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Pion-photon exchange nucleon-nucleon potentials
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In chiral perturbation theory, the dominant next-to-leading-order correction to the πγ -exchange NN-potential
proportional to the large isovector magnetic moment κv = 4.7 of the nucleon is calculated. The corresponding
spin-spin and tensor potentials ṼS,T (r) in coordinate space have a very simple analytical form. At long distances,
r � 2 fm, these potentials are of similar size (but opposite in sign) as the leading-order πγ -exchange potentials.
Effects from virtual �-isobar excitation are also considered, as well as other isospin-breaking contributions to
the 2π -exchange NN potential induced by additional one-photon exchange.
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Isospin violation in the nuclear force is a subject of current
interest. Charge-independence breaking (i.e., the difference
between the total isospin I = 1 pn scattering and nn or pp
scattering) is large and well established. On the other hand,
charge-symmetry breaking (i.e., the difference between nn and
pp scattering after removal of the long-range electromagnetic
forces) is smaller and fairly well established. These isospin-
violating contributions to the nuclear force also play an
important role in explaining the 764 keV binding-energy
difference of 3He and triton [1–3]. The bulk of it, namely
648 keV, can already be understood in terms of the Coulomb
interaction [1].

The longest-range isospin-violating NN interaction is
generated by the simultaneous exchange of a pion and a
photon between the two nucleons. Because the photon is
massless, the πγ -exchange interaction is of a nominal one-
pion range, m−1

π = 1.41 fm. After the earlier attempts made in
Refs. [4,5], the complete leading-order πγ -exchange NN
potential was calculated within the systematic framework
of chiral perturbation theory in Ref. [6]. A crucial feature
of that calculation was to guarantee the gauge invariance of
the result by consideration of the full set of all 19 possible
Feynman diagrams. The resulting expression for the complete
leading-order πγ -exchange potential in momentum space
turned out to be surprisingly simple [see Eq. (1) below].
However, because of its intrinsic smallness (a few permille
of the 1π -exchange interaction), the inclusion of this new
isospin-breaking interaction had negligible effects on the 1S0

low-energy parameters and it led to only a tiny improvement
in the fits of the NN-scattering data [6]. Nevertheless, it is
important to know as accurately as possible the size of these
well-defined long-range components before one introduces
(adjustable) short-range isospin-violating terms.

The purpose of this paper is to calculate next-to-leading-
order corrections to the πγ -exchange NN potential within
the systematic framework of chiral perturbation theory. These
corrections either arise as relativistic 1/M corrections (where
M = 939 MeV is the average nucleon mass) to the static result
of Ref. [6] or they are generated by new interaction vertices
from the next-to-leading-order chiral Lagrangian L(2)

πN [7]. Ex-
perience with the isospin-conserving NN potential has shown
that the next-to-leading-order corrections are dominated by the
contributions proportional to the large low-energy constants,

in that case c1,3,4 [8]. For the photon-nucleon coupling, which
is of relevance in the present work, one readily identifies the
isovector magnetic moment κv = 4.7 of the nucleon as an
outstandingly large low-energy parameter. Therefore the focus
here is on this particular contribution to the πγ -exchange
NN potential. Effects from virtual �(1232)-isobar excitation
that involve the equally strong � → Nγ transition magnetic
moment κ∗ � 4.9 are also considered.

Let us start with reanalyzing the leading-order πγ -
exchange NN potential of Ref. [6]. The corresponding T matrix
in momentum space reads

T (lo)
πγ = αg2

A

8πf 2
π

(�τ1 · �τ2 − τ 3
1 τ 3

2

) �σ1 · �q �σ2 · �q

×
{

1

q2
−

(
m2

π − q2
)2

q4
(
m2

π + q2
) ln

(
1 + q2

m2
π

)}
, (1)

where α = 1/137.036 is the fine-structure constant, gA =
gπNfπ/M = 1.3 is the nucleon axial vector-coupling con-
stant, fπ = 92.4 MeV is the pion-decay constant, and mπ =
139.57 MeV is the charged pion mass. Furthermore, �q denotes
the momentum transfer between both nucleons, and �σ1,2 and
�τ1,2 are the usual spin and isospin operators of the two
nucleons. The Fourier transformation, −(2π )−3

