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Neutron-proton effective range parameters and zero-energy shape dependence
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The low-energy np elastic-scattering parameters, including the zero-energy free-proton cross section σ0, are
determined with a substantially improved precision over previous values, using available np-scattering data below
3 MeV. The method includes a careful handling of a correlation between the singlet and triplet effective ranges
which does not seem to have been previously treated. This correlation is responsible for a large systematic error
in the singlet effective range and spoils a model-independent determination of the zero-energy triplet effective
range. It is shown that improved cross section measurements between 20 and 600 keV (laboratory neutron energy)
are needed to overcome the degrading effect of this correlation. The values obtained for the zero-energy cross
section and the scattering lengths and effective ranges for the singlet and triplet are: σ0 = 20.4278(78) b, at =
5.4112(15) fm, as = −23.7148(43) fm, rt = 1.7436(19) fm, rs = 2.750(18) fm (systematic error: −0.059 fm).
The widely used measurement of the zero-energy free-proton elastic cross section from W. Dilg, Phys. Rev. C
11, 103 (1975), appears to be in error.
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This article presents a model-independent method for
determining the zero-energy cross section σ0 and effective-
range theory (ERT) parameters for np elastic scattering from
low-energy data. The method is similar to that presented in
Ref. [1] but contains some improvements that permit the
zero-energy triplet effective range to be obtained from data. It
is demonstrated that there is a range of energy most sensitive to
a determination of this quantity and that better measurements
are needed in that range, if it is to be obtained with sufficient
precision to be of any use in comparing predictions from NN
potential models.

NN potential models [2–5] can determine the ERT param-
eters, but small errors are introduced if low-energy data are
not included (or are inaccurate) in the partial-wave analyses
used to fit the model parameters [3]. Because NN potential
models are often used in low-energy applications [6–8], it
is important that they incorporate accurate low-energy data.
Some NN potential models [5,9,10] use the Dilg measurement
of σ0, some models [2–4,8,11,12] use an average of the Dilg
and Houk values, but none seem to use the more precise
Koester et al. value (Table I).

The Dilg determination of σ0 is the only one that required
molecular corrections but did not obtain them as part of
the experiment. That experiment performed measurements
on water and three hydrocarbons at a single energy, 132 eV,
where the molecular corrections are small but not negligible.
There was, therefore, no way of determining the molecular
corrections, which require measurements at two or more
energies for each target. The corrections used were asymptotic
extrapolations to 132 eV from values taken from the literature,
which described scattering on water and benzene at energies
from about 1 to 15 eV. Prior to the Koester et al. σ0, the Dilg σ0

was not quite significantly deviant from the others, taken indi-
vidually, because of their large errors. With the Koester et al.
σ0, and the result from this work, this is no longer true. All other
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determinations of σ0, whether requiring molecular corrections
or not, are in good agreement with each other and substantially
deviant from the Dilg σ0.

ERT gives the exact neutron-proton s-wave elastic cross
section as [18,19]

σ = 3
4σt + 1

4σs, (1)

σd = 4π
/{[

a−1
d − 1

2ρd (0, T )p2]2 + p2}, (2)

where the subscript d is t for the triplet or s for the singlet, ad

is the scattering length, and ρd (0, T ) is the energy-dependent
effective range. T and p are the center-of-mass (c.m.) kinetic
energy and momentum (h̄ = c = 1), with

E = mn + mp + T =
√

p2 + mn
2 +

√
p2 + mp

2,
(3)

p2 = 1
4

[
E2 − 2

(
m2

n + m2
p

) + (
m2

n − m2
p

)2/
E2

]
,

where E is the total, relativistic energy in the c.m. The partial
cross section has a pole at p = iγd , where γd is the scattering
wave number, given by γ 2

d = −p2 from Eq. (3) for T = −εd ,
or E = mn + mp − εd , where εd is the binding energy. In
terms of the asymptotic (free particle) np wave function vd (T )
and the exact (interacting) np wave function ud (T ), both of
which implicitly depend on the neutron-proton separation r,
the function ρd (Ta, Tb) is defined as [20]

ρd (Ta, Tb) ≡ 2
∫ ∞

0
dr [vd (Ta)vd (Tb) − ud (Ta)ud (Tb)] ,

where ρd, vd, ud are ρt , vt , ut for the triplet and ρs, vs, us for
the singlet and where Ta and Tb are any two values of the
c.m. kinetic energy. This definition satisfies Eq. (2) exactly
for Ta = 0 and Tb = T . The wave function ud , but not vd ,
depends on the shape of the nuclear potential, and this shape
dependence manifests itself as energy dependence of ρd .

