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Parametrization of the 2H(γ, p)n reaction between 185 and 420 MeV
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A simple parametrization of the 2H(γ,p)n cross-section data from LEGS, Mainz, and Bonn at laboratory
photon energies between 187.5 and 420 MeV and the LEGS and Mainz beam asymmetry data between 185
and 412 MeV has been done. The fit represents both the energy and angular dependence of the cross section
and asymmetry in terms of Legendre polynomials. A reduced χ2 of 1.641 is obtained for the cross-section data
with a total of 20 parameters. Three of the parameters are renormalization factors introduced to permit the three
cross-section data sets to float relative to one another. The resulting renormalization factors are found to be well
within the quoted systematic uncertainties for each experiment. The energy dependence of the parameters is in
good agreement with fits done to the Mainz data at individual energies. The asymmetries are fit with an additional
eight parameters with a reduced χ 2 of 1.229.
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I. INTRODUCTION

There now exist several high-quality data sets for the
photodistintegration of the deuteron in the region of the
� resonance. A global parametrization of those data is of
practical interest for several reasons. First, in the absence of a
free neutron target, the deuteron is a common choice of a nearly
free neutron. An ingredient in the analysis of these experiments
is knowledge of the photodisintegration cross sections and
asymmetries. Second, in experiments using polarized targets
that contain deuterium, the ability to normalize cross sections
to this now well-known reaction is often important.

For the first purpose, a fast, simple functional form is
desired since this is frequently required in a Monte Carlo
simulation of an experiment. For the second purpose, a full
propagation of experimental errors is required to include them
in the systematics of the experiment being normalized. This
work reports a fit to the data that satisfies both goals.

The cross-section data included in this analysis are the
angular distributions obtained at LEGS [1], Mainz [2], and
Bonn [3] between 187.5 and 420 MeV. These data sets, all
obtained using monochromatic, tagged photon beams, were se-
lected for their consistency, small experimental uncertainties,
and energy coverage. The asymmetries are from LEGS [1]
and Mainz [4]. These are the only data sets obtained with
monochromatic beams with such a large coverage in both
angle and energy.

Although Legendre polynomial fits to these cross sections
were done by the experimenters, these are fits done at
individual energies, primarily for the purpose of extracting the
integrated cross section. As a result, the energy dependence
of the coefficients is noisy, fluctuating with the scatter in the
data from energy to energy. By imposing a smooth energy
dependence, the trends with energy are more apparent and the
uncertainties are smaller. The sole published parametrization
of the asymmetries includes only the LEGS data and is
a much more complicated multipole analysis [5]. There
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exists no simple form suitable for use in a Monte Carlo
simulation.

Global fits to the cross sections using Legendre polyno-
mials in the �-resonance region have been made previously.
Thorlacius and Fearing [6] produced a fit to data spanning
the range from 10 to 625 MeV. In this fit the statistical and
systematic uncertainties were added in quadrature and each
data set was fit separately to obtain the Legendre polynomial
coefficients. These coefficients were then used as the “data” in
the final fits. The energy dependence used in the global fit was
a phenomenological form suggested by the presence of the �

resonance.
The work of Rossi et al. [7] takes a different approach.

Here, the total cross section is first fit to the monochromatic
data then available and then the remaining data are normalized
to this fit and only used to determine the shape of the angular
distribution. For the fits to determine the total cross sec-
tions, the statistical and systematic uncertainties were added
linearly.

There are several significant improvements that can be
made to these earlier works. First, there have been addi-
tional high-quality monochromatic data obtained since these
analyses were made. Of necessity, both analyses included
many data sets obtained with untagged beams with more
uncertain normalizations and larger scatter among the data
sets. Second, neither work properly included the system-
atic uncertainties. Combining the statistical and systematic
uncertainties as was done in these earlier efforts ignores
the fundamental characteristic of the systematic uncertain-
ties. The systematic uncertainties represent a common scale
uncertainty that permits entire data sets to shift relative to
another one without altering the shape of the distributions. By
treating this uncertainty as if it were part of the angle- and
energy-dependent statistical uncertainties, this commonality
is not properly included. Finally, neither work reports the
full covariance matrix. This makes it impossible to compute
the uncertainty in the fitted function or to correctly assess
the errors in a particular Legendre coefficient at a given
energy. All of these issues are addressed in the present
analysis.
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The asymmetry data included in the fits are those of
LEGS [1] and Mainz [4], spanning the energy range from 185
to 412 MeV. Largely because of the lack of quality data over a
broad range of energies, no previous attempts to parametrize
the beam asymmetries has been made. Reported here is the
first such fit.