∫
d3q exp(i �q ·

�r), . . . , of Eq. (1) to coordinate space yields a local potential
with spin-spin and tensor components:

{ṼS(r)�σ1 · �σ2 + ṼT (r)(3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2)}
× 1

2

(�τ1 · �τ2 − τ 3
1 τ 3

2

)
. (2)

The isospin factor (�τ1 · �τ2 − τ 3
1 τ 3

2 )/2 is chosen such that it
gives 1 for elastic pn → np scattering. The leading-order
πγ -exchange spin-spin potential reads

Ṽ
(lo)
S (r) = αg2

Am2
π

(4πfπ )2

2e−x

3r

{
2 ln

x

2
+ 2γE − 1

x

− 1

x2
+ Ẽ(x) − 2Ẽ(2x)

}
, (3)

where x = mπr . Ẽ(x) = ∫ ∞
0 dζe−ζ (ζ + x)−1 is the modified

exponential integral function, and γE � 0.5772 is the Euler-
Mascheroni number. The associated tensor potential has a
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TABLE I. Pion-photon exchange pn potentials in units of keV versus the nucleon distance r. The spin-spin and tensor potentials Ṽ
(lo)
S,T

correspond to the leading-order in the chiral expansion. The next-to-leading-order corrections Ṽ
(κv )
S,T are proportional to the large isovector

magnetic moment κv = 4.7 of the nucleon, and Ṽ
(κ∗)
S,T arise from the magnetic � → Nγ transition.

r [fm] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Ṽ
(lo)
S −52.3 −27.4 −15.0 −8.30 −4.54 −2.35 −1.07 −0.31 0.13 0.37 0.50

Ṽ
(lo)
T −48.3 −9.26 3.93 8.06 8.79 8.26 7.31 6.29 5.34 4.49 3.76

Ṽ
(κv )
S 61.2 27.7 14.0 7.63 4.41 2.67 1.67 1.08 0.72 0.49 0.34

Ṽ
(κv )
T −230 −100 −49.1 −26.0 −14.6 −8.64 −5.31 −3.37 −2.19 −1.46 −0.99

Ṽ
(κ∗)
S 14.3 5.87 2.70 1.35 0.72 0.41 0.24 0.15 0.09 0.06 0.04

Ṽ
(κ∗)
T −36.4 −14.3 −6.32 −3.07 −1.60 −0.88 −0.51 −0.30 −0.19 −0.12 −0.08

similar form:

Ṽ
(lo)
T (r) = αg2

A

(4πfπ )2

e−x

3r3

×
{
x − 5 + 4(3 + 3x + x2)

(
ln

x

2
+ γE

)
+ (18 − x2)Ẽ(x) + 4(3x − 3 − x2)Ẽ(2x)

}
. (4)

In the first and second rows of Table I some numerical
values of these leading-order πγ -exchange potentials are
given for distances 1 fm � r � 3 fm. Somewhat as a surprise,
one observes a nonmonotonic dependence on the nucleon
distance r. The spin-spin potential Ṽ (lo)

S (r) passes through zero
at r = 2.53 fm and it has a maximum at r = 3.34 fm. For the
tensor potential Ṽ

(lo)
T (r) these points are shifted inward and

reduced by approximately a factor 1.9. It passes through zero
at r = 1.31 fm and it has its maximum value of about 8.8 keV
at r = 1.78 fm.

