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Exclusive reactions induced at high momentum transfer in few body systems provide us with an original way
to study the production and propagation of hadrons in cold nuclear matter. In very well-defined parts of the phase
space, the reaction amplitude develops a logarithmic singularity. It is on solid ground since it depends on only
on-shell elementary amplitudes and on low momentum components of the nuclear wave function. This is the best
window for studying the propagation of exotic configurations of hadrons such as the onset of color transparency.
It may appear earlier in meson-photoproduction reactions, more particularly in the strange sector, than in the
more classical quasi-elastic scattering of electrons. More generally, those reactions provide us with the best tool
to determine the cross section of the scattering of various hadrons (strange particles, vector mesons) from the
nucleon and to obtain the production of possible exotic states.
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I. INTRODUCTION

Exclusive reactions induced at high momentum transfer in
few body systems provide us with an original way to study the
production and propagation of hadrons in cold nuclear matter.
In very well-defined parts of the phase space, the reaction
amplitude develops a logarithmic singularity that enhances the
cross section. Here, the reaction amplitude is on solid ground
since it depends on only on-shell elementary amplitudes and on
low momentum components of the nuclear wave function [1].
On the one hand this allows the determination of the scattering
cross section of short-lived particles. On the other hand this
allows the study of the propagation of exotic configurations
such as the onset of color transparency.

The concept of color transparency follows from the under-
lying structure of QCD: Interactions between “white” objects
depend on their transverse size [2,3]. A hard scattering of the
probe produces recoiling particles with small transverse size
whose subsequent interactions in nuclear matter are reduced.
There is no doubt that color transparency should occur. The
question is where and when.

The difficulty resides in the fact that such an exotic
configuration evolves quickly toward the asymptotic state
of the detected hadron: To observe color transparency, the
characteristic scale of this evolution should be larger than, or
comparable with, the size of the largest nuclei.

To date there is no convincing evidence for color trans-
parency in photon- and electron-induced reactions. The reason
is that most of the attempts were performed in semiexclusive
kinematics. In the A(e, e′p) reactions [4,5] for instance, it is
very likely that the values of the only available hard scale,
Q2, are too low to observe color transparency in the quasifree
kinematics channels, where the energy of the ejected nucleon
Tp and the photon four-momentum are not independent (Tp =
Q2/2M). In the range of values of Q2 accessible today, the
lifetime of the small object is of the order of the distance
between nucleons rather than the nuclear radius. For instance,
at the highest Q2 = 6 GeV2 where data exist, the energy of the
outgoing proton is only 3 GeV and its characteristic evolution

distance [6] is no more than 1.5 fm, closer to the internucleonic
distance rather than the size of the nucleus.

A signal has been reported in A(e, e′ρ) reactions, at Fermi
Lab. [7] and DESY [8]. However, it comes from a subtle
interplay between the attenuation of the hadronic component
of the virtual photon in the entrance channel and the onset
of color transparency in the exit channel (see, e.g., Ref. [9]).
An experiment [10] has been completed recently at Jefferson
Laboratory (JLab) to disentangle these two effects: One has to
await the final analysis for a more definite answer.

The way to overcome these difficulties is to study reactions
induced by photons in few body systems: Exclusive reactions
allow the formation length of the hadron to be adjusted to the
distance between nucleons [11–13]. The kinematics should be
chosen so that the interactions of the emerging hadron with a
second nucleon are maximal. This occurs when the produced
hadron propagates on-shell and rescatters on a second nucleon
at rest (triangular logarithmic singularity). A clear signal for
color transparency would be the suppression of the final-state
interaction peak when the momentum transfer increases. This
situation is more comfortable than in the more classical study
of quasi-elastic scattering of electrons from heavy nuclei, in
which one looks for a change of a flat level of attenuation of
the outgoing nucleon instead of the evolution of a well-defined
peak.

This conjecture [11–13] has been tested in two studies of
the 2H(e, e′p)n reaction that were completed recently at JLab:
The first [14] with two magnetic spectrometers in Hall A; the
second [15] with the CEBAF Large Acceptance Spectrometer
[16] (CLAS) in Hall B. The preliminary results do not
exhibit a signal of color transparency (within the experimental
and theoretical uncertainties) in the range 2 < Q2 < 6 GeV2

when compared with the latest prediction [17] of the various
interaction mechanisms.

It may occur earlier in the exclusive photoproduction of
mesons. The reason is that mesons are made up of two
quarks. They may recombine more easily through the exchange
of one hard gluon only and prepare a configuration with
a small transverse extension that further evolves toward its
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asymptotic size. The second reason is that the hard scale is
provided by the four-momentum transfer t that happens to
define the interaction volume, while the virtuality Q2 of the
photon that is exchanged in (e, e′p) reactions defines the scale
of observation [18].

Indeed, a hint was reported in the 4He(γ ,pπ−) and
16O(γ ,pπ−) channels recently studied at JLab [19,20]. How-
ever, the signal is weak and again these are semiexclusive
reactions. The signal must be confirmed by completely
exclusive measurements.

The simplest example is the reaction 2H(γ, pπ−)p in
the energy range 4 < Eγ < 10 GeV. For real photons the
momentum transfer t, between the incoming photon and the
outgoing pion, sets the size of the interaction volume. As can be
seen in Fig. 1, the on-shell rescattering peaks corresponding to
πp or pp interactions are clearly separated. Such a logarithmic
singularity has already been observed at lower energies [21]. At
the top of each peak, the rescattering amplitude is dominated by
low momentum components of the deuteron wave function and
on-mass-shell elementary reaction amplitudes (see Ref. [1]).
The elementary reaction n(γ, π−)p is well reproduced by a
model based on the exchange of saturating Regge trajectories
[22]. The π -nucleon, as well as the nucleon-nucleon, elemen-
tary scattering amplitudes are almost entirely absorptive and
well under control at high energy [23,24]. The rescattering

0

1

2

3

4

5

6

7

-150 -100 -50 0 50 100 150

θR  (Degrees )

R

γ 2H → p p π-

W=2.896 GeV

Coplanar

φπ- φR=π π- φφ R=0

t=-3 GeV2

PR=500 MeV/c

PR=200 MeV/c

pp πppp πp

FIG. 1. (Color online) Ratio of the total to the quasi-free cross
section of the 2H(γ, π−p)p reaction against the angle of the recoiling
proton whose momentum is kept constant at 500 MeV/c (top) and
200 MeV/c (bottom). The peaks labeled πp and pp correspond,
respectively, to πp and pp on-shell rescattering. The dotted line
corresponds to the quasi-free process. The kinematics is coplanar,
and positive angles correspond to the emission of the pion and the
recoiling proton on the same side of the photon.

amplitudes are therefore on solid ground [17]: The method can
be calibrated at low values of the four-momentum transfer t. A
signal of color transparency would be the reduction of the πp

rescattering peak when t increases. It could happen sooner in
the strange sector, where the strange quark may play a special
role.