II. SPECIFICATION OF THE FIT

A. The fitting functions

The parametrization of the data requires the product of an
energy-dependent and angle-dependent function. The angular
dependence is most naturally represented by the Legendre
polynomials, Pl[cos(θ )], for the cross sections or associated
Legendre polynomials, P 2

l [cos(θ )], for the asymmetries [8].
After several trials using various orthogonal polynomials to
represent the energy dependence, it was found to also be
well reproduced by the Legendre polynomials. Since these
functions are defined on the interval [−1,1], the photon
energies are scaled to fit this interval. The scaling is done
by computing the average, Eave = 1

2 (Emax + Emin), and half-
width, Ediff = 1

2 (Emax − Emin), of the energy interval. The
energies are mapped to the desired interval with the function

x (E) = E − Eave

Ediff
. (1)

For all fits reported here, Emax = 430 MeV and Emin =
180 MeV. With these definitions, the fitting function for the
cross section can then be written as

dσ

d�
(θ, E) =

6∑
k=0

5∑
j=0

CjkPj [x(E)]Pk[cos(θ )], (2)

where the Cjk are the parameters to be fit. For the asymmetry,
the fit is done by parametrizing the numerator (the difference
between cross sections obtained with parallel and perpendic-
ular polarizations) and using the fitted cross section for the
denominator,

� (θ, E) = 1
dσ
d�

(θ, E)

6∑
k=2

5∑
j=0

DjkPj [x(E)]P 2
k [cos(θ )]. (3)

B. The cross-section fit procedure

The fit is done using the MINUIT function minimization
package [9] to minimize χ2. To fit the three cross-section data
sets, each with an independent systematic error, the definition
of χ2 used here is described by D’Agostini [10] and is given
by

χ2 =
3∑

n=1


∑

in

∑
ln

(
λn

(
dσ
d�

)
inln

− dσ
d�

(
θin , Eln

)
λnσinln

)2

+
(

1 − λn

δn

)2
]

, (4)

where in and ln label the angles and energies, respectively,
and δn is the normalization uncertainty for the nth data set.

By including a normalization factor, λn, for each data set, the
sets are allowed to float relative to one another. Adding these
three parameters to the 42 parameters (7 orders in angle ×
6 orders in energy) in Eq. (2) gives a total of 45 parameters in
the model.

Initially, a fit was made in which all parameters were
allowed to vary starting with initial values of zero for all the
Cjk and one for each of the λn. This produced a fit with 321
degrees of freedom (366 data points − 45 parameters) and a
reduced χ2 of χ2

ν = 1.560.
The parameters were then checked for statistical signifi-

cance using the F test [5,11]. Starting with the highest order
coefficient, C76, and proceeding in descending order, each
coefficient was temporarily removed and the fit was redone,
giving χ2 values for fits both with, χ2 (m + 1), and without,
χ2 (m), each parameter. The F statistic with one degree of
freedom is then given by

Fχ = χ2 (m) − χ2 (m + 1)

χ2 (m + 1) / (N − m − 1)
= �χ2

χ2
ν

. (5)

This quantity is compared with the critical value of Fcrit ≈
6.63 [11] corresponding to a probability of 99% that the
parameter in question is required to fit the data.

The normalization parameters were not included in this
pruning process. The result of the procedure was that
20 parameters, 17 to parameterize the cross section and 3
normalizations, remain out of the 45.

C. The asymmetry fit procedure

Once the cross-section fit was complete, the parametrization
of the cross section was fixed and the fit was made to
the asymmetry using Eq. (3). The uncertainties reported
for the LEGS asymmetries are the combined statistical and
polarization-dependent systematic uncertainties. These two
quantities are reported individually for the Mainz data set.
For these fits, they are combined in quadrature as was done for
the LEGS data set. Thus, there are no overall systematic errors
to include in the asymmetry fits. The asymmetries for the two
data sets are then fit with a χ2 defined to be

χ2 =
2∑

n=1


∑

in

∑
ln

(
�inln − �

(
θin , Eln

)
σinln

)2

 . (6)

Since the cross section is held fixed at the best-fit value,
there are 30 parameters (5 orders in angle × 6 orders in energy)
in this fit. By fixing the cross section, the uncertainties in the
asymmetry data are reflected in the resultant uncertainties of
these additional parameters.