In order to arrive at the analytical results of Eqs. (1), (3),
and (4), one can actually circumvent the complete evaluation of
all contributing one-loop diagrams. It is sufficient to calculate
their spectral function or imaginary part by use of the Cutkosky
cutting rule. The pertinent two-body phase-space integral is
most conveniently performed in the πγ center-of-mass frame
in which it becomes proportional to a simple angular integral:
(µ2 − m2

π )/(32πµ2)
∫ 1
−1 dz, . . . , where µ � mπ is the πγ in-

variant mass. We can control gauge invariance by working with
the (generalized) photon propagator (−gµν + ξkµkν/k2)/k2

through the ξ independence of the total spectral function.
Using these techniques, we obtain from the leading-order
one-loop πγ -exchange diagrams of Ref. [6]

Im T (lo)
πγ = αg2

A

8f 2
π

(�τ1 · �τ2 − τ 3
1 τ 3

2

) �σ1 · �q �σ2 · �q
(
µ2 + m2

π

)2

µ4
(
m2

π − µ2
) .

(5)

The notation Im Tπγ is meant here such that one is taking the
imaginary part of the amplitude standing to the right of the
spin and isospin factors.

Now we turn to the dominant next-to-leading-order cor-
rection to the πγ -exchange NN potential proportional to
the large isovector magnetic moment κv = 4.7. The relevant

one-loop diagrams with a nucleon in the intermediate state are
shown in Fig. 1. The pertinent Feynman rules can be found
in Appendix A of Ref. [7]. From the calculated spectral
function, (µ2 − m2

π )/µ5 times a polynomial in µ2 and m2
π ,

we derive (by means of a once-subtracted dispersion relation)
the following expression for the T matrix in momentum space:

T (κv )
πγ = αg2

Aκv

64Mf 2
π q3

(�τ1 · �τ2 − τ 3
1 τ 3

2

){�σ1 · �σ2

[(
m2

π + q2)
× (

3q2 − m2
π

)
arctan

q

mπ

+ m3
πq

]
+ 1

q2
�σ1 · �q �σ2 · �q

[(
m2

π + q2
)(

3m2
π − 5q2

)
× arctan

q

mπ

+ 3mπq
(
q2 − m2

π

)]}
. (6)

As a side remark, we note that the contribution proportional to
the isoscalar magnetic moment κs = 0.88 vanishes identically.
The reason for this feature are the vanishing angular integrals:
−∫ 1

−1 dz z−1 = 0 = ∫ 1
−1 dzz. The Fourier transformation of

Eq. (6) to coordinate space yields spin-spin and tensor
potentials of the following simple analytical form:

Ṽ
(κv )
S (r) = αg2

Aκv

48πMf 2
π

e−mπ r

r4
(1 + mπr), (7)

Ṽ
(κv )
T (r) = − αg2

Aκv

48πMf 2
π

e−mπ r

r4
(5 + 2mπr). (8)

N, ∆ N, ∆ 

FIG. 1. Pion-photon-exchange diagrams generating a nonvanish-
ing imaginary part. The large filled circle symbolizes the magnetic
coupling of the photon to the nucleon, or the magnetic � →
Nγ transition. Diagrams for which the role of both nucleons is
interchanged are not shown. These lead effectively to a doubling
of the NN potential.
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The more direct way to obtain these analytical expressions is
to Laplace transform the spectral function Im T (κv )

πγ [for details
see Eqs. (3) and (4) in Ref. [9]). In the third and fourth rows of
Table I some numerical values of these novel isospin-violating
potentials V

(κv )
S,T (r) are given. At long distances, r � 2 fm, they

are of the same size but opposite in sign as the leading-order
πγ -exchange potentials (compare with the first and second
rows in Table I). At shorter distances the tensor component
V

(κv )
T (r) in Eq. (8) with its higher weight factor on the singular

1/r4 term becomes in fact dominant. Note also that there is
some tendency for cancellation in the long-range tails of the
tensor potentials.

