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The proton to proton polarization transfer coefficients Kx′
x , Ky′

y , and Kx′
z , and the proton to deuteron polarization

transfer coefficients Kx′
x , Ky′

y ,Kx′
z , Ky′z′

x , Kz′z′
y , Ky′z′

z , Kx′z′
y , and Kx′x′−y′y′

y were measured in d(
−→
p ,

−→
p )d and

d(
−→
p ,

−→
d )p reactions, respectively, at Elab

p = 22.7 MeV. The data were compared to predictions of modern
nuclear forces obtained by solving the three-nucleon Faddeev equations in momentum space. Realistic
(semi)phenomenological nucleon-nucleon potentials combined with model three-nucleon forces and modern
chiral nuclear forces were used. The AV18, CD Bonn, and Nijm I and II nucleon-nucleon interactions were
applied alone or combined with the Tucson-Melbourne 99 three-nucleon force, adjusted separately for each
potential to reproduce the triton binding energy. For the AV18 potential, the Urbana IX three-nucleon force was
also used. In addition, chiral NN potentials in the next-to-leading order and chiral two- and three-nucleon forces in
the next-to-next-to-leading order were applied. Only when three-nucleon forces are included does a satisfactory
description of all data result. For the chiral approach, the restriction to the forces in the next-to-leading order is
insufficient. Only when going over to the next-to-next-to-leading order does one get a satisfactory description of
the data, similar to the one obtained with the (semi)phenomenological forces.
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I. INTRODUCTION

A rich set of observables provided by three-nucleon (3N)
reactions can be used to test modern nuclear forces. Presently,
there are two theoretical approaches to construct them. In the
traditional approach, the nucleon-nucleon (NN) potentials are
derived in the framework of the meson-exchange picture alone
or mixed with phenomenological assumptions. By adjusting
parameters, so-called realistic, high-precision interactions
such as the phenomenological AV18 [1] potential and the
meson-theoretical CD Bonn [2] together with Nijm I and II [3]
potentials are obtained. They provide a very good description
of NN data below about 350 MeV nucleon laboratory energy.
All these potentials have in common, the fact that they fit the
large set of NN data with χ2 per datum close to 1, indicating
essentially phase equivalence.

In a more modern framework of chiral effective field theory,
nuclear forces are linked to the underlying strong interaction
between quarks and gluons. They are derived from the most
general effective Lagrangian for pions and nucleons, which
is consistent with the spontaneously broken approximate
chiral symmetry of QCD, using chiral perturbation theory
(χPT) [4]. The χPT approach gives a deeper understanding
of nuclear forces than the traditional approach and allows us
to construct three- and more-nucleon forces consistent with
the NN interactions [5–7]. In practice, various contributions
to the nuclear force in the χPT framework are organized

in terms of the expansion in Q/�, where Q is the soft
scale corresponding to the nucleon external momenta and
the pion mass and � is the hard scale associated with the
chiral symmetry breaking scale or an ultraviolet cutoff. At
present, the two-nucleon system has been studied up to
next-to-next-to-next-to-leading order (NNNLO) in the chiral
expansion [7,8]. At this order, the two-nucleon force receives
the contributions from one-pion exchange, two-pion exchange
at the two-loop level, and (numerically irrelevant) three-pion
exchange. In addition, one has to take into account all possible
short-range contact interactions with up to four derivatives
and the appropriate isospin-breaking effects. In the three- and
more-nucleon sectors, the calculations have so far only been
performed up to next-to-next-to-leading order (NNLO) [7]. In
this work, we will show the results corresponding to the latest
version of the chiral NN forces introduced in Refs. [8,9] and
based on the spectral function regularization scheme [10].

Recent studies of few-nucleon bound states and of 3N
reactions provided numerous indications that three-nucleon
forces (3NFs) form an important component of the potential
energy of three interacting nucleons [11–16]. In the traditional
approach, they are accounted for by adding model 3NFs,
such as, e.g., the 2π -exchange Tucson-Melbourne (TM) [17]
or Urbana IX [18] interactions, with parameters adjusted to
reproduce the experimental triton binding energy. Such a
simple treatment allows us to cure some of the discrepancies
between data and theory [19–29]. In the approach based on
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χPT, nonvanishing 3NFs appear in the next-to-next-to-leading
order (NNLO) of the chiral expansion. In addition to the
2π -exchange term, two other topologies appear. One of them
corresponds to a contact interaction of three nucleons, and the
second to a contact interaction of two nucleons exchanging
in addition one pion with the third nucleon. The two free
parameters of these two terms are adjusted by fitting two
independent 3N observables (e.g., the triton binding and the nd
doublet scattering length). The quality of the description of the
3N observables is then similar in both approaches [30]. The
study of the details of the 3NFs is a lively topic of present-day
few-nucleon system studies.