As was done for the cross section fits, the initial fit allowed
all 30 parameters to vary starting from zero. This produced a fit
with 198 degrees of freedom (228 data points − 30 parameters)
and χ2

ν = 1.141. Using the F test to prune the parameter space
as was done before yields a final fit with 8 parameters.
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TABLE I. The parameters obtained in the cross-section fit
described in Sec. II B. The first three columns give the parameter
number and the orders of the energy and angle polynomials,
respectively. The fourth and fifth columns list the values from the fit
and the square root of the diagonal element of the covariance matrix.

Parameter Energy Angle Value Uncertainty
number order order (µb/sr) (µb/sr)

1 0 0 3.756 0.087
2 1 0 −1.988 0.047
3 2 0 −1.434 0.036
4 3 0 0.6506 0.024
5 4 0 0.3693 0.022
6 5 0 −0.1997 0.025
7 0 1 0.6798 0.019
8 1 1 −0.3175 0.018
9 2 1 −0.1546 0.025

10 3 1 0.1118 0.030
13 0 2 −0.8528 0.024
14 1 2 0.4790 0.025
26 1 4 0.3473 0.032
27 2 4 −0.2661 0.046
31 0 5 0.1218 0.022
37 0 6 −0.1574 0.025
39 2 6 0.2075 0.058

III. RESULTS

The fits to the cross sections and asymmetries are avail-
able on-line at http://acadine.physics.jmu.edu/∼whisnacs/d2
param/. This Web site will generate the fitted values and the
uncertainties in the fits for any angle and at any energy in the
range of the fit. The parameters obtained and the computation
of the reported uncertainties are described in detail in the
following sections.

A. Cross-section parameters and uncertainties

The cross section parametrization obtained is given in
Table I. The normalizations found from the fits were well
within the reported scale uncertainties. As defined in Eq. (4),
the difference between one and the fitted normalization factor,
(1 − λ), for each data set is to be compared with the systematic
uncertainty assigned in each experiment. The normalization
factors obtained are given in Table II.

TABLE II. The normalization parameters obtained in the fit
described in Sec. II B. The first column indicates the data set.
The second column cites the systematic uncertainty quoted by
the experimenters. The third column gives the fitted normalization
parameters. The fourth column gives the square root of the diagonal
elements of the covariance matrix.

Data set δ (%) λ σλ

LEGS 5.0 1.0197 0.024
Mainz 3.5 0.98063 0.023
Bonn 4.0 1.0118 0.023

FIG. 1. Comparison of the LEGS, Mainz, and Bonn cross-section
data with the fit. The LEGS data set is indicated with the filled circles,
the Mainz data set is shown with open triangles, and the Bonn data set
is indicated with open squares. The LEGS data set is plotted with the
data from Mainz when within ≈4 MeV. The dashed lines represent
±

√
s2

fit, the unbiased estimate of the uncertainty.

The total χ2 for this fit is 567.75. With 346 degrees of
freedom (366 data points and 20 parameters), this gives χ2

ν =
1.641.

To use this fit to normalize experimental data, the full
covariance matrix is required to compute the uncertainty in the
computed cross section. The inclusion of the normalization
factors in the fit includes the systematic uncertainties in the
covariance matrix for the 17 functional parameters. Thus,
the normalizations are implicitly included in the uncertainty
computation using the 17 × 17 covariance matrix.
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TABLE III. The covariance matrix obtained in the fit to the cross sections. The parameters are labeled by the parameter numbers listed in
Table I.