Alternatively, the method will allow a determination
of the cross section of hyperons (� . . .) or vector-meson
(φ, J/� . . .) scattering with nucleons, or the interactions
between other unstable hadrons. More generally it offers us
a way to obtain the mechanisms of the formation of hadrons
in cold nuclear matter.

I have already presented these conjectures in several
conference talks [11,25,26] and prospect reports. In the
meantime, the CLAS collaboration at JLab has completed,
with unprecedented statistics, a study [27] of the interactions of
a real photon beam (maximum energy 3.7 GeV) on a deuterium
target: It provides us with a unique testing ground of these ideas
and the method.

This paper is not one more attempt to predict the size
of the signal of color transparency: Too many parameters
are unknown, and, although we already know what the
qualitative expectations are, only experiments will allow
us to quantify the effect. This paper is rather an attempt
to provide a comprehensive recollection and update of the
various matrix elements in the meson-production sectors and to
provide a baseline calculation in a dedicated kinematical range,
already accessible at JLab at 6 GeV and its further upgrade
to 12 GeV, from which any deviation will be meaningful.
The nucleon sector was already revisited in Ref. [17].
Section II deals with the pion-production sector, Sec. III
deals with the single-kaon-production sector, Sec. IV deals
with the vector-meson-production sector (more specifically
φ and J/�), Sec. V addresses issues in color transparency,
Sec. VI investigates the possible implication of the search
of exotics, and Sec. VII concludes and summarizes the
prospects.

II. THE 2H(γ, π− p) p REACTION

A. The model

The model is a straightforward update of the diagrammatic
approach [1] that has been successful in the analysis of
meson-production reactions at lower energies (let’s say in
the resonance region). It is particularly well suited for
evaluating the reaction amplitude near the singularities of the
S matrix. The kinematics, the elementary operators as well
as the propagators, is relativistic. The deuteron wave function
corresponds to the Paris potential [28], but any modern wave
function leads to very similar results in the momentum range
covered by this study.

Let k = (ν, �k), pD = (MD, �0), pπ = (Eπ, �pπ ), p1 = (E1,

�p1), and p2 = (E2, �p2) be the four-momenta, in the lab system,
of, respectively, the incoming photon, the target deuteron, the
outgoing pion, the slow outgoing proton, and the fast outgoing
proton. The five-fold fully differential cross section is related
to the square of the coherent sum of the matrix elements as
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follows:

dσ

d �p1[d	π ]c.m.2
= 1

(2π )5

| �µc.m.|m2

24|�k|E1Qf

×
∑

ε,M,m1,m2

∣∣∣∣∣
III∑
i=I

Mi(�k, ε,M, �pπ, �p1,m1,

�p2,m2) − Mi(�k, ε,M, �pπ, �p2,

m2, �p1,m1)

∣∣∣∣∣
2

(1)

where ε is the polarization vector of the photon and M,m1, and
m2 are the magnetic quantum numbers of the target deuteron
and the two outgoing protons, respectively. The norm of the
spinors is uu = 1. The amplitudes are computed in the lab
frame. The antisymmetry between the two outgoing protons is
ensured by the exchange of the role of ( �p1,m1) and ( �p2,m2)
in the second amplitude. The cross section is differential in
the lab three-momentum of proton 1, but in the solid angle
of the pion expressed in the center-of-mass (c.m.) frame of
the pair made by the pion and proton 2. In this frame, the
momentum of the pion is �µc.m. and the total energy is Qf =√

(Eπ + E2)2 − ( �pπ + �p2)2.
The cross section and the amplitudes are given for the case

of a real photon-induced reaction that I consider in this study.
They depend on only the transverse components JX and JY of
the hadronic current �J . In the case of a virtual photon beam,
additional terms in the cross section are related, as outlined
in Ref. [29], to the longitudinal component of the hadronic
current Jz. The matrix elements are expressed as the scalar
product �J · �ε from which each component of the hadronic
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FIG. 2. The relevant mechanisms: (I) quasi-free, (II) meson-
nucleon rescattering, (III) nucleon-nucleon rescattering.

current can be deduced. In the following discussion I give
the expressions of the dominant reaction amplitudes in Fig. 2
and discuss their update relevant to the high-energy domain
accessible at JLab. I refer the reader to [30] for more technical
details.

1. Quasi-free meson production

The matrix element of the quasi-free amplitude [graph (I)
in Fig. 2] takes this simple form:

MI(�k, ε,M, �pπ, �p1,m1, �p2,m2)

= i
∑

mnmlms

∑
ls

(lmlsms |1M)

(
1

2
mn

1

2
m1|sms

)

× ul(| �p1|)Yml

l ( �p1)Tγn( �p2,m2,− �p1,mn), (2)

where u0 and u2 are the S and D components of the deuteron
Paris wave function [28] and Tγn is the amplitude of the
elementary n(γ, π−)p reaction. I use the on-shell expression
(see appendix) of the Regge amplitude of Ref. [22], which
is based on the exchange of the saturating Regge trajectories
of the pion and the ρ mesons. It leads to a good description
of the differential cross section of the p(γ, π+)n reaction at
large momentum transfer −t in the photon energy range of
JLab (around 4 GeV). As shown in Fig. 3, it leads also to a fair
accounting of the more recent JLab data [31] in the π− channel.
I refer the reader to [22] for a thorough presentation of this
Regge model and the choice of the coupling constants and
parameters: I use the same in this study, except for the cutoff
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FIG. 3. (Color online) The cross section of the elementary
reaction n(γ, π−)p at Eγ = 4 GeV. The curves are the prediction of
the Regge model. The dashed curve corresponds to linear trajectories.
The solid curves correspond to saturating trajectories for two choices
of the cutoff mass in the hadronic form factor. The data have been
recently recorded at JLab [31].
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mass of the hadronic form factor, which I chose to be � = 0.7
GeV2 instead of 0.8 GeV2 in Ref. [22].

When the momentum �p1 of one of the protons is low, only
one amplitude dominates cross section (1), which takes this
simple form [1,30]:

dσ

d �p1d	π

= (1 + β1 cos θ1)ρ(| �p1|) dσ

d	π

(γ n → π−p), (3)

where β1 = p1/E1 and θ1 are the velocity and the angle of
the spectator nucleon, respectively. This is nothing but the
relation between the yield and the elementary cross section
of the production of a pion on a nucleon that moves with the
velocity − �β1. The number of target nucleons is ρ(| �p1|)d �p1,
where ρ(| �p1|) is the momentum distribution of the neutron in
deuterium, while (1 + β1 cos θ1) is the flux of photons seen by
the moving target nucleon.