As long as p−1 is much larger than the well size, the detailed
shape of the nuclear potential can have only a small effect on
the spectrum. The shape-independent approximation replaces
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TABLE I. The σ0 data considered for the fits. The χ 2 are
calculated with respect to the result from this work.

Reference Year σ0(b) χ 2 Included
in fits?

[13] Melkonian 1949 20.360(50) 1.84 Yesa

[14] Houk 1971 20.436(23) 0.13 Yes
[15] Dilg 1975 20.491(14) 20.4 No
[16] Koester et al., 1990 20.420(10) 0.60 Nob

aError shown as adjusted by Ref. [17].
bDerived from data included in Table III.

ρd (0, T ) with the constant rd ,

σd
∼= 4π

/[(
a−1

d − 1
2 rdp

2
)2 + p2

]
. (4)

For the triplet only, rt is taken as rt = ρt (0,−εt ), the “mixed
effective range,” given exactly as [20]

ρd (0,−εd ) = 2γ −1
d (1 − 1/adγd ) . (5)

A measured elastic cross section σp at p may be used to
determine rs as rsp, the apparent singlet effective range at
p, through (1), (4), and the parameters at , as , and rt , thus

rs = 2p−2
(
a−1

s +
√

4π/σsp − p2
)
,

where σsp ≡ 4σp − 3σt (p) is the estimated singlet partial cross
section and σt (p) is the theoretical triplet partial cross section,
obtained with Eq. (4).

In principle, ρd (0, 0) = limT →0 ρd (0, T ) approximates
ρd (0, T ) better than ρd (0,−εd ) does, where the limit expresses
the experimental condition that the variation with decreasing
energy becomes smaller than the statistical error. Define �rd

such that ρd (0, 0) = ρd (0,−εd ) + �rd . The condition �rd �=
0 is referred to here as “zero-energy shape dependence.”
The (zero-energy) apparent singlet effective range rs0 ≡
limT →0 rsp is an approximation to ρs(0, 0) with a systematic
error (δrs)�rt

, thus,

ρs(0, 0) = rs0 + (δrs)�rt
,

(δrs)�rt
≡

∫ rt+�rt

rt

drt (∂rs/∂rt ) = 〈∂rs/∂rt 〉�rt , (6)

∂rs/∂rt = −3σ 2
t

(
a−1

t − 1
2 rtp

2)/σ 2
s

(
a−1

s − 1
2 rsp

2).
The measurements and their uncertainties are:

σ0 ± δσ0 the zero-energy elastic cross section
ac ± δac the parahydrogen coherent scattering length
σp ± δσp the elastic cross section at c.m. momentum p.

The uncertainties δσ0, δac, and δσp are small and indepen-
dent. Because its uncertainty is utterly negligible compared to
the others, εt is taken as exact. The zero-energy (free proton)
elastic cross section is given by Eq. (1), taking p = 0 in (2),
thus

σ0 = π
(
3a2

t + a2
s

)
. (7)

The parahydrogen coherent scattering length is [21]

ac ≡ 3
2at + 1

2as. (8)

TABLE II. The ac data considered for the fits.

Reference Year ac (fm) χ 2 Included
in fits?

[14] Houk 1971 −3.7210(40) 23.9 No
[22] Koester 1971 −3.7400(30) 0.04 Yes
[23] Callerame 1975 −3.7330(40) 14.3 No
[24] Koester and Nistler 1975 −3.7406(11) 0 Yesa

aValue shown as adjusted by Ref. [25].

The measurements of σ0, ac, and σp used in the fits are shown in
Tables I, II, and III. The χ2 are calculated from the parameters
from this work. The value used for εt is the deuteron binding
energy from [45], εt = 2.224 566 14(41) MeV. The physical
constants used are from [46]. Because at and as are correlated,
σ0, ac, and rs0 are taken as the fit variables, with

s ≡
√

1
12

(
σ0

/
π − a2

c

)
,

as = 1
2ac − 3s, at = 1

2ac + s.

Contributions from higher waves increase the cross section
and decrease the apparent singlet effective range if not
accounted for. Rather than explicitly account for higher waves,
a series of maximum-energy truncations are made, and a fit
done to each of the truncated data sets. Table IV shows the fit
results. The fit parameter σ0 is determined almost entirely by
the lowest-energy data, and the fit parameter ac almost entirely
by the ac data, so these are very nearly independent of Tmax.
The decline of rs0 and the increase in χ2

ν with Tmax above

TABLE III. The np total cross-section data used in the fits, from
CINDA [26] and the literature. The data are truncated at 15 MeV.