1 2 3 4 5 6 7 8 9 10

1 7.53×10−3

2 −3.98×10−3 2.25×10−3

3 −2.86×10−3 1.46×10−3 1.33×10−3

4 1.28×10−3 −6.62×10−4 −5.54×10−4 5.58×10−4

5 7.76×10−4 −4.52×10−4 −2.32×10−4 4.06×10−5 5.00×10−4

6 −4.15×10−4 3.32×10−4 4.74×10−5 1.34×10−5 −9.17×10−5 6.11×10−4

7 1.35×10−3 −7.19×10−4 −5.06×10−4 2.43×10−4 1.23×10−4 −9.54×10−5 3.53×10−4

8 −6.32×10−4 3.40×10−4 2.60×10−4 −1.12×10−4 −6.68×10−5 1.41×10−5 −1.11×10−4 3.33×10−4

9 −2.95×10−4 1.84×10−4 8.38×10−5 −4.42×10−5 −2.85×10−5 5.62×10−5 −8.20×10−5 −1.63×10−5 6.26×10−4

10 2.35×10−4 −1.20×10−4 −7.25×10−5 1.03×10−5 7.69×10−5 2.05×10−5 5.87×10−6 2.64×10−5 −1.25×10−4 9.07×10−4

13 −1.70×10−3 9.07×10−4 6.60×10−4 −2.89×10−4 −1.69×10−4 7.09×10−5 −3.23×10−4 1.63×10−4 9.32×10−5 −2.82×10−5

14 9.66×10−4 −5.01×10−4 −3.42×10−4 1.85×10−4 7.97×10−5 −5.63×10−5 1.91×10−4 −8.41×10−5 2.13×10−5 4.29×10−5

26 7.05×10−4 −3.37×10−4 −2.47×10−4 1.38×10−4 3.60×10−5 −3.62×10−5 1.54×10−4 −1.05×10−4 4.38×10−5 −4.38×10−6

27 −5.21×10−4 3.14×10−4 2.29×10−4 −5.26×10−5 −2.12×10−5 −1.62×10−5 −1.16×10−4 1.34×10−4 −1.29×10−4 1.33×10−4

31 2.38×10−4 −1.19×10−4 −1.01×10−4 4.23×10−5 2.22×10−5 −4.85×10−6 7.86×10−5 4.96×10−6 −7.39×10−7 −1.90×10−5

37 −2.86×10−4 1.82×10−4 8.44×10−5 −5.47×10−5 −1.97×10−5 4.62×10−5 −6.99×10−5 5.32×10−5 −6.14×10−6 −5.38×10−5

39 3.80×10−4 −2.23×10−4 −2.04×10−5 1.29×10−4 −2.52×10−5 −1.01×10−4 3.05×10−5 −1.23×10−5 −1.71×10−4 2.17×10−4

λLEGS 2.04×10−3 −1.09×10−3 −7.71×10−4 3.56×10−4 2.05×10−4 −1.15×10−4 3.69×10−4 −1.76×10−4 −8.16×10−5 6.28×10−5

λMainz 1.95×10−3 −1.03×10−3 −7.44×10−4 3.34×10−4 1.89×10−4 −1.01×10−4 3.52×10−4 −1.63×10−4 −8.21×10−5 5.51×10−5

λBonn 2.02×10−3 −1.06×10−3 −7.74×10−4 3.52×10−4 1.99×10−4 −1.06×10−4 3.65×10−4 −1.70×10−4 −8.18×10−5 6.29×10−5

Using the standard uncertainty propagation equation [11],
we can compute the uncertainty in the fitted function, δf , from

(δf )2 =
∑

r

∑
s

(
∂f

∂Cr

)
σ 2

rs

(
∂f

∂Cs

)
, (7)

where the indices r and s run over parameter numbers as listed
in column 1 of Table I and σ 2

rs is the corresponding covariance.
The derivatives are given by

∂f

∂Ci

= Pji
[x(E)]Pki

[cos(θ )], (8)

where i is the parameter number and ji and ki are the cor-
responding energy and angle polynomial orders, repectively,
taken from Table I. Using integer arithmetic (truncation to an
integer after division), ji and ki are related to the parameter
number i by ki = 1

6 (i − 1) and ji = (i − 1) − 6ki .
The covariances obtained from the fit are given in Tables III

and IV. With these covariances and Eqs. (7) and (8), the
standard deviation of the fit can be calculated at any point.