2. Meson-nucleon rescattering

The matrix element of the pion-proton rescattering ampli-
tude [graph (II) in Fig. 2] takes this form:

MII(�k, ε,M, �pπ, �p1,m1, �p2,m2)

= i
∑
mnmp

(
1

2
mn

1

2
mp|1M

)∫
d3 �p

(2π )3

u0(p)√
4π

1

q2
π − m2

π + iε

× m

Ep

Tγn( �p2,m2,− �p,mn)TπN ( �p1,m1, �p,mp)

+D wave part. (4)

The integral runs on the three-momentum of the spectator
proton in the loop, which has been put on-shell, p0 = Ep =√

�p2 + m2, by the integration over its energy p0. It can be split
into two parts:

MII = Mon
II + Moff

II , (5)

The singular part of the rescattering integral runs between
the minimum and the maximum values of the momentum of the
spectator proton in the loop for which the pion can propagate
on-shell:

pmin(pπ ) = P

Qs

Ec.m. − E

Qs

pc.m., (6)

pmax(pπ ) = P

Qs

Ec.m. + E

Qs

pc.m., (7)

where E = Eπ + E1, �P = �pπ + �p1, and Qs =
√

E2 − �P 2

are, respectively, the energy, the momentum, and the mass
of the scattering πp pair. The momentum and energy of the
spectator proton in the c.m. frame of the πp pair are

pc.m. =
√[

Q2
s − (m + mπ )2

][
Q2

s − (m − mπ )2
]

2Qs

, (8)

Ec.m. =
√

p2
c.m. + m2 = Q2

s + m2 − m2
π

2Qs

. (9)

It takes the following form:

Mon
II = π

(2π )3
√

4π

∑
mnmp

1

2P

(
1

2
mn

1

2
mp|1M

)

×
∫ 2π

0
dφ

∫ pmax(pπ)

|pmin(pπ)|
pu0(p)dp

m

Ep

[TγnTπN ]q2
π =m2

π

+D wave part. (10)

The two-dimensional integral is done numerically. It de-
pends on only on-shell elementary amplitudes. The weight
pu0(p) selects nucleons almost at rest in the deuterium when
the lower bound pmin(pπ ) of the integral vanishes. This is the
origin of the meson-nucleon scattering peak in Fig. 1, which
is therefore on solid ground.

The πN scattering amplitude can be expressed as

TπN = (m1|f (Qs, tr ) + g(Qs, tr )�σ · �k⊥|mp), (11)

where tr = (pπ − qπ )2 is the four-momentum transfer at the
πp rescattering vertex and �k⊥ = �pπ × �qπ is the direction
perpendicular to the scattering plane. At high energies (Qs >

2 GeV) the central part dominates at forward angles and is
almost entirely absorptive. It can be parametrized as follows:

f (Qs, tr ) = −Qspc.m.

m
(ε + i)σπ−p exp

(
βπ

2
tr

)
. (12)

Above Qs ∼ 2 GeV, the total cross section stays constant at the
value σπ−p = 30 mb [24], and the fit of the differential cross
section at forward angles leads to a slope parameter βπ =
6 GeV−2 [23]. At high energy the ratio between the real and
the imaginary parts of the amplitude is small [24], and I set it
to zero in this study.

With such an absorptive amplitude it is easy to see from
Eqs. (2) and (10) that the singular part of the rescattering am-
plitude interferes destructively with the quasi-free amplitude.

The principal part of the rescattering integral takes the
following form:

Moff
II = i

(2π )3
√

4π

∑
mnmp

(
1

2
mn

1

2
mp|1M

)

×
∮

d3 �pu0(p)TγnTπN

q2
π − m2

π

m

Ep

+ D wave part. (13)

It turns out that it vanishes [1,30] when pmin(pπ ) = 0 at
the top of the πN rescattering peak and contributes little to its
tails only, as in Fig. 1 for instance.

Since the Regge amplitude Tγn varies rapidly as sα(tf ), with
the total energy s = (E2 + Eq)2 − ( �p2 + �qπ )2 and momentum
transfer tf = (k − qπ )2, it cannot be factorized out of the
integral, which should be evaluated numerically. This is not
a problem for its singular part: It is a twofold integral that
involves well-defined on-shell quantities. Its principal part is
a threefold integral that requires a good knowledge of the
off-shell extrapolation of the elementary amplitude. Since its
contribution is small near the singularity, I do not take it into
account in this study in order to save time in the Monte Carlo
simulation in the full phase space (Sec. II C). It will be taken
be into account later, in the final analysis of experimental data.
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3. Nucleon-nucleon rescattering

The matrix element of the proton-proton rescattering
amplitude [graph (III) in Fig. 2] takes the following form:

MIII(�k, ε,M, �pπ, �p1,m1, �p2,m2)

= i
∑

mnmpm′
p

(
1

2
mn

1

2
mp|1M

)∫
d3 �p

(2π )3

u0(p)√
4π

1

p◦′ − E′
p + iε

× m

Ep

Tγn( �p′,m′
p,− �p,mn)

× Tpp( �p2,m2, �p1,m1, �p′,m′
p, �p,mp) + D wave part. (14)

The integral runs on the three-momentum of the spectator
proton in the loop, which has been put on-shell, p0 = Ep =√

�p2 + m2, by the integration over its energy p0. It can be split
into two parts:

MIII = Mon
III + Moff

III . (15)

The singular part of the rescattering integral runs between
the minimum and the maximum values of the momentum of
the spectator proton in the loop for which the struck proton
can propagate on-shell:

pmin(pp) = P

W
Ec.m. − E

W
pc.m., (16)

pmax(pp) = P

W
Ec.m. + E

W
pc.m., (17)

where E = E2 + E1, �P = �p2 + �p1, and W =
√

E2 − �P 2 are,
respectively, the energy, the momentum, and the mass of the
scattering pp pair. The momentum and the energy of the
spectator proton in the c.m. frame of the pp pair are

pc.m. =
√

W 2 − 4m2

2
, (18)

Ec.m. =
√

p2
c.m. + m2 = W

2
. (19)

As in the previous subsection, the singular part of the
integral picks the low momentum components of the deuteron
wave function, relies on on-shell elementary matrix elements,
and is maximum when pmin(pp) = 0. The principal part
vanishes under the rescattering peak and contributes little to its
tails: The situation is the same as in the np rescattering sector
of the 2H(e, e′p)n reaction (see, e.g., Fig. 2 of [17]).

The dependency on t = (k − pπ )2 of the elementary pho-
toproduction amplitude Tγn is fixed by the external kinematics
[see graph (III) in Fig. 2] and not by the internal kinematics
in the loop integral. Therefore it can be safely factorized out
of the integrals and evaluated assuming that the target nucleon
is at rest in the deuteron, in which case s = 2mν + m2. The
integrals can be performed analytically, following the method
outlined in [30]. I have checked [17] that this approximation is
very close (within 10%) to the full evaluation of the integrals
in the rescattering peak region. This saves computing time,
and both the singular and principal parts have been retained:
The proton rescattering peak is therefore slightly wider than
the pion rescattering peak in Fig. 1.

