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New deformed model of α-decay half-lives with a microscopic potential
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The α-decay half-lives of deformed nuclei are investigated in a new version of the density-dependent cluster
model. By the multipole expansion method, the deformation- and orientation-dependent double-folding potential
is derived to calculate the α-decay width through a deformed Coulomb barrier. We perform systematic calculations
for the ground-state α transitions of even-even nuclei with Z = 52−104. The theoretical results are in good
agreement with the experimental data. This is, to our knowledge, the first deformed calculation of α-decay
half-lives within the framework of microscopic double-folding potentials. A unified description of α-decay
half-lives of both spherical and deformed nuclei is obtained by the microscopic potentials.
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One of the most important decay modes for unstable
medium and heavy nuclei is α radioactivity, which is a
quantum-tunneling effect [1–19]. One usually simplifies the
calculations of α-decay half-lives by assuming a spherical
shape for nuclei. This approximation is reasonable because
most of the ground-state α emitters are spherical or moderate
deformed [20,21]. Various spherical calculations with different
potentials gave similar results of half-lives [11–13,15]. The
available experimental half-lives of α decay can generally be
reproduced within a factor of 3–4 by spherical calculations
[15,17]. Although this agreement between experiment and
theory is satisfactory, the results of the spherical model can
be further improved by taking into account the influence of
nuclear deformations [5,6,18,19], not only for pursuing a
better agreement but also for obtaining a more microscopic
understanding of α decay.

The aim of this communication is to study the α-decay half-
lives of deformed even-even α emitters in a new version of the
density-dependent cluster model (DDCM). The microscopic-
deformation- and orientation-dependent α-core potentials are
evaluated from the well-established double-folding model by
the multipole expansion method [22–26]. This is a novel
development of the spherical DDCM [16,17] because the
double-folding potentials between a spherical-deformed pair
of nuclei are difficult to calculate, and such potentials have
rarely been used in the calculations of α decays. To extend the
model from the spherical case to a deformed one also involves
complicated derivations of formulas and a large increase of
time of numerical computation in computers. This is well
known in both the model of a nuclear structure and the model
of a nuclear reaction. Therefore it is interesting to see how the
occurrence of a spheroidal deformation affects the microscopic
α-core potentials and the corresponding α-decay width. Here
we present a new deformed model of nonspherical α-decay
half-lives by using microscopic double-folding potentials. The
previous research on α-decay half-lives of deformed nuclei
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was based on deformed potentials such as a square potential
or a Woods-Saxon potential [5,18,19]. The double-folding
potential is based on the popular M3Y potential, which
is from the fitting of a G matrix of the Reid potential
[16,17,22–26]. Therefore the deformed version of the DDCM
with microscopic double-folding potentials is well grounded
in physics.

We assume that a spherical α particle interacts with a
deformed daughter nucleus that has an axially symmetric
deformation. The total α-core potential is a sum of nuclear
potential, the Coulomb potential, and the centrifugal potential
[17]:

VTotal(R, β) = VN (R, β) + VC(R, β) + h̄2

2µ

(
L + 1

2

)2

R2
, (1)

where R is the separation between the mass center of the α

particle and the mass center of the core and β is the orientation
angle of the α particle with respect to the symmetry axis of the
daughter nucleus. The nuclear and Coulomb potentials from
the double-folding procedure are given by [22,23]

VN or C(R, β) =
∫

d r1d r2ρ1(r1)ρ2(r2)v(s). (2)

Here the quantity |s| is the distance between a nucleon in
the core and a nucleon in the α particle; s = R + r2 − r1

[23]. The density distribution of the spherical α particle is a
standard Gaussian form given by Satchler and Love [23]. In the
spherical version of the DDCM [17], the density distribution of
the daughter nucleus is from the standard Fermi distribution
of electron scattering and the parameters are from standard
textbooks [27–29]. Here the nuclear deformation is included,
and the density distribution of the deformed daughter nucleus
is a natural extension to the spherical one:

ρ2(r2, θ ) = ρ0/(1 + exp{[r2 − R(θ )]/a}), (3)

where the value of ρ0 is fixed by integration of the density
distribution equivalent to the mass number of daughter nucleus
Ad . The half-density radius R(θ ) is given by R(θ ) = R0[1 +
β2Y20(θ ) + β4Y40(θ )]. The constants R0 = 1.07A