A model dependence in the fit or non-Gaussian distribution
of the experimental uncertainties leads to χ2

ν > 1. When this
occurs, the uncertainty on the fit derived solely from the
covariance matrix does not have the expected meaning that
for approximately 68% of the data |fit − data| � uncertainty
on the fit. The appropriate uncertainty to use to retain this

interpretation is the unbiased estimator [12,13]. The unbiased
estimate of the covariances, s2

rs , is related to the covariances
given in Tables III and IV, σ 2

rs , by the reduced χ2 for the
fit, s2

rs = χ2
ν σ 2

rs . Since Eq. (7) is linear with respect to σ 2
rs ,

this same relation holds for the unbiased estimator of the
uncertainty in the fitted function

s2
fit = χ2

ν (δf )2 . (9)

It is this unbiased estimate that is quoted here. Note that,
although covariances returned by MINUIT must be multiplied
by χ2

ν , other software packages handle this issue differently.
For example, those returned by the E04FDF routine in the NAG
library [14] are unbiased estimates and so do not need this
extra factor inserted.

A well-known example of an unbiased estimator of the
uncertainty in a data set is the usual variance or its square
root, the standard deviation of the data about the mean. This
quantity has the property that approximately 68% of the data
points lie within ±1 standard deviation of the mean. This same
property is also true for the unbiased estimator used here and
will be examined in Sec. III C.

B. Asymmetry parameters and uncertainties

The asymmetry parametrization is given in Table V. The
total χ2 for this fit is 270.44. With 220 degrees of freedom (228

TABLE IV. The covariance matrix for the cross-section fit continued from Table III.

13 14 26 27 31 37 39 λLEGS λMainz λBonn

13 5.65×10−4

14 −1.76×10−4 6.23×10−4

26 −9.21×10−5 1.96×10−4 1.05×10−3

27 1.54×10−4 6.83×10−5 −8.91×10−5 2.08×10−3

31 −8.37×10−5 8.78×10−5 1.18×10−4 −2.44×10−5 5.01×10−4

37 1.23×10−4 4.03×10−5 8.45×10−5 3.09×10−5 −5.46×10−5 6.26×10−4

39 −6.56×10−5 1.43×10−4 2.36×10−4 5.34×10−4 6.31×10−5 −2.45×10−4 3.39×10−3

λLEGS −4.62×10−4 2.60×10−4 1.83×10−4 −1.51×10−4 6.94×10−5 −8.79×10−5 1.15×10−4 5.58×10−4

λMainz −4.43×10−4 2.49×10−4 1.82×10−4 −1.34×10−4 6.20×10−5 −8.37×10−5 1.14×10−4 5.28×10−4 5.15×10−4

λBonn −4.57×10−4 2.57×10−4 1.89×10−4 −1.42×10−4 6.52×10−5 −7.98×10−5 1.03×10−4 5.46×10−4 5.22×10−4 5.48×10−4
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TABLE V. The parameters obtained in the asymmetry fit de-
scribed in Sec. II C. The first three columns give the parameter
number and the orders of the energy and angle polynomials,
respectively. The third column lists the values from the fit. The
right-most column lists the square root of the diagonal elements
of the covariance matrix listed in Table VI.

Parameter Energy Angle Value Uncertainty
number order order

1 0 2 −0.3972 0.0041
2 1 2 0.1629 0.0052
3 2 2 0.2015 0.0083
4 3 2 −0.1207 0.010
7 0 3 0.02670 0.0020
9 2 3 0.01018 0.0046

13 0 4 0.01406 0.0014
14 1 4 0.01089 0.0024

data points and 8 parameters), χ2
ν = 1.229. The full covariance

matrix is listed in Table VI.
Since the cross section is fixed at the best-fit parametrization

described above, the uncertainty in the asymmetry is also given
by Eq. (7) (now taking dervatives with respect to the Di), where
the indices r and s run over parameter numbers as listed in
column 1 of Table V and σ 2

rs is the corresponding covariance.
The necessary derivatives are given by

∂f

∂Di

= Pji
[x(E)]P 2

ki
[cos(θ )], (10)

where i is the parameter number and ji and ki are the cor-
responding energy and angle polynomial orders, repectively,
taken from Table V. Using integer arithmetic, ji and ki are
related to the parameter number i by ki = 1

6 (i − 1) + 2 and
ji = (i − 1) − 6 (ki − 2).