In the present paper, we analyze the proton to proton and
the proton to deuteron spin transfer coefficients measured in

d(
−→
p ,

−→
p )d and d(

−→
p ,

−→
d )p reactions, respectively, at Elab

p =
22.7 MeV [31–33]. The existing data for polarization transfer
coefficients in elastic nucleon-deuteron (Nd) scattering are
restricted to few experiments in the pd system (Elab

p = 10
[34], 19 [35], 250 [25], and 270 MeV [36]) and to one
measurement in the nd system (Elab

p = 19 MeV [37]). After
a short description of the theoretical calculations in Sec. II,
we show in Sec. III the data and compare them to different
theoretical predictions. The summary and conclusions follow
in Sec. IV.

II. CALCULATIONS

In this work, we will employ two different methods to solve
the nucleon-deuteron scattering problem. Our first scheme is
based on Faddeev equations. The nucleon-deuteron elastic
scattering with neutron and protons interacting through a
NN potential V and through a 3NF V4 is described in terms
of a breakup operator T satisfying the Faddeev-type integral
equation [15,38,39]

T = tP + (1 + tG0)V (1)
4 (1 + P ) + tPG0T

+ (1 + tG0)V (1)
4 (1 + P )G0T . (1)

The two-nucleon (2N) t-matrix t results from the interaction V
through the Lippmann-Schwinger equation. The permutation
operator P = P12P23 + P13P23 is given in terms of the
transposition Pij which interchanges nucleons i and j, and G0

is the free 3N propagator. Finally, the operator V
(1)

4 appearing
in Eq. (1) is part of the full 3NF V4 = V

(1)
4 + V

(2)
4 + V

(3)
4 and is

symmetric under exchange of nucleons 2 and 3. For instance,
in the case of the π -π exchange 3NF, such a decomposition
corresponds to the three possible choices of the nucleon
which undergoes off-shell π -N scattering. It is understood
that the operator T acts on the incoming state |φ〉 = |�q0〉|φd〉
which describes the free nucleon-deuteron motion with relative
momentum �q0 and the deuteron wave function |φd〉. The
physical picture underlying Eq. (1) is revealed after iteration
which leads to a multiple scattering series for T.

The elastic Nd scattering transition operator U is given in
terms of T by [15,38,39]

U = PG−1
0 + PT + V

(1)
4 (1 + P ) + V

(1)
4 (1 + P )G0T . (2)

We solve Eq. (1) in momentum space using a partial wave
decomposition for each total angular momentum J and parity

of the 3N system. To achieve converged results, a sufficiently
high number of partial waves have been used. Calculations
with and without 3NF were performed including all 3N partial
wave states with total two-body angular momenta up to j = 5.
In the case when the 3NF is switched off, Eq. (1) is solved for
J up to 25/2. When the shorter ranged 3NF is also active, it
is sufficient to go only up to J � 13/2. In all calculations, we
neglect the total isospin T = 3/2 contribution in the 1S0 state
and use in this state a np form of the NN interaction. Such
a restriction to the np force for the 1S0 state does not have a
significant effect on the polarization transfer coefficients.

The second scheme is based on the Kohn variational prin-
ciple, the S-matrix elements corresponding to a 3N scattering
state with total angular momentum J can be obtained as the
stationary point of the functional

[
J SSS ′

LL′
] = J SSS ′

LL′ + i〈�−
LSJ |H − E|�+

L′S ′J 〉. (3)

The wave function �+
LSJ describes a 3N scattering state in

which asymptotically an ingoing nucleon is approaching the
deuteron in a relative angular momentum L and total spin S.
The parity of the state is given by (−1)L. The wave function
is expanded, using a partial wave decomposition, in terms of
the pair correlated hyperspherical harmonic (PHH) basis as
described in Ref. [29]. As in the Faddeev scheme, states up to
J = 25/2 have been considered.

In our Faddeev calculations, the Coulomb interaction
between two protons is totally neglected. A measurement
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FIG. 1. Nucleon to nucleon spin transfer coefficients in Nd elastic
scattering at Elab

N = 22.7 MeV. Crosses are pd data from [31–33].
Dashed line is the result of the hyperspherical harmonic expansion
method with AV18 potential. Solid line is the corresponding result
when the pp Coulomb force is included.
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FIG. 2. Same as Fig. 1, but for nucleon to vector-deuteron spin
transfer coefficients.

of the neutron to neutron polarization transfer coefficients
K

y ′
y in nd elastic scattering [37] and their comparison to the

corresponding pd data [35] show that effects caused by the
Coulomb force for this coefficient are nonnegligible. These
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FIG. 3. Same as Fig. 1, but for nucleon to tensor-deuteron spin
transfer coefficients.