As argued in Ref. [5], the �(1232) isobar, with its relatively
small excitation energy could, also play a substantial role
for the πγ -exchange interaction. The transition � → Nγ

is known to be predominantly of the magnetic dipole type.
In the effective chiral Lagrangian approach its strength is
parametrized by a transition magnetic moment κ∗. Using
empirical information [10] about the partial-decay width,

�(�+ → pγ ) = ακ∗2
(
M2

� − M2
)3

144M5
�M2

(
3M2

� + M2
)

� 0.68 MeV, (9)

we can extract a value of κ∗ � 4.9 for the � → Nγ tran-
sition magnetic moment. Here, M� = 1232 MeV denotes
the mass of the � isobar. The possible one-loop diagrams
with virtual excitation of a � resonance contributing to
the πγ -exchange NN interaction are shown in Fig. 1. The
Feynman rules for the nonrelativistic πN� and γN� ver-
tices are (gπN�/2M)�S · �k T a and (eκ∗/2M)�S · (�k × �ε )T 3,
respectively, where �k denotes an ingoing pion or photon
momentum. The 2 × 4 spin and isospin transition matrices
Si and T a satisfy the relations SiS†j = (2δij − iεijkσ k)/3
and T aT †b = (2δab − iεabcτ c)/3. Using the empirically well-
satisfied relation gπN� = 3gπN/

√
2 = 3gAM/

√
2fπ for the

πN� coupling constant, we find the following result for their
total spectral function:

Im T (κ∗)
πγ = αg2

Aκ∗

96
√

2Mf 2
π µ3

(�τ1 · �τ2 − τ 3
1 τ 3

2

)
×

{
�σ1 · �σ2

[
2µ�

(
µ2 − m2

π

) + (
m4

π + 2m2
πµ2

− 3µ4 − 4µ2�2
)

arctan
µ2 − m2

π

2µ�

]
+ �σ1 · �q �σ2 · �q

[
2�

(
m2

π

µ
+ 3µ

)
+

(
2m2

π − 5µ2 + 3m4
π

µ2
− 4�2

(
3µ2 + m2

π

)
µ2 − m2

π

)
× arctan

µ2 − m2
π

2µ�

]}
, (10)

where � = M� − M = 293 MeV denotes the �-nucleon
mass difference. Note that the spectral function of the spin-spin
term (proportional to �σ1 · �σ2) and the spectral function of
the tensor term (proportional to �σ1 · �q �σ2 · �q ) both vanish at

N, ∆ N, ∆

FIG. 2. Isospin-breaking corrections to the two-pion exchange
NN interaction induced by one-photon exchange. The large filled
circle in the right-hand diagram symbolizes the magnetic coupling of
the photon to the nucleon. The 2π -exchange diagrams for which the
role of both nucleons is interchanged are not shown.

threshold µ = mπ . From the mass spectra given by Eq. (10)
one can easily calculate the spin-spin and tensor potentials in
coordinate space [following the decomposition in expression
(2)] in the form of a continuous superposition of Yukawa
functions [9]. The fifth and sixth rows in Table I show
the corresponding numerical values for the πγ -exchange
potentials V

(κ∗)
S,T (r) for nucleon distances 1 fm � r � 3 fm. One

finds that the effects from virtual � excitation are about
a factor of 5–10 smaller than those generated by diagrams
with only nucleon intermediate states. Such a suppression of
the �-isobar effects has already been speculated on in the
summary of Ref. [5]. The present calculation now provides a
quantitative answer to this question.