The proton-proton scattering amplitude is taken as

Tpp = (m2m1|α + iγ ( �σ1 + �σ2) · �k⊥
+ spin − spin terms |m′

pmp), (20)

where �k⊥ is the unit vector perpendicular to the scattering
plane.

Above 500 MeV, the central part α dominates. It is almost
entirely absorptive and takes the following simple form;

α = −Wpc.m.

2m2
(ε + i) σNN exp

(
βN

2
tr

)
, (21)

where tr = (p′ − p1)2 is the four-momentum transfer at the pp
scattering vertex. In the forward direction its imaginary part is
related to the total cross section σNN , while the slope parameter
βN is related to the angular distribution of NN scattering at
forward angles. I use the same values as in [17]. Note that the
difference in the norm of Eqs. (21) and (12) comes from the
choice of the norm of the spinors, uu = 1.

B. Coplanar kinematics

Figure 1 exhibits the salient predictions of the model.
It corresponds to coplanar kinematics that can be achieved
by detection of the pion and one of the protons with two
well-shielded magnetic spectrometers in Hall A or Hall C at
JLab for instance. It shows the ratio of the full cross section
to the quasi-free cross section as a function of the polar angle
of the slow nucleon θR = θ1 when its momentum PR = | �p1|
is kept constant at 200 MeV/c (lower curve) or 500 MeV/c
(upper curve). The mass of the pair made of the pion and
the fast (second) nucleon is kept constant at the value W =√

(p2 + pπ )2 = 2.896 GeV that corresponds to the absorption
of a 4-GeV photon by a nucleon at rest. The four-momentum
transfer is also kept constant at the value t = (k − pπ )2 =
−3 GeV2, which corresponds to the emission of the pion
around 90◦ in the πp2 c.m. frame.

At high recoil momentum, rescattering mechanisms dom-
inate the quasi-free contribution. The top of the peaks corre-
sponds to kinematics in which an on-shell pion or nucleon can
be produced on a nucleon at rest (pmin = 0) in the rescattering
amplitude. The width of the peaks reflects the Fermi motion of
the target nucleon. The physical picture is as follows. The
pion (respectively, proton) is photoproduced on a neutron
at rest in deuterium, propagates on-shell, and rescatters on
the spectator proton, also at rest in deuterium. Two-body
kinematics requires that the angle between the scattered pion
(proton) and the recoiling proton be constant (strictly 90◦ for
pp elastic scattering). Since the recoiling nucleon momentum
is fixed, the angles that it makes with the total momenta
�p1 + �pπ or �p1 + �p2 are also fixed: Typically 70◦. Therefore,

the πp or the pp rescattering peaks form a cone centered
along the direction of the total momentum of the corresponding
scattering pair. In coplanar kinematics, two peaks appear for
each rescattering, depending on whether or not the pion and
the recoiling proton are emitted on the same side of the photon.

The difference in the height of each of these two peaks
reflects the rapid variation with the photon energy of the ele-
mentary pion photoproduction Regge cross sections: s2α(t)−2.
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Although the mass of the pair made of the pion and the fast
proton has been kept constant in Fig. 1, the incoming photon
must also provide the energy of the slow recoiling nucleon:
This depends on its direction of motion. For instance, at the
top of the πp peak that is located on the left-hand side in
Fig. 1 the photon energy is Eγ = 3.432 GeV, while it is Eγ =
5.436 GeV at the top of the peak at the right. Since, in
the rescattering amplitude, the photoproduction occurs on a
nucleon at rest the corresponding masses are, respectively,
2.705 and 3.328 GeV. The situation is the same at the top of
the two pp rescattering peaks.

At low recoil momentum, this effect is less dramatic since
the energy difference is less important (it vanishes at Pr = 0!).
Here the rescattering amplitudes interfere destructively with
the quasi-free amplitude, consistently with unitary. Since the
elementary πp and pp scattering amplitudes are dominantly
absorptive in the energy range covered by this study, a part of
the strength is shifted from the quasi-free channel to inelastic
channels. Above pr = 300 MeV/c, rescattering contributions
take over and dominate the cross section. Figure 4 shows this
evolution of the cross section at the top of the πp rescattering
peak (θR = −50◦ in Fig. 1) with the recoil momentum PR .

C. CLAS kinematics

The CLAS [16] set up at JLab allows us to record events
in the full available phase space and is well suited to make a
survey of the cross section of the 2H(γ, pπ−)p reaction and
to exploit its features, which we just discussed.

Three superconducting coils generate a toroidal field
perpendicular to the photon-beam axis and define six sectors

where particles are detected by wire chambers and scintillators.
The geometrical fiducial acceptance represents more than
2π sr. It covers a range of polar angles between 11◦ and 140◦,
but the coils define six azimuthal regions where the detector is
blind.

I implemented the code that computes the cross section of
the 2H(γ, pπ−)p reaction in a Monte Carlo code that generates
events in the full fiducial acceptance of the CLAS. I sampled,
with a flat distribution, the three-momentum �p1 of the slow
proton and the two angles cos θ2 and φ2 of the fast proton. If
each proton fell in the fiducial acceptance, which I took from
Ref. [32], I recorded the kinematics of the event in a database
(namely an N-tuple in the CERN package PAW [33]), and I
weighted it with the corresponding differential cross section

dσ

dp1d	p1d	p2

= J × dσ

d �p1[d	π ]c.m.2
, (22)

where J is the relevant Jacobian:

J = Qf | �p2|3| �p1|2
µc.m.|Eπ | �p2|2 − E2 �pπ · �p2| (23)

(see Sec. II A for the definition of momenta and energies).
The events in the database are then binned as the experimen-

tal data, with the same cuts. This is the most straightforward
way to compare a theory with experiments or to simulate
experiments that are carried out over a wide and complicated
phase space.

Figure 5 shows various observables that emphasize the
pion-nucleon rescattering sector. The real photon-beam end
point has been set to Eγ = 6 GeV, but the mass of the
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FIG. 5. CLAS kinematics for πp rescattering in the
2H(γ, ppR)π− reaction. The beam end point is 6 GeV. The full
histograms correspond to the full calculation, while the dashed
histograms correspond to the quasi-free process only. See text for
the description of the cuts that have been used in each window.
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fast proton-pion pair has been restricted to the range 2.85 <

Wp2π < 2.95 GeV to correspond to Fig. 1. Only events
corresponding to large momentum transfer −t > 1 GeV2 have
been retained. The panel shows cross sections integrated over
the various bins within the CLAS fiducial acceptance. The
top parts show the distribution of the minimum momentum
pmin(p1π ), Eq. (6), of the spectator proton in the pion-nucleon
scattering loop for which the pion can propagate on-shell.
On the left-hand side, the cut 400 < PR < 600 MeV/c was
applied on the momentum p1 of the slow nucleon: The
pion-nucleon rescattering peak clearly appears at pmin = 0.
On the right-hand side, the cut 250 < pR < 350 MeV/c was
applied: Rescattering effects are small here, consistent with
Fig. 4, and the shape of the distribution reflects the kinematics
and the detector acceptance. This is a good reference point that
emphasizes the quasi-free process.