effects have been studied on a few polarization transfer coef-
ficients [40] as well as on other polarization observables [29]
using the Kohn variational principle in conjunction with the
PHH basis. In these calculations, the Coulomb force between
the two protons has been considered without approximations,
and the results confirm sizable Coulomb force effects in the
energy range considered here. Therefore, to remove possible
Coulomb force effects from the studied polarization transfer
coefficients, we proceed in the following manner. Using the
PHH expansion, we evaluate the studied polarization transfer
coefficients with and without Coulomb force and employ the
AV18 NN interaction. This is displayed in Figs. 1–3. In this
manner, we read off the shifts caused by the pp Coulomb force.
Then we generate nd data by applying those shifts to our pd
data. For the studied polarization transfers, the Coulomb force
effects are restricted mostly to forward angles and to the region
around θc.m. ≈ 120◦. For the proton to proton spin transfer
coefficient Kx ′

x , they are of minor importance, whereas for

K
y ′
y and Kx ′

z , the Coulomb force effects significantly change
the magnitude of these coefficients around θc.m. ≈ 120◦ (see
Fig. 1). For the proton to vector-deuteron spin transfers,
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FIG. 4. (Color online) Nucleon to nucleon spin transfer coeffi-
cients in Nd elastic scattering at Elab

N = 22.7 MeV. Crosses are pd
data from [31–33]; x, s are the corresponding nd data obtained by
subtracting the pp Coulomb force effects (see text for explanation).
Light (blue) band results from theoretical predictions obtained with
the AV18, CD Bonn, Nijm I, and Nijm II NN potentials. Dark
(magenta) band is obtained when these interactions are combined
with the TM99 3NF. Solid line is the prediction of the AV18 +
Urbana IX 3NF.
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FIG. 5. (Color online) Same as Fig. 4, but for nucleon to vector-
deuteron spin transfer coefficients.

Coulomb force effects are rather small with the exception
of very forward angles, where they significantly decrease
the magnitude (see Fig. 2). For Kx ′

z also some effects are
seen around θc.m. ≈ 120◦. In the case of the proton to tensor-
deuteron transfers shown in Fig. 3, only K

y ′z′
x (in the steep

slope), Kx ′z′
y , and K

y ′z′
z exhibit large Coulomb force effects in

the region of c.m. angles around θc.m. ≈ 120◦. In subsequent
figures, we include both the pd and nd data.

III. RESULTS

In Figs. 4–6, we show our data and compare them to
theoretical predictions based on (semi)phenomenological NN
potentials alone or combined with the TM99 [41] or Urbana
IX [18] 3NFs. The theoretical results were obtained by
using the Faddeev approach, where we were able to also
employ nonlocal interactions. The corresponding comparison
for chiral forces is presented in Figs. 7–9. Comparison with
experiment always means the Coulomb-corrected nd data.

For the traditional approach based on high-quality
(semi)phenomenological interactions, we took the NN poten-
tials AV18, CDBonn, Nijm I, and Nijm II and combined each
of them with the 2π -exchange TM99 3NF, adjusting the cutoff
parameter of TM99 individually to get the experimental triton
binding energy. The resulting cutoffs for these potentials are,
respectively, 5.215, 4.856, 5.120, and 5.072 (in units of the
pion mass mπ ). From the predictions of these potentials alone
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FIG. 6. (Color online) Same as Fig. 4, but for nucleon to tensor-
deuteron spin transfer coefficients.
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FIG. 7. (Color online) Nucleon to nucleon spin transfer coef-
ficients in Nd elastic scattering at Elab

N = 22.7 MeV. Symbols are
the same as in Fig. 4. Light (blue) band results from theoretical
predictions obtained with the NLO chiral potential with different
cutoff parameters. Dark (red) band results when in NNLO the NN
and 3N forces are included.
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FIG. 8. (Color online) Same as Fig. 7, but for nucleon to vector-
deuteron spin transfer coefficients.

or combined with the TM99 3NF, two bands, light and dark,
respectively, were formed and are shown in Figs. 4–6.

For the proton to proton spin transfer coefficients (see
Fig. 4), the effects of the Coulomb interaction are located in the
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FIG. 9. (Color online) Same as Fig. 7, but for nucleon to tensor-
deuteron spin transfer coefficients.

region of c.m. angles around θc.m. ≈ 120◦. In that region, the
differential cross section has its minimum. They are significant
only for K

y ′
y and Kx ′

z and are practically negligible for Kx ′
x .

The realistic potentials alone provide a good description only
of Kx ′

x and fail to reproduce the data for K
y ′
y and Kx ′

z ,
especially around θc.m. ≈ 120◦. Including the TM99 3NF and,
in case of AV18, also Urbana IX changes only slightly the
predictions for Kx ′

x . For K
y ′
y and Kx ′

z , the effects of these 3NFs
are significant in the region of c.m. angles around θc.m. ≈
120◦, and their inclusion leads to a good description of the
data.