Figure 2 shows another set of isospin-violating contri-
butions to the 2π -exchange NN interaction induced by an
additional one-photon exchange. These effects could alter-
natively be interpreted as one-pion-loop contributions to the
electric and magnetic form factors of the nucleon that are
introduced in order to describe the electromagnetic interaction
between the extended (not pointlike) nucleons. Irrespective of
their classification, the magnitude of such isospin-breaking
effects should be quantified. The first two diagrams in
Fig. 2 (allowing for only an intermediate nucleon state) with
the photon coupling to the charge of the nucleon give rise to
the following T matrix:

T (lo)
πγ = α

48πf 2
π

(
τ 3

1 + τ 3
2 + 2τ 3

1 τ 3
2

)
×

[
1 + 5g2

A + 4m2
π

q2

(
1 + 2g2

A

)]
×

{
1 −

√
4m2

π + q2

q
ln

q + √
4m2

π + q2

2mπ

}
. (11)

The corresponding central potential in coordinate space,

Ṽ
(lo)
C (r) = α

3(8πfπ )2 r

(
τ 3

1 + τ 3
2 + 2τ 3

1 τ 3
2

)
×

∫ ∞

2mπ

dµ e−µr

√
µ2 − 4m2

π

×
[

4m2
π

µ2

(
1 + 2g2

A

) − 1 − 5g2
A

]
, (12)

has some similarity with the Uehling potential. As the numbers
in the first row of Table II show, it is attractive and of similar
size as the leading-order πγ -exchange spin-spin potential (see
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TABLE II. Isospin-violating contributions to the two-pion exchange pp potential in units of keV versus the distance r. The spin-spin and
tensor potentials V

(N,�)
S,T are proportional to the large isovector magnetic moment κv = 4.7. The charge-independence-breaking potential δṼ

(cib)
2π

proportional to the pion mass difference mπ+ − mπ0 = 4.59 MeV is taken from Ref. [11]. The charge-symmetry-breaking potentials Ṽ
(csb)
C,S,T

proportional to the neutron-proton mass difference Mn − Mp = 1.29 MeV are taken from Ref. [12].

r [fm] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Ṽ
(lo)
C −49.5 −22.5 −11.0 −5.74 −3.13 −1.76 −1.02 −0.61 −0.37

Ṽ
(�)
C 7.68 2.96 1.26 0.58 0.28 0.14 0.08 0.04 0.02

Ṽ
(N)
S −21.3 −8.66 −3.89 −1.88 −0.96 −0.51 −0.28 −0.16 −0.09

Ṽ
(N)
T 23.9 9.14 3.90 1.81 0.89 0.46 0.25 0.14 0.08

Ṽ
(�)
S −4.09 −1.50 −0.62 −0.28 −0.13 −0.07 −0.03 −0.02 −0.01

Ṽ
(�)
T 4.18 1.46 0.58 0.25 0.12 0.06 0.03 0.02 0.01

δṼ
(cib)

2π 108 55.6 31.1 18.4 11.4 7.25 4.74 3.16 2.14

Ṽ
(csb)
C −182 −80.0 −38.9 −20.3 −11.3 −6.51 −3.89 −2.39 −1.50

Ṽ
(csb)
S 67.3 29.6 14.4 7.50 4.11 2.34 1.38 0.83 0.51

Ṽ
(csb)
T −84.1 −34.7 −15.9 −7.86 −4.11 −2.26 −1.28 −0.75 −0.45

the first row in Table I). Here Ṽ
(lo)
C (r) has been evaluated for

pp scattering, in which the isospin factor τ 3
1 + τ 3

2 + 2τ 3
1 τ 3

2
becomes equal to 4. The second diagram in Fig. 2 with a
virtual � excitation leads to the spectral function:

Im T (�)
πγ = αg2

A

8f 2
π µ3

(
τ 3

1 + τ 3
2 + 2τ 3

1 τ 3
2

){(
2m2

π

3
− �2 − 5µ2

12

)

×
√

µ2 − 4m2
π + �

(
µ2 − 2m2

π + 2�2
)

× arctan

√
µ2 − 4m2

π

2�

}
. (13)

The corresponding central potential Ṽ
(�)
C (r) (see second row

in Table II) comes out repulsive, and it is approximately an
order of magnitude smaller than the leading order one Ṽ

(lo)
C (r).