A further cut −50 < pmin(p1π ) < 50 MeV/c was applied
in the bottom parts of Fig. 5: It emphasizes pion nucleon
rescattering. The t distribution is plotted on the left-hand
side for either low recoil momentum (∼300 MeV/c) or high
recoil momentum (∼500 MeV/c) bands. The ratio of the
second (pR = 500 MeV/c) to the first (pR = 300 MeV/c) t
distribution is plotted on the right-hand side. In the plane
wave approximation, it is nothing but the ratio of these high
momentum to low momentum components of the nucleon
momentum distribution in deuterium. The full ratio is really
a measure of the evolution of the top of the pion-nucleon
rescattering peak with the four-momentum transfer t, which
fixes the hard scale. It is almost flat (the oscillations are due
to the statistical accuracy of the Monte Carlo sampling) and
provides us with a good starting point to look for deviations,
especially at high −t , which could reveal the onset of color
transparency for instance. The last bins (−t > 6 GeV2) in the
t distribution should be disregarded since they correspond to
the kinematical limits where the detector acceptance differs
strongly at low and high recoil momentum.

Figure 6 shows the same observables in the proton-proton
rescattering sector. Now the minimum momentum pmin(p2p1)
is the lowest value, Eq. (16), of the momentum of the spectator
proton for which the other proton can propagate on-shell in
the nucleon-nucleon scattering loop. Again, the bins at the
highest values of −t should be disregarded since they lie at
the kinematics limits. Also, the statistical accuracy can be
improved if the Monte Carlo code is run with more events (but
also longer!).

In Fig. 5, pp rescattering gives also a contribution below
the pπ rescattering peak. Also, pπ rescattering gives a
contribution under the pp rescattering peak in Fig. 6. One
can remove these contaminations by cutting the overlapping
region in the joint distribution of the rescattering singularities,
which is shown in Fig. 7.

In the Monte Carlo simulation, the choice was made to
detect the two protons. The advantage is that the efficiency
for detecting a proton in each sector of the CLAS is very
good (better than 90%, and only a small correction has to
be applied to the histograms before comparing them with
experiment): This is particularly interesting when one selects
events corresponding to a large recoil momentum, of which
the probability is small. However, this prevents recording
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FIG. 6. CLAS kinematics for pp rescattering in the
2H(γ, ppR)π− reaction. The beam end point is 6 GeV. The
full histograms correspond to the full calculation, while the dashed
histograms correspond to the quasi-free process only. See text for
the description of the cuts that have been used in each window.

events with small recoil momentum, since CLAS cannot
detect protons with a momentum lower than ∼250 MeV/c.
For recording such events one must detect the π−, which is
bent inward, in the beam direction, by the magnetic field and
also by decay in flight. Its detection efficiency is much smaller
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FIG. 7. The joint distribution of singularities in pp and pπ rescat-
tering in the 2H(γ, ppR)π− reaction. The beam end point is 6 GeV.
The range of mass of the fast pπ pair is 2.85 < Wp2π < 2.95 GeV.
The range of the four-momentum transfer is −t > 1 GeV2. The range
of the momentum of the slow proton is 400 < PR < 600 MeV/c.
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than that of a proton, but on the other hand the cross section is
higher at low recoil momentum.

D. Determination of the π− elementary production amplitude

The preceding discussion relies on good knowledge of the
cross section of the elementary reaction n(γ, π−)p. It can be
determined in the same data set [27], since no free-neutron
target exists. To that end, one has to detect the π− and the
fast proton p2 and restrict the analysis to small values of the
spectator slow proton, say, p1 < 100 MeV/c.

Figure 8 shows that rescattering corrections are less than
10% up to recoil momentum around 50 MeV/c. Above, the
effects are larger. The neutron cross section is deduced from
the deuterium cross section as follows

(1 + β1 cos θ1)
dσ

d	π

= dσ

d �p1d	π

× 1

ρ(| �p1|) , (24)

where ρ(| �p1|) is the neutron momentum distribution in the
deuteron. I kept the flux factor in order to quantify the
corresponding slope of the quasi-free cross section.
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FIG. 8. (Color online) The c.m. cross section of the n(γ, π−)p
reaction as extracted from the analysis of the 2H(γ, π−p)p reaction
when the angle of the recoiling proton varies but its momentum is kept
constant at 10, 50, 100, and 200 MeV/c. The dotted curves correspond
to the quasi-free process. The kinematics is coplanar, and only the
part of the angular distribution that corresponds to the emission of
the pion and the recoiling proton on different sides of the photon is
shown. Each curve is labeled with the value of the corresponding
recoil momentum; on the left-hand side for the quasi-free result, on
the right-hand side for the full calculation.

The kinematics, W = 2.896 MeV and t = −3 GeV2,
corresponds to one of the few data points [31] recently
measured in Hall A at JLab. It corresponds to the kinematics
in Fig. 1, as well as to the average kinematics covered by
this study, and indicates that the elementary amplitude is not
far off the mark. This experimental datum (and a few others)
has been obtained from the analysis of the 2H(γ, π−) reaction
induced by a Bremsstrahlung photon beam, which averages
the elementary cross section over the Fermi motion of the
neutron in the deuterium target. Since the major contribution
comes from neutron momentum in the range of ∼80 MeV/c,
interaction effects cannot be neglected. The analysis of the
high-statistics Hall B experiment [27], along the line of
Fig. 8, would be very welcome for enlarging the data set and
improving its accuracy.

To correspond to Fig. 1, the cross sections at pR = p1 =
200 MeV/c are also plotted in Fig. 8. The ratio of the full
calculation to the quasi-free one is plotted in Fig. 1. When
multiplied by the momentum distribution ρ(| �p1|), these curves
become the fully differential cross sections dσ/d �p1d	π . One
notes that the quasi-free cross sections follow almost exactly
the variation of the flux factor 1 + β1 cos θ1, but decrease
a little when the recoil momentum p1 increases by 2% at
100 MeV/c, by 5% at 200 MeV/c, and by no more than
10% above. This is a consequence of the choice of the
off-shell extrapolation of the elementary pion-photoproduction
amplitude (see appendix) and a measure of the uncertainty on
the determination of the quasi-free amplitude at high recoil
momenta. However, rescattering amplitudes dominate here (by
about a factor 5 and more, at the top of the rescattering peak),
and they are driven by on-shell elementary matrix elements and
the low momentum components of the nuclear wave function.
Therefore the uncertainties in the off-shell extrapolation of the
elementary amplitudes do not affect the cross section in the
domains of the rescattering peaks.