C. Comparison with the data

The 366 cross-section data points included in the fit
comprise 37 angular distributions ranging from 187.5 to
420 MeV in laboratory photon energy. To present the results
of the fit, the data have been grouped into 19 energy bins. The
Mainz and Bonn energies match throughout the energy range.
When the LEGS data are within ≈4 MeV, they are plotted with
the other two sets.

The comparison of the fits and the data is shown in Figs. 1
and 2. The unbiased estimate of the uncertainty in the fit,

FIG. 2. Comparison of the LEGS, Mainz, and Bonn cross-section
data with the fit at energies between 290.0 and 420 MeV. Symbols
have the same meaning as in Fig. 2.

±√
ss

fit, is indicated by the dashed lines above and below
each fit. The data plotted here are the unrenormalized data
as reported by the authors. Since the renormalization factors
are only a few percent different from unity, it is difficult to see
the small shifts that their inclusion would make on the plot.

TABLE VI. The covariance matrix obtained in the asymmetry fit. The parameters are labeled by the parameter numbers listed in Table V.

1 2 3 4 7 9 13 14

1 1.66 × 10−5

2 1.01 × 10−5 2.73 × 10−5

3 −4.38 × 10−6 3.06 × 10−6 6.81 × 10−5

4 −1.23 × 10−5 −2.46 × 10−5 1.01 × 10−5 1.01 × 10−4

7 1.62 × 10−6 4.12 × 10−6 3.82 × 10−7 2.83 × 10−6 3.82 × 10−6

9 −5.42 × 10−6 −1.24 × 10−5 −6.44 × 10−6 −9.60 × 10−6 −1.95 × 10−6 2.11 × 10−5

13 −3.04 × 10−7 −7.04 × 10−7 6.98 × 10−7 2.05 × 10−6 3.30 × 10−7 −9.10 × 10−7 1.84 × 10−6

14 −1.44 × 10−6 −1.78 × 10−6 2.00 × 10−6 4.03 × 10−6 7.39 × 10−8 −8.06 × 10−7 1.97 × 10−6 5.76 × 10−6
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FIG. 3. A histogram of the difference between the cross-section
fit and the data divided by the unbiased uncertainty in the fit. The
solid line represents the difference computed with the data rescaled
by the normalization factors obtain in the fit (Table II). The dashed
line shows the difference computed with the data as reported.

To make the changes produced by the renormalization more
apparent, a histogram of the difference between the fit and the
data divided by the uncertainty in the fit is shown in Fig. 3.

In this figure, the solid line represents the difference
computed with the data rescaled by the normalizations given
in Table II. Integrating the histogram symmetrically about the
mean shows that 57% of the rescaled data lie within ±

√
s2

fit of
the fit. The dashed line represents the same quantity using the
data as reported. The same integral for this data gives 52% of
the data within the fitted error band. From the definition of s2

fit,
68% of the rescaled data are expected in this interval.

This histogram also makes clear that the distribution of the
data is not symmetric and shows that there are more outliers
than are expected from a Gaussian distribution. Nevertheless,√

s2
fit gives a reasonable estimate of the uncertainty in the fit.

The character of the distribution of differences suggests that
in addition to the angle- and energy-independent experimental
systematic uncertainties, there are perhaps also energy- and
perhaps even angle-dependent systematic effects that are
impossible to estimate. Introducing an overall scale factor
for the uncertainties to find the interval that contains ≈68%
inherently assumes that the systematic scale uncertainties are
too small and this is clearly not the case.

The 228 asymmetry data points comprise 31 angular
distributions, spanning the energy range from 185 to 412 MeV.
As was done for the cross sections, when the LEGS data are
within ≈4 MeV of the Mainz energy, the two data sets are
plotted together. The resulting 20 energy bins are shown in
Figs. 4 and 5.