For the corresponding proton to deuteron spin transfer
coefficients (Kx ′

x ,K
y ′
y , and Kx ′

z , see Fig. 5), effects of the
Coulomb force are practically negligible at angles where data
exist and they are seen only for Kx ′

z . For these observables
also, the effects of the TM99 and Urbana IX 3NFs are small
and the realistic NN potentials alone or combined with these
3NFs provide quite a good description of the data.

For the proton to tensor-deuteron spin transfer coefficients,
the Coulomb forces are significant for K

y ′z′
x ,Kx ′z′

y , and K
y ′z′
z

(see Fig. 6). In the case of Kz′z′
y and K

x ′x ′−y ′y ′
y (see Fig. 6)

they are negligible at angles for which data exist. For these
two coefficients also, the effects of the TM99 and Urbana IX
3NFs are small and the NN potentials alone provide a good
description of the data. This is similar for K

y ′z′
x . For Kx ′z′

y and

K
y ′z′
z , the effects of these 3NFs are nonnegligible, especially

in the region of angles around θc.m. ≈ 120◦. While for Kx ′z′
y

the inclusion of the TM99 or Urbana IX 3NFs improves the
description of the data; in the case of K

y ′z′
z , it shifts the theory

away from the data points.
Based on the chiral interactions, we show in Figs. 7–9 two

bands of predictions based on forces derived in NLO and
NNLO. Each band is based on five predictions obtained with
different cutoff combinations: (450, 500), (600, 500), (550,
600), (450, 700), and (600, 700) (see [7] for more details). The
results for the chiral NN potentials in NLO are shown by the
light band. In NNLO, nonzero contributions from chiral three-
nucleon interactions arise for the first time, and the predictions
based on the full chiral Hamiltonian in NNLO are shown by
the dark band.

It is clearly seen that the restriction to NLO only is
quite insufficient even at low energy of our experiment. The
predictions based on the chiral NN potential obtained in this
low order are far away from the data. At NNLO, one could
show the NN force predictions alone. We refrain from doing
that since this is ambiguous. As is well known, unitarily
transformed 2N forces, which do not affect two-nucleon
observables, lead to different results in the 3N system [42]. It is
only the complete 3N Hamiltonian that provides unambiguous
results for the 3N observables. Since the chiral approach
systematically improves the nuclear force description with
increasing order and provides strong internal links between
2N forces and forces beyond, we deviate here from the usual
presentation of exhibiting 3N force effects separately. This
was done above in the standard approach because there is no
internal consistency between NN and 3N forces. Now Figs. 7–9
show that the full NNLO predictions lead to quite as good a
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description as the traditional approach including 3N forces.
The exceptions are K

y ′
y for the proton to proton transfer, where

the chiral approach differs from the data, and K
y ′z′
z for the

proton to deuteron transfer, where it leads to an agreement
with the data. In the standard approach, it is the opposite.

It will be of great interest to see the outcome for NNNLO,
for which the NN forces have already been worked out [8].
At that order, a whole host of parameter-free 3NFs contribute,
including first relativistic effects.

IV. SUMMARY AND CONCLUSIONS

We presented new data for spin transfer coefficients in
elastic pd scattering, both for the proton to proton and for
the proton to deuteron transfers. They were measured using a
polarized proton beam with energy Elab

p = 22.7 MeV. The data
were corrected for Coulomb force effects using our theoretical
framework of a hyperspherical expansion. This led to nd data
to which we compared our theory. In some cases, the Coulomb
force effects are quite significant, especially at θc.m. ≈ 120◦,
where the differential cross section has its minimum.

The theoretical predictions are obtained by solving the
3N Faddeev equations with two different dynamical inputs.
One is the standard approach of the so-called high-precision
NN forces supplemented by the TM99 and Urbana IX 3NF.
The other is an effective field theory approach constrained by
chiral symmetry. In the first case, where the forces have mostly

phenomenological character, we show NN force prediction
separately in addition to the results obtained by adding the
3NFs. The inclusion of 3NFs clearly improves the description,
and the comparison with the data is quite successful. However,
it should be pointed out that the higher energy Nd scattering
data seem to be more favorable to the study of 3NFs. Generally,
the statistical discrepancies between a theory based only
NN potentials and experiment become larger with increasing
energy of the 3N system [19–28]. In the case of the approach
based on chiral nuclear forces, NLO is quite insufficient; but
at NNLO, the combined dynamics of NN and 3N forces does
essentially as well as the standard approach. Exceptions are
the spin transfer coefficients K

y ′
y from proton to proton and

K
y ′z′
z from proton to deuteron. The first is well described in

the standard approach but not the second one. Just the opposite
is true in the chiral approach.
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[10] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Eur. Phys. J. A

19, 125 (2004).
[11] J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Swart, Phys.

Lett. B311, 4 (1993).
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