III. THE STRANGE SECTOR

The extension to the 2H(γ,K+�)n reaction is straightfor-
ward. The amplitude of the elementary reaction p(γ,K+)� is
driven by the exchange of the Regge trajectories, of the K and
the K∗ [22]. Besides trivial changes in the mass of the particles,
the Regge trajectories, and the coupling constants, the reaction
amplitudes exhibit the same form as in the pion-production
sector (Section II).

The kaon is produced on the proton. Since the neutron and
the � in the final state are distinct particles, there is no need
to antisymmetrize the reaction amplitude.

All the coupling constants and Regge propagators are given
in Ref. [22]. I use the slope parameters βK = 3 GeV−2 [23]
and β� = βpn [17] and the following cross sections [24]:
σK+n = 18 mb and σ�n = 35 mb in the K+n and �n scattering
amplitudes, respectively. However, these parameters are less
known than in the πN and NN scattering sectors, and their
choice should be refined by the analysis of the 2H(γ,K+�)n
reaction at a low four-momentum transfer t.

Figure 9 shows the ratio of the full cross section to the
quasi-free cross section as a function of the polar angle of the
slow neutron, θR = θn, when its momentum PR = |�n| is kept
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FIG. 9. (Color online) Ratio of the total to the quasi-free cross
section of the 2H(γ, K+�)n reaction against the angle of the recoiling
neutron whose momentum is kept constant at 500 MeV/c (top
curves) and 200 MeV/c (bottom curves). The peaks labeled K+n

and �n correspond respectively to K+n rescattering and �n on-shell
rescattering. The dotted lines correspond to the quasi-free process.
The kinematics is coplanar, and positive angles correspond to the
emission of the kaon and the recoiling neutron on the same side of
the photon. The top panel corresponds to a rotating phase, while the
bottom panel corresponds to no phase in Regge trajectories.

constant at 200 MeV/c (lower curve) or 500 MeV/c (upper
curve). The mass of the pair made of the K+ and the � is kept
constant at the value W =

√
(p� + pK+)2 = 2.896 GeV that

corresponds to the absorption of a 4-GeV photon by a nucleon
at rest. The four-momentum transfer is also kept constant
at the value t = (k − pK+ )2 = −3 GeV2, which corresponds
to the emission of the kaon around 90◦ in the K+� c.m.
frame.

At high recoil momentum, the pattern is the same as
in the pion-production sector (Fig. 1). The heights of the
rescattering peaks are different simply because the hadronic
cross sections and their slopes are different. At low recoil
momentum, however, the pattern is different in the Kn
scattering sector. The reason is that, contrary to the n(γ, π−)p
reaction Regge amplitudes, the p(γ,K+)� reaction Regge
amplitudes exhibit a phase exp[−ıπα(t)] (see the discussion
in Sec. 2.3.2 of Ref. [22]). In the Kn rescattering integral,
which selects nucleons almost at rest in deuterium, the
average four-momentum transfer t is different than in the
quasi-free production amplitude, where the target nucleon
moves with a momentum fixed by the kinematics. This
difference in t changes the phase and compensates for the
destructive interference between the quasi-free amplitude and
the absorptive rescattering amplitude, around 200 MeV/c.
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FIG. 10. (Color online) The c.m. cross section of the p(γ,K+)�
reaction as extracted from the analysis of the 2H(γ, K+�)n reaction
when the angle of the recoiling neutron varies but its momentum
is kept constant at 10, 50, 100, and 200 MeV/c. The dotted curves
correspond to the quasi-free process. The kinematics is coplanar,
and only the part of the angular distribution that corresponds to the
emission of the kaon and the recoiling neutron on different sides
of the photon, is shown. Each curve is labeled with the value of
the corresponding recoil momentum; on the left-hand side for the
quasi-free result, on the right-hand side for the full calculation.

When the Regge phases are turned off, in the bottom part of
Fig. 9, the pattern becomes the same as in the π− production
channel in Fig. 1.

This effect does not occur in the �n rescattering sector,
since t is defined by the external kinematics and is the same
in the rescattering amplitude and the quasi-free amplitude (see
Fig. 2).

Figure 10 shows the value of the elementary kaon-
photoproduction cross section as extracted from a deuteron
target with Eq. (24) for different values of the recoiling neutron.
As in the pion-production sector, the quasi-free cross section
follows the variation of the flux factor 1 + β1 cos θ1 and departs
from the free cross section (pR = 10 MeV/c) when the recoil
momentum increases. The datum in Fig. 10 is one of the
few experimental cross sections available at high momentum
transfer [34].

The reaction amplitudes rely on the elementary photopro-
duction of a kaon on a proton target. The Regge model leads
to a fair agreement with the existing set of data around Eγ =
4 GeV (see [22]). This data set can be greatly enlarged by
the analysis of the high statistical accuracy experiment [35]
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recently completed in CLAS, with a beam of a real photon of
4 GeV on a proton target.

To achieve the full exclusivity of kaon production off a
deuterium target, one needs to detect both the K+ and the
� which can be identified by its decay into a π−p pair. The
CLAS is ideally suited to record such a three-charged-particle
configuration. When the � decay distribution is implemented
in the Monte Carlo code, the simulation leads to histograms
similar to those which have been obtained in the pion sector.
Since the physical content is the same, they are not shown but
will be compared with experiment with the same cuts when
the analysis is completed.

Other channels can also be studied. Of particular interest
is the 2H(γ,K0�)p reaction [36] in which all the (decay)
particles in the final state are charged. As in the π− sector
the cross section of the elementary reaction n(γ,K0)�
must be determined from the same data set, demanding a
low momentum (p < 50 MeV/c) spectator proton. Also the
2H(γ,K+�∗)n channel should be considered, since a Regge
model based on the exchange of the K and K∗ mesons [37]
leads also to a good agreement of the differential cross section
of the elementary reaction p(γ, k+)�∗ at Eγ = 3.5 GeV. Any
signal in the K+n scattering sector should be the same as in
the 2H(γ,K+�)n reaction.

IV. VECTOR-MESON PRODUCTION

Exclusive vector-meson production on few body systems
is certainly very promising. It allows us to prepare a pair
of quarks, with an adjustable transverse size, and to study
its interaction with a nucleon in well-defined kinematics.
Furthermore, the coherence time (during which the incom-
ing photon oscillates into a qq pair) and the formation
time (after which this pair recombines into the final me-
son) can be adjusted independently to the internucleonic
distance.

A special emphasis should be put on φ and J/� mesons
production: Not only are these narrow states more easy to
identify, but their flavor content, different from that of the
ground state of cold hadronic matter, makes them a promising
probe.