Ref. First N Average Average Min. Max.
Author unc. χ 2 energy energy

(perc.) (MeV) (MeV)

[16] Koester 1 0.15 1.53 0.002 0.002
[27] Kirilyuk 2 0.14 0.44 0.002 0.145
[28] Fujita 1 0.13 0.13 0.024 0.024
[29] Allen 5 2.60 0.26 0.06 0.55
[30] Bailey 15 3.80 0.97 0.35 6.0
[17]a Engelke 2 0.25 2.70 0.493 3.186
[31]a Poenitz 3 0.30 2.37 0.509 2.003
[32] Lampi 6 2.20 0.62 0.798 4.97
[33]a Fields 2 0.39 0.65 1.005 2.53
[34] Koester 2 1.60 0.96 1.3 2.1
[35]a Storrs 1 0.54 0.04 1.312 1.312
[36] Schwartz 1652 1.50 0.85 1.447 14.97
[37] Davis 21 0.94 1.47 1.5 14.995
[38]b Clement 158 0.98 1.12 2.0 14.938
[39] Nereson 38 10.00 0.07 2.95 13.1
[40]a Hafner 1 0.38 0.18 4.748 4.748
[41]b Larson 218 1.60 0.96 5.0 14.9
[42]b Foster 111 2.10 1.17 5.0 14.7
[43] Cook 2 1.70 0.97 14.1 15.0

aEnergy as adjusted by Ref. [44].
bThese data are truncated below the minimum energy shown.
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TABLE IV. The shape-independent fits. The fit parameters are σ0, ac, and rs0. Tmax is the maximum neutron kinetic energy in the lab and
χ 2

ν ≡ χ 2/ν, with ν the degrees of freedom.

Tmax(MeV) σ0 (b) ac (fm) rs0 (fm) at (fm) as (fm) ρt (0, −εt ) (fm) χ 2
ν ν

15 20.4109(61) −3.74096(96) 2.7567(98) 5.4079(12) −23.7057(34) 1.7394(16) 0.881 2242
10 20.4270(61) −3.74064(96) 2.793(10) 5.4110(12) −23.7144(34) 1.7434(16) 0.840 1944
5 20.4347(68) −3.74049(98) 2.810(14) 5.4125(14) −23.7186(38) 1.7452(17) 0.794 1258
4 20.4302(72) −3.74055(98) 2.780(15) 5.4117(14) −23.7161(40) 1.7442(18) 0.780 1077
3a 20.4278(78) −3.7406(10) 2.750(18) 5.4112(15) −23.7148(43) 1.7436(19) 0.749 817
2 20.4276(99) −3.7406(10) 2.745(30) 5.4112(19) −23.7147(54) 1.7436(24) 0.660 389
1 20.427(11) −3.7405(10) 2.695(55) 5.4110(21) −23.7142(62) 1.7434(27) 1.092 18

aThis fit, shown in bold, is chosen as the best.

5 MeV may reasonably be interpreted as being caused by
contributions from higher waves. Below 5 MeV, the variations
in fit values of rs0 are not quite significant and are in the wrong
direction for them to be the result of higher waves. Based on the
phase shifts of np partial waves from Table V of Ref. [2], the
net contribution from higher waves is much less than half
the size of the statistical errors for the Tmax = 3 MeV data.
Systematic errors introduced by ignoring higher waves are
therefore negligible for the fits with Tmax � 3 MeV. Systematic
errors introduced by ignoring the energy dependence of the
effective ranges are similarly insignificant. The Tmax = 3 MeV
fit is taken as the best fit; it has nearly the lowest χ2

ν , while
also having nearly the smallest errors for the fit parameters.
The shape-independent parameters are determined to be

σ0 = 20.4278 ± 0.0078b,

ac = −3.7406 ± 0.0010 fm,

rs0 = 2.750 ± 0.018stat − 0.059syst fm,

at = 5.4112 ± 0.0015 fm, (9)

as = −23.7148 ± 0.0043 fm,

ρt (0,−εt ) = 1.7436 ± 0.0019 fm,

εs = 66.26 ± 0.05stat + 0.14syst keV.