The quality of the fit is again most easily displayed in a
histogram of the difference between the data and the fitted
asymmetry divided by the uncertainty on the fit. This is shown
in Fig. 6. The solid line represents the histogram of all the

FIG. 4. Comparison of the LEGS and Mainz asymmetries be-
tween 185 and 276 MeV with the fit. The LEGS data are indicated
with the filled circles; the Mainz data are shown with open triangles.

data included in the fit. Unlike the cross-section histogram,
there is a significant tail extending to values much larger
than ±

√
s2

fit. This happens because the fitting function and
its uncertainties are required to vanish at 0◦ and 180◦. This
constraint forces the uncertainty in the fit to be smaller than
a simple inspection of the scatter in the data at these angles
would suggest. The fraction of the total 228 data points that lie
within ±

√
s2

fit is 0.34, much smaller than expected. To see the
effect of relaxing this constraint, a histogram using only data
for which 85◦ � θc.m. � 115◦ is shown with the dashed line. For
the data near 90◦, the influence of the constraint is minimal
and the computed uncertainties do reflect the full spread of the
data. Of the 61 data points in this angular range, the fraction
within ±

√
s2

fit of the mean is 0.72, in good agreement with
the expected 2/3. Thus, the large tails on this distribution
do not indicate a failure of the model or an underestimate
in the experimental uncertainties. Rather, they simply reflect
the constraints imposed by the model used.
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FIG. 5. Comparison of the LEGS and Mainz asymmetries be-
tween 290.9 and 412 MeV with the fit. The symbols have the same
meaning as in Fig. 4.

FIG. 6. A histogram of the difference between the asymmetry fit
and the data divided by the unbiased uncertainty in the fit. The solid
line represents the difference computed with all the data points. The
dashed line shows the result when only data between 85◦ and 115◦

are included.

FIG. 7. The energy dependence of the angle-integrated cross
section. The unbiased estimate of the uncertainties in the fit are shown
with dashed lines above and below the fitted results. The symbols have
the same meaning as in Fig. 1.

IV. DISCUSSION

Using the well-known properties of the Legendre polynomi-
als, the angle-integrated cross sections are readily computed.
Integrating Eq. (2) over all solid angle gives 4π times the
coefficient of the k = 0 term in Eq. (2),

σt (E) =
∫

dσ

d�
(θ, E) d� = 4π

5∑
j=0

Cj0Pj [x(E)], (11)

and the propagated uncertainty is

[δσt (E)]2 = (4π )2
5∑

r=0

5∑
s=0

Pr [x(E)]s2
rsPs[x(E)], (12)

where s2
rs is the unbiased estimator of the covariance between

parameters Cr0 and Cs0, s
2
rs = σ 2

rsχ
2
ν . A comparison of the

total cross section from this fit with that obtained by fits made
by the experimenters to the individual data sets is shown in
Fig. 7.

Similarly, the energy-dependent coefficients for k > 0 can
be written

Ak (E) =
5∑

j=0

CjkPj [x(E)] (13)

with an uncertainty of

[δAk(E)]2 =
5∑

r=0

5∑
s=0

Pr [x(E)] (srs)
2
k Ps[x(E)], (14)

where (srs)2
k is the unbiased covariance between parameters

Crk and Csk . The energy dependences of these coefficients are
shown along with their uncertainties in Fig. 8. These curves
are compared with the coefficients obtained by Mainz [2]
and Bonn [3]. These coefficients are the result of fitting each
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FIG. 8. The energy dependence of the Ak (E) coefficients. Plotted as open triangles are the coefficients from Ref. [2]. The open squares
represent coefficients obtained from the Bonn [3] data.

energy separately with a fourth-order polynomial; hence, no
comparison can be made for A5 and A6.

As can be seen in Fig. 8, the present fit gives a good
representation of the coefficients obtained in the individual
fits to the Mainz data. Even for A3, which is exactly zero here
owing to its exclusion from the fit by the F-test pruning of
the parameter space, we find reasonable agreement given the
scatter in the individual fits. Somewhat surprising, however,

is the appearance of the A5 and A6 terms, which have been
omitted previously for all fits done at any energy in this range
but were not excluded by the F-test pruning of the fit function
described in Sec. II B. That these terms are required by the
data in an energy-dependent fit suggests that the truncated
fits are compensating by shifting the relatively small missing
strength to lower order terms [15]. Such a shift of higher
order strength has been found in multipole analyses using
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FIG. 9. The energy dependence of the cross-section difference,
� (θ, E) · dσ

d�
(θ, E). The uncertainty in the parameters, ±

√
s2

fit, is
shown as dashed lines above and below the fitted results.