Figure 11 shows the expected signal in the φ photopro-
duction channel when the photon beam end point is Eγ =
6 GeV. The model is a straightforward extension of the
previous amplitudes. Again, the mass of the pφ fast pair and
the four-momentum transfer are set at Wpφ = 2.896 MeV and
t = (k − pφ)2 = −3 GeV2, respectively. The elementary am-
plitude [38,39] is based on the exchange of two nonperturbative
gluons and uses a correlated nucleon wave function. It leads
to a very good account of the p(γ, φ)p reaction [40] recently
measured at JLab at Eγ = 4 GeV. The φ can be photoproduced
on the proton as well as on the neutron: This has been taken
into account in the model. The pn scattering amplitude is
defined according to Ref. [17], while the φn total cross section
and slope parameter are, respectively, σφn = 20 mb and β =
6 GeV−2. Again those quantities are almost unknown and must
be determined by the analysis of the 2H(γ, φ)pn reaction at low
−t . The φ nucleon scattering cross section has been extracted
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FIG. 11. (Color online) Ratio of the total to the quasi-free cross
section of the 2H(γ, φp)n reaction against the angle of the recoiling
neutron whose momentum is kept constant at 500 MeV/c. The
kinematics is coplanar and only the part that corresponds to the
emission of the meson and the recoiling neutron on different sides of
the photon is shown.

from one experiment (see Ref. [41]), while I have taken the
universal slope for high-energy diffractive processes.

Such a study may end up giving us a better understanding
of the formation of vector mesons in cold hadronic matter and
will be a reference for the study of vector-meson production
in heavy-ion collisions.

V. COLOR TRANSPARENCY AND
HADRON PROPAGATION

The expected effect of color transparency would be a
reduction of the rescattering peak in Figs. 5, 6, 9, and 11 when
the four-momentum transfer −t increases. The idea is that
hard scattering mechanisms produce colorless dipoles with a
small transverse size. Their scattering cross section is therefore
expected to be reduced according to the square of the ratio of
their transverse size to the transverse size of their asymptotic
states.

In addition, the rescattering peaks are expected to be wider
since the small configuration is not an eigenstate of the mass
operator. It is rather a combination of particles that can be
diffractly excited from the ejectile [42]. In the rescattering
integrals [Eqs. (4) and (14)] the propagator of these excited
states should be added to propagator of the meson or the
baryon that rescatters. The corresponding singularities are
closely related to the mass of each particle of the spectrum and
lead to peaks at slightly different locations. The rescattering
peaks will be spread according to the actual distribution of
these states in the mass spectrum of the small configuration.
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In previous reviews or prospect talks [11,25,26] I used
a toy model based on a geometrical expansion of the mini
configuration of the ejected hadron. Now it is superseded by the
quantum diffusion model [42–45] that can be implemented in
Eqs. (4) and (14). I defer this study until dedicated experiments
are performed. Only experiments will tell us what is the
relevant nature of the process that governs the formation and
the evolution of such a small configuration.

This paper provides a baseline calculation under the
assumption that normal particles rescatter. This is a unique
situation that relies on the evolution of a peak rather than on
the level of attenuation of a flat cross section.

The key parameter is the time scale of the interaction. If it
is long, the degrees of freedom are hadrons, and well-defined
unitary peaks appear according to the study presented in this
paper. If it is short enough, the degrees of freedom are quarks
or exotic objects and unitary peaks should be different or
disappear.

Exclusive reactions at hight t are certainly best suited to
these studies: They define the small interaction volume for
which quarks may be the relevant degrees of freedom. The
virtuality Q2 of the photon exchanged in electron scattering
defines the volume of observation. Playing with these two
independent hard scales is the key to the understanding of
these rare processes [18]. It can be started at 6 GeV, but clearly
higher energies (12 GeV and even above) are needed.

VI. EXOTICS

The rescattering peaks also offer us a tool to determine the
cross section of the interaction with nucleon of unstable or
exotic particles for which a beam is not available. Obvious ex-
amples are the photoproduction of strange baryons (�,� . . .),
of vector mesons (φ, J/� . . .), etc.

They can also offer us a way to disentangle elusive exotics,
such as pentaquarks, and the physical background. One way
to chase pentaquarks has been to determine the variation of
the mass of the K+n pair that is emitted in photoreactions
induced on nuclear [46] or deuterium [47] targets. Selecting
the K+n unitary rescattering peak, |pmin(nK+)| < 100 MeV/c
for instance, in the reaction 2H(γ,K+�)n or 2H(γ,K+�∗)n
would be the best way to master the physical background in
the mass distribution of the K+n pair.

The extension of the model presented in this paper is
straightforward: Put simply, the high-energy description of
the K+n scattering should be replaced with a low-energy de-
scription consistent with the existing data set. The contribution
of a resonant state of a given width could be added in order to
set a limit of the production cross section of a possible exotic.
Also, the decay distribution of the � or the �∗ should be taken
into account in the Monte Carlo simulation of the experiment.
I defer this study to a forthcoming paper [48].

VII. CONCLUSION

At the top of each unitary rescattering peak, the reaction
mechanism is well under control. It depends on on-shell
elementary matrix elements and involves the low momentum
components of the nuclear wave function. This is a good

starting point to obtain the interaction with nucleons of exotic
objects and short-lived particles.

This offers us a last chance to see and study color trans-
parency in the present JLab energy range, more particularly
in the strange quark sector. It also gives access to the
determination of the cross sections of the scattering of vector
and pseudo-scalar mesons on nucleons in a cold nuclear
environment. Their knowledge is a key to the analysis of
collisions between heavy ions at high energy.

For simplicity, all the numerical predictions in this study
rely on a high-energy description of the elementary matrix
element. The photoproduction amplitude is described by the
exchange of the Regge trajectories of pseudoscalar and vector
mesons. The hadron scattering amplitudes are almost entirely
absorptive. This treatment is already valid at kinematics that is
achievable at JLab at 6 GeV: Mass of the meson nucleon system
above 2 GeV, relative kinetic energy between baryons above
0.5 GeV. It will be even more valid in the kinematical range
that will be accessible when the CEBAF energy is upgraded
to 12 GeV.

The method can be easily adapted at lower energies
by implementation of the relevant description (phase shift
expansion, for instance) of the elementary amplitudes [48].
It may prove useful to predict the physical background and
the production cross section of elusive particles, such as
pentaquarks.
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APPENDIX

In Ref. [22], the elementary photoproduction amplitude was
expressed in terms of Dirac matrices and spinors. In this work,
I rewrote it in terms of Pauli matrices and spinors.

For on-shell nucleons, both expressions are equivalent.
Both are Lorentz and gauge invariant. They are valid in any
frame.

For off-shell nucleons, I made the choice to conserve the
three momenta at each vertex and to conserve the energy
in the invariant operator but to use the on-shell energy E =√

p2 + m2 in the normalization
√

E + m and the denominator
E + m of Pauli spinors. This choice follows the time-ordered
expression of Feynman diagrams [49].

For off-shell nucleons, gauge invariance is lost. However,
in the rescattering peaks the target nucleon is almost at rest and
the kicked nucleon is on-shell. Therefore the electromagnetic
current is conserved in the dominant amplitudes that are
considered in this paper.