The errors are statistical, representing standard deviations. The
one-sided systematic error shown for rs0 represents a one-
standard-deviation error in its approximation to ρs(0, 0) and
is obtained below. The one-sided systematic error on εs is
propagated from the systematic error on rs0, which is used
instead of ρs(0,−εs) in Eq. (5), solved for γs , thus [47]

γs = r−1
s0

(
1 −

√
1 − 2rs0/as

)
,

with εs = mn + mp − E following from Eq. (3), taking p2 =
−γ 2

s . An unknown contribution from �rs is neglected in εs .
None of the other parameters have significant systematic
errors.

A fit of rt and rs to the Tmax = 3 MeV data, holding at and
as fixed at their values from Eq. (9), determines ρt (0, 0) =
limT →0 ρt (0, T ) and ρs(0, 0) = limT →0 ρs(0, T ), but without
a systematic contribution from �rt . Because rt and rs are
correlated through ∂rs/∂rt �= 0, a two-step process is used
to obtain statistically meaningful errors. First, ρt (0, 0) and

ρs(0, 0) are fit. A new variable �ρt is then introduced as the
sole fit parameter, with rt and rs constrained through

rt = ρt (0, 0) + �ρt, rs = ρs(0, 0) + 〈∂rs/∂rt 〉�ρt,

where 〈∂rs/∂rt 〉 = 2.37465 for the Tmax = 3 MeV data. The
fit error of �ρt is determined as a standard deviation; �ρt fits
to zero, χ2

ν = 0.747, and

ρt (0, 0) = 1.718 ± 0.025 fm, ρs(0, 0) = 2.696 ± 0.059 fm,

�rt = −0.025 ± 0.025 fm. (10)

The differences between ρt (0,−εt ) and ρt (0, 0), and between
rs0 and ρs(0, 0), are not significant, and �rt is not significantly
different from zero. Because the downward shift in ρs(0, 0)
relative to rs0 in Eq. (9) is very nearly the same as the statistical
error on ρs(0, 0), this error is taken as the one-sided systematic
error on rs0 anticipated in Eq. (6). The error on ρt (0, 0) in
Eq. (10) has no bearing on ρt (0,−εt ) in Eq. (9).

Figure 1 demonstrates the correlation between the fit values
of ρt (0, 0) and ρs(0, 0). The shift in cross section above
1.5 MeV is almost negligible if both ρt (0, 0) and ρs(0, 0)
are varied; there are too few and insufficiently precise data
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FIG. 1. The effect on the calculated cross section of the correla-
tion between ρt (0, 0) and ρs(0, 0). (line at zero) rt = ρt (0, 0), rs =
ρs(0, 0) from (10); (upper curve) rt = ρt (0, 0) + 0.025 fm, rs =
ρs(0, 0); (middle curve) rt = ρt (0, 0) + 0.025 fm, rs = ρs(0, 0) +
0.059 fm; and (lower curve) rt = ρt (0, 0), rs = ρs(0, 0) + 0.059 fm.
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FIG. 2. Cross-section differences. The cross section calculated
with the parameters from Eq. (9) is subtracted from data and
calculations made with other choices of parameters. The curves
form the one-standard-deviation envelope for the cross section
calculated with ρt (0, 0) and ρs(0, 0) from Eq. (10); (line at zero)
Shape-independent parameters from Eq. (9); (upper curve) rt =
ρt (0, 0) − 0.025 fm, rs = ρs(0, 0) − 0.059 fm; and (lower curve)
rt = ρt (0, 0) + 0.025 fm, rs = ρs(0, 0) + 0.059 fm. The lower curve
is below and barely separated from the line. Data: [16] (Koester), [28]
(Fujita), [17] (Engelke), [31] (Poenitz), [27] (Kirilyuk), and [32]
(Lampi). Off-scale data are omitted; these have error bars that would
span the entire vertical range of the plot.

below 1.5 MeV to break the correlation. Figure 2 emphasizes
how poorly determined ρt (0, 0) and ρs(0, 0) are by the data
available. Whether the reference line at zero or one of the
curves describes the data better can hardly be decided. The
peak in the upper curve occurs at 130 keV; a simultaneous
determination of ρt (0, 0) and ρs(0, 0) is most sensitive to
a measurement at this energy. The sensitivity falls to half-
maximum at 23 and 620 keV; the useful data in this range are
very sparse.

Improved low-energy cross-section measurements between
about 20 and 600 keV are needed to overcome the correlation
between ρs(0, 0) and ρt (0, 0). A single cross section with a
precision of 0.4 mb near 130 keV would reduce the errors on
ρt (0, 0) and �rt to about 0.001 fm. As it stands, �rt is more
a measure of errors in the data than a measure of zero-energy
shape dependence; it is insufficiently well determined to be
of any use in a comparison with predictions from potential
models.
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