Legendre polynomials [12] so that even fits with orthogonal
functions are not immune. Moreover, the uncertainties in the
highest order coefficients are expected to be largest [16] as is
seen here. When the small A5 and A6 coefficients with their
relatively large uncertainties are removed and their strength is
redistributed among the lower order coefficients, the changes
are difficult to discern given the larger uncertainties of the
Mainz fits. Perhaps the most noticeable occurrence of this
shift is from A5 → A3, where A3 is exactly zero in the
energy-dependent fit but appears to be more consistently
negative in the Mainz fit, although even here the scatter in the
parameters from energy to energy makes the effect difficult to
quantify.

Although the Mainz coefficients have large uncertainties,
they generally agree with the energy-dependent fits. However,
the Bonn data have much larger uncertainties and show much
larger differences from the current fits, particularly for the A2

and A4 coefficients. The variation of these coefficients appears
to be correlated (i.e., when A2 decreases, A4 increases). It is
possible that A1 and A3 also display a small correlation, but
the uncertainties are too large to identify it with certainty. To
ensure that this ambiguity is not a problem, more data must
be included in the fit [12]. The Mainz coefficients are fit to
14 data points per energy compared to the 8 data points per
energy in the Bonn data. The two data sets have comparable
statistical uncertainties. Thus, the increase in the data included
in the fit appears to be the source of the improvement in
the Mainz coefficients compared to those obtained from
the Bonn data. Because a much more complete data set is
included in this analysis, the higher order coefficients are
required here. Nevertheless, there is good agreement among
all approaches for A0, the angle-integrated cross section.
The scatter is small and it is consistently determined by all
analyses.

Because of the smooth energy dependence imposed and
the inclusion of all the data in one fit, the uncertainties in the
energy-dependent coefficients are generally much smaller than
found previously. The one exception is the total cross section
(Fig. 7), where the unbiased estimate of the uncertainty in
the fit includes the statistical uncertainty in the data along
with the scatter among the data sets. A comparison of the
total cross sections determined by the present fit with those
of the experimenters, as described in the discussion of the
full data set in Sec. III C, shows that the data are distributed
consistently with expectations. The difference between the
data as reported and the fit is within ±√

ss
fit 67% of the time

(for 24 out of the 36 data points). Renormalizing the data with
the factors given in Table II yields 72% of the data within
±√

ss
fit of the fit (26 out of 36). Given the small number of data

points and the modest renormalization factors, the effect of
the renormalization is difficult to quantify with any precision.
Nevertheless, it is clearly consistent with expectations.

The choice of parametrization of the asymmetry makes
it impossible to generate an angle-independent set of co-
efficients. However, the cross-section difference, � (θ, E) ·
dσ
d�

(θ, E), can be separated this way to give

� (θ, E) · dσ

d�
(θ, E) =

6∑
k=2


 5∑

j=0

DjkPj [x(E)]


P 2

k [cos(θ )].

(15)

The angle-independent energy coefficient is delimited by the
parentheses and is given by

Bk =
5∑

j=0

DjkPj [x(E)]; (16)

the uncertainty in the cross section difference is given by

[δBk(E)]2 =
5∑

r=0

5∑
s=0

Pr [x(E)] (srs)
2
k Ps[x(E)], (17)

where the (srs)2
k are the unbiased covariances computed from

Table VI. These coefficients are shown in Fig. 9.
Note that the full experimental uncertainty in the asymme-

try is given in these coefficients since the fitted cross sections
are included as values with no uncertainty in the asymmetry
fit. Although this is not the case for experimentally determined
differences and asymmetries, the fitting method chosen here
forces this to be the case. Since this sort of analysis of beam
asymmetries has not been done before, there are no coefficients
with which to compare.

V. SUMMARY

Presented here is an energy- and angle-dependent fit to
the photodisintegration of deuterium in the energy range from
185 to 420 MeV. The results for the cross section are in good
agreement with the results of earlier fits done at individual
energies and the uncertainties are substantially smaller. The fit
to the asymmetry gives a good representation of the data and,
when combined with the cross-section fit, is a useful input to
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Monte Carlo simulations. The simple parametrization of the
modern data, obtained with monochromatic photon beams,
makes it possible to use this as a benchmark for normalizing
data from new experiments obtained with deuteron targets,
especially with polarized targets.
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