For the sake of completeness I reproduce the demonstration
[50] that I gave about 30 years ago. The quasi-free matrix
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element takes the form

MI = −u(p2,m2)�
γ · n + m

n2 − m2
u(p1,m1)�µ(pD, n)φµ

D(M),

(A1)

where � is the elementary photoproduction operator, �µ is the
2H np vertex function, and φ

µ

D is the deuteron field.
Retaining only the positive-energy part of the neutron

propagator [49] and neglecting its negative-energy part, one
gets

MI = − m

En

∑
mn

u(p2,m2)�u(n,mn)u(n,mn)u(p1,m1)

n0 − En

×�µ(pD, n)φµ

D(M), (A2)

with En = √�n2 + m2 	= n0 = ED − E1 and n = (n0 =
En, �n = �n).

Identifying �µ(pD, n)φµ

D(M)m/En(n0 − En) with the
deuteron wave function and defining

Tγn( �p2,m2,− �p1,mn) = 1

−i
u(p2,m2)�u(n,mn), (A3)

one gets Eq. (2). In terms of Pauli spinors, it takes the form

Tγn( �p2,m2,− �p1,mn) = (m2|ı �σ · �K + L|mn), (A4)

which I use in this work. In the quasi-free amplitude, �n = − �p1.
In the rescattering amplitudes, a similar expression takes into
account the actual nucleon momenta.

The vector and scalar parts of the π exchange amplitude of
the elementary reaction n(γ, π−)p are:

�Kπ = egπNN

√
2

√
(En + m)(E2 + m)

2m

(
t − m2

π

)
Pπ−

ReggeF1(t)

×
[( �n

En + m
− �p2

E2 + m

) (
(2 �p2 − �k) · �ε

u − m2

− (2 �pπ − �k) · �ε
t − m2

π

)
+ �ε

u − m2

(
ν − �p2 · �k

E2 + m

− �n · �k
En + m

+ ν�n · �p2

(En + m)(E2 + m)

)

+
�k

u − m2

( �n · �ε
En + m

+ �p2 · �ε
E2 + m

)

− �n
u − m2

ν �p2 · �ε
(En + m)(E2 + m)

− �p2

u − m2

ν�n · �ε
(En + m)(E2 + m)

]
, (A5)

Lπ = egπNN

√
2

√
(En + m)(E2 + m)

2m

(
t − m2

π

)
Pπ−

ReggeF1(t)

× 1

u − m2

[
�p2 × �k

E2 + m
+

�k × �n
En + m

− ν �p2 × �n
(En + m)(E2 + m)

]
· �ε, (A6)

where g2
πNN/4π = 14.5, t = (pπ − k)2, and u = (p2 − k)2. I

use the Regge propagator Pπ−
Regge that corresponds to the π

saturating trajectory (as defined in Ref. [22]) and the dipole
parametrization of the nucleon isovector form factor:

F1(t) = 4m2 − 2.79t

(4m2 − t)(1 − t/0.7)2
(A7)

One recognizes the pure π exchange amplitude [term in
1/(t − m2

π )] and the part of the u-channel nucleon exchange
amplitude [terms in 1/(u − m2)] that has been added to ensure
gauge invariance (see [22]).

The vector and scalar parts of the ρ exchange amplitude of
the elementary reaction n(γ, π−)p are

�Kρ = e
gρπγ

mπ

gρNN

√
2

√
(En + m)(E2 + m)

2m
Pρ

ReggeF1(t)

×
( �p2 × �n

(En + m)(E2 + m)

{
(1 + κv)V 0

+ κv

2m
[V 0(n0 + E2) − �V · (�n + �p2)]

}

+ (1 + κv) �V ×
[ �p2

E2 + m
− �n

En + m

])
, (A8)

Lρ = e
gρπγ

mπ

gρNN

√
2

√
(En + m)(E2 + m)

2m
Pρ

ReggeF1(t)

×
(

(1 + κv)

{
V 0

[
1 + �n · �p2

(En + m)(E2 + m)

]

− �V ·
( �n

En + m
+ �p2

E2 + m

)}

− κv

2m

[
1 − �n · �p2

(En + m)(E2 + m)

]

×
[
V 0(n0 + E2) − �V · (�n + �p2)

])
. (A9)

I use the Regge propagator Pρ

Regge, with the saturating
trajectory of the ρ meson and the coupling constants gρπγ =
0.103, g2

ρNN/4π = 0.92, and κv = 6.1, as in Ref. [22].

The four-vector V µ = (V 0, �V ) contains the dependency on
the polarization vector �ε of the photon, in the following way:

(−kRy, 0, νRz − kR0,−νRy) if �ε = (1, 0, 0),

(kRx, kR0 − νRz, 0, νRx) if �ε = (0, 1, 0),

(0, νRy,−νRx, 0) if �ε = (0, 0, 1),

(A10)

where R0 = ν − Eπ and �R ≡ (Rx,Ry, Rz) = �k − �pπ are,
respectively, the energy and the three-momentum of the
exchanged ρ meson.

For the p(γ,K+)� reaction, the K∗ meson amplitudes
take the same form as that the ρ meson exchange amplitudes
(A8) and (A9), besides trivial changes in the masses, coupling
constants, and propagators.

The K exchange amplitude contains the part of the s-channel
nucleon exchange amplitude that is strictly necessary to ensure
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gauge invariance. It takes the form

�KK = egKN�

√
2

√
(En + m)(E2 + m�)√

4mm�

(
t − m2

K

)
PK+

Regge

×
{ ( �n

En + m
− �p2

E2 + m�

)

×
(

(2�n + �k) · �ε
s − m2

+ (2 �pK − �k) · �ε
t − m2

K

)

+ �ε
s − m2

[
ν − �p2 · �k

E2 + m�

− �n · �k
En + m

+ ν�n · �p2

(En + m)(E2 + m�)

]

+
�k

s − m2

( �n · �ε
En + m

+ �p2 · �ε
E2 + m�

)

− �n
s − m2

ν �p2 · �ε
(En + m)(E2 + m�)

− �p2

s − m2

ν�n · �ε
(En + m)(E2 + m�)

}
, (A11)

LK = egKN�

√
2

√
(En + m)(E2 + m�)√

4mm�

(
t − m2

K

)
PK+

Regge

× 1

s − m2

[
�p2 × �k

E2 + m�

+
�k × �n

En + m

− ν �p2 × �n
(En + m)(E2 + m�)

]
· �ε (A12)

where n = (En, �n) and p2 = (E2, �p2) now stand for the
four-momentum of the target proton and the outgoing �,
respectively, and where g2

KN�/4π = 10.6.
As in Ref. [22], here I use the K and K∗ linear trajectories

in the Regge propagators and no hadronic form factor
[F1(t) = 1].
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