mass. We note that with
fA = 0 this coupling is part of the A1 interaction with pions
and nucleons,

LI = 2gA

[
ψ̄γ5γµ

1
2τψ + (π∂µσ − σ∂µπ ) + fπ∂µπ

] · Aµ,

which is such that the A1 couples to an almost conserved
axial current (PCAC). Therefore the A1 coupling used here
is compatible with broken SU(2)V × SU(2)A symmetry; see,
e.g., Refs. [20,51]. For a more complete discussion of the A1

couplings to baryons, we refer to Ref. [4]. The latter reveals
that as far as the axial-nucleon-nucleon coupling is concerned
it is indeed of the type indicated above.

In the Proca formalism, for the axial-vector propagator the
polarization sum enters:

�µν(k) =
∑

λ

εµ(k, λ)εν(k, λ) = −ηµν + kµkν/m2, (A2)

where m denotes the mass of the axial meson and εµ(k) the
polarization vector. Because

[ψ̄γ5γµψ]kµkν[ψ̄γ5γνψ] = [−iψ̄γ5γµkµψ][+iψ̄γ5γνk
νψ],

(A3)

the second term in the propagator gives potentials that are
exactly of the form of those of pseudo vector exchange. We
note that these �5(p′, p) = γ5γ · k factors come from the ∂µ

derivative of the pseudo vector baryon current. Then,

ū(p′)�5(p′, p)u(p)

≈ i

[
σ · (p − p′) ∓ E(p) − E(p′)

2M
σ · (p + p′)

]
, (A4)

in contrast to what is used in Ref. [21], where in the 1/M-term
ω(k) is taken, instead of the baryon energy difference. Notice
that the second term in Eq. (A4) is of order 1/M2 and moreover
vanishes for the on energy shell. Hence we neglect this term.
We write

ṼA = Ṽ
(1)
A + Ṽ

(2)
A , (A5)

where Ṽ
(2)
A = ṼPV with f 2

PV /m2
π → g2

A/m2 . The transforma-
tion to the Lippmann-Schwinger equation implies the potential

ṼA
∼=

(
1 − k2

8M ′M
− q2

2M ′M

)
ṼA. (A6)

Below, M ′ = MN and M = MY are the average nucleon mass
or an average hyperon mass, depending on the baryon-baryon
system.

A. V (1)
A potential term

With restriction to terms that are at most of order 1/M2, we
solve for the potential in Pauli-spinor space for the Lippmann-
Schwinger equation for Ṽ (1)

A . Note here that, especially for the
anti-spin-orbit term, that (M, σ 1) and (M ′, σ 2) go with line 1
and line 2, respectively. Defining

k = p′ − p, q = 1
2 (p′ + p) (A7)

and moreover using the approximation

1

M2
+ 1

M ′2 ≈ 2

MM ′ , (A8)

we see that the potential V (1)
A is given in momentum space by

Ṽ (1)
A = −g2

A

{(
1 + (q2 + k2/4)

6M ′M

)
σ 1 · σ 2

+ 2

MM ′

[
(σ 1 · q)(σ 2 · q) − 1

3
q2σ 1 · σ 2

]
− 1

4M ′M

[
(σ 1 · k)(σ 2 · k) − 1

3
k2σ 1 · σ 2

]
+

(
1

4M2
− 1

4M ′2

)
· i

2
(σ 1 − σ 2) · q × k

+ i

4M ′M
(σ 1 + σ 2) · q × k

}
·
(

1

ω2

)
, (A9)
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Now, for a complete treatment one has to deal with the nonlocal
tensor. Although this can be done, see notes on nonlocal tensor
potentials in Ref. [37]; in this work we use an approximate
treatment. We neglect the purely nonlocal tensor potential by
making in Eq. (A9) the substitution

1

MM ′

[
(σ 1 · q)(σ 2 · q) − 1

3
q2σ 1 · σ 2

]

→ − 1

4MM ′

(
(σ 1 · k)(σ 2 · k) − 1

3
k2σ 1 · σ 2

)
, (A10)

leading to a potential with only a nonlocal spin-spin term. With
this approximation, Eq. (A9) becomes

Ṽ (1)
A = −g2

A

{(
1 + (q2 + k2/4)

6M ′M

)
σ 1 · σ 2

− 3

4M ′M

[
(σ 1 · k)(σ 2 · k) − 1

3
k2σ 1 · σ 2

]

+
(

1

4M2
− 1

4M ′2

)
· i

2
(σ 1 − σ 2) · q × k

+ i

4M ′M
(σ 1 + σ 2) · q × k

}
·
(

1

ω2

)
. (A11)

Then, we find in configuration space

V (1)
A = − g2

A

4π
m

[
φ0

C(m, r)(σ 1 · σ 2)

− 1

12M ′M
(∇2φ0

C + φ0
C∇2

)
(m, r)(σ 1 · σ 2)

+ 3m2

4M ′M
φ0

T (m, r)S12 + m2

2M ′M
φ0

SO(m, r)L · S

+ m2

4M ′M
M ′2 − M2

M ′M
φ

(0)
SO(m, r) · 1

2
(σ 1 − σ 2) · L

]
.

(A12)

B. V (2)
A potential term

For the PV-type contributions we have [34]

Ṽ (2)
A = − g2

A

m2

(
1 − k2

8M ′M
− q2

2M ′M

)
× (σ 1 · k)(σ 2 · k)

(
1

ω2

)
. (A13)

The corresponding potentials in configuration space are

V (2)
A = g2

A

4π
m

[
1

3
(σ 1 · σ 2)φ1

C + 1

12M ′M
(σ 1 · σ 2)

× (∇2φ1
C + φ1

C∇2
) + S12φ

0
T

+ 1

4M ′M
(∇2φ0

T S12 + φ0
T S12∇2)] . (A14)
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D 8, 2223 (1973).

[18] A. Le Yaouanc, L. Oliver, O. Péne, and J.-C. Raynal, Phys. Rev.
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