The last diagram in Fig. 2 involves the magnetic coupling
of the photon to the nucleon. We are considering only the
dominant contribution proportional to the isovector magnetic
moment κv = 4.7, and we find for the corresponding one-loop
T matrix

T (N)
πγ = αg2

Aκv

32Mf 2
π

τ 3
1 τ 3

2 (�σ1 × �q) · (�σ2 × �q)

×
{

2mπ

q2
− 4m2

π + q2

q3
arctan

q

2mπ

}
. (14)

When translated into coordinate space, spin-spin and tensor
potentials are obtained,

Ṽ
(N)
S (r) = − αg2

Aκv

96πMf 2
π

τ 3
1 τ 3

2
e−2mπ r

r4
(1 + 2mπr), (15)

Ṽ
(N)
T (r) = αg2

Aκv

96πMf 2
π

τ 3
1 τ 3

2
e−2mπ r

r4
(2 + mπr), (16)

of the typical two-pion range (2mπ )−1 = 0.7 fm. As the
numbers in the third and fourth row of Table II indicate,
they differ from each other mainly in sign. The magnitude
of V

(N)
S,T (r) comes out substantially smaller than that of

the central potential V
(lo)
C (r). This is to be expected since

the magnetic interaction is a higher-order relativistic 1/M

correction. Finally, a virtual � isobar in this two-pion exchange
process followed by one-photon exchange is also included. The
corresponding spectral function,

Im T (�)
πγ = αg2

Aκv

64Mf 2
π µ3

τ 3
1 τ 3

2 (�σ1 · �σ2 µ2 + �σ1 · �q �σ2 · �q )

×
{

− 2�

√
µ2 − 4m2

π + (
µ2 + 4�2 − 4m2

π

)

× arctan

√
µ2 − 4m2

π

2�

}
, (17)

leads to the numerical values of the isospin-violating spin-spin
and tensor potentials V

(�)
S,T (r) presented in the fifth and sixth

rows of Table II. These potentials are of the same sign but
a factor of 5–10 smaller than their counterparts V

(N)
S,T (r) with

pure nucleon intermediate states.
It is also instructive to compare our present results with

previously calculated isospin-breaking 2π -exchange poten-
tials. Taking into account the mass difference between the
charged and neutral pion, mπ+ − mπ0 = 4.59 MeV, in the
pion-loops, Friar and van Kolck [11] obtained the charge-
independence-breaking central potential δṼ

(cib)
2π (r) [for an

explicit expression, see Eq. (11) in Ref. [11]]. Moreover,
the neutron-proton mass difference, Mn − Mp = 1.29 MeV,
in intermediate nucleon states of the pion loops leads to the
charge-symmetry-breaking potentials Ṽ

(csb)
C,S,T (r) (proportional

to τ 3
1 + τ 3

2 ) derived recently in Ref. [12] [for details see
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Eq. (10) therein]. As one can see from the numerical values in
Table II the effects of these hadron mass splittings are substan-
tially larger than the one-photon-exchange correction studies
here. For more extensive recent work on isospin-violating
NN-forces using the method of unitary transformations, see
also Ref. [13].

In summary, in this work next-to-leading-order corrections
to the πγ -exchange NN potential were calculated. The domi-
nant contribution proportional to the large isovector magnetic
moment κv = 4.7 turns out to be of a similar size (but opposite
in sign) as the leading-order term. Effects from virtual �-isobar
excitation, involving the equally large � → Nγ transition

magnetic moment κ∗ � 4.9, are approximately one order
of magnitude smaller. Furthermore, several isospin-violating
contributions to the 2π -exchange NN potential induced by an
additional one-photon exchange were also evaluated. In most
cases these turned out to be smaller than the πγ -exchange
terms and the effects from pion and nucleon mass splittings
[11,12]. The analytical expressions for the T matrices and
coordinate space potentials derived in this work are in a form
that can be easily implemented into NN phase shift analyses
or few-body calculations. Such numerical studies will reveal
the role of the long-range isospin-violating NN interaction
generated by pion-photon exchange.
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