1/3
d fm
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and a = 0.54 fm are taken from Refs. [27–29]. When
β2 = β4 = 0, the matter radius of heavy nuclei with this
choice is Rrms ≈ 1.2 × A1/3 (fm), and this goes back to
spherical case automatically [27–29]. Because the density
distribution of the daughter nucleus is deformed, Eq. (2)
involves a complex six-dimensional integral [22,23]. Thus
the derivation of double-folding potentials becomes rather
difficult for the spherical-deformed interacting pair [24,25].
In our calculations, we solve the double-folding potential
numerically by using the multipole expansion method [24,25].
In the multipole expansion, the density distribution of daughter
nucleus is expanded as [24]

ρ(r, θ ) =
∑

l=0,2,4...

ρl(r)Yl0(θ ), (4)

and the corresponding intrinsic form factor has the form [24]

ρ̃(l)(k) =
∫ ∞

0
drr2ρl(r)jl(kr). (5)

The double-folding potential can then be evaluated by a sum
of different multipole components [24]:

VN or C(R, β) =
∑

l=0,2,4...

V l
N or C(R, β), (6)

with

V l
N or C(R, β) = (2/π )[(2l + 1)/4π ]1/2

×
∫ ∞

0
dkk2jl(kR)ρ̃1(k)ρ̃(l)

2 (k) ṽ (k)Pl(cos β), (7)

where ρ̃1(k) is the Fourier transformation of the density
distribution of the α particle, ρ̃

(l)
2 (k) is the intrinsic form factor

of daughter nucleus, ṽ(k) is the Fourier transformation of
a local two-body effective interaction, and Pl(cosβ) is the
Legendre function of degree l. In our calculations, we use
the famous M3Y-Reid-type nucleon-nucleon interaction and
the standard proton-proton Coulomb interaction [22,23,26].
The M3Y interaction proposed by Bertsch et al. [22] is
derived from the G-matrix elements of the Reid potential.
The parametrized form of the M3Y interaction from Satchler
and Love [23,26] is used for the calculations. Therefore the
nuclear and Coulomb potentials of the α-core system in the
DDCM are fully microscopic [22,23].

We now generalize our spherical calculations of the DDCM
[16,17] to the deformed case. It is well known that the
penetration factor of the α particle through the Coulomb
barrier plays a crucial role in α-decay calculations. The
magnitude of the α-decay width is mainly determined by
the corresponding penetration probability. The polar-angle-
dependent penetration probability of α decay is given by

Pβ = exp

[
−2

∫ Rout

Rin(β)

√
2µ

h̄2 |Qα − VTotal(R, β)|dR

]
, (8)

where Rin(β) and Rout are two classical turning points defined
by the equation VTotal(R, β) = Qα , µ is the reduced mass
of the α-core system, Qα is the experimental α-decay energy
[11,17,30], and VTotal is the total α-core potential for which
the depth of the nuclear potential is renormalized for all

orientations to ensure a quasi-stationary state by application
of the Bohr-Sommerfeld quantization condition [11,17]. It
should be noted that the depth of the nuclear potential is not
an adjusting parameter and the variation of its value is small
for different nuclei [17]. Here the calculation of Pβ in each
direction is similar to that of previous researches [17] but the
complexity and time of computation are much more than those
of previous researches. We obtain the total penetration factor
P by averaging Pβ in all directions P = 1

2

∫ π

0 Pβsin(θ )dθ .
This is widely used in both α-decay and fusion reaction
calculations [18,19]. In the DDCM, the α-decay width has
the following expression:

� = PαF
h̄2

4µ

1

2

∫ π

0
Pβsin(θ )dθ, (9)

where Pα is the preformation probability of the α particle
in the parent nucleus, F is the normalization factor [11,17],
and its value is also obtained by similarly averaging along
different orientation angles. The spherical α-decay width has
been applied to spherical α-decay calculations [10–12,17].
The generalization to the deformed case is an important
development on the model and will be useful for future studies.
The width is then related to the half-life by the well-known
relationship T1/2 = h̄ln2/� [11,12,17].

Before we present detailed calculations, it is interesting to
illustrate the microscopic double-folding potentials in which
the deformation effect is included. In Fig. 1, we plot the nuclear
potentials of 236U for two different orientations β = 0◦ (red
curve) and β = 90◦ (blue curve). The deformation parameters
(β2 = 0.207, β4 = 0.108) of the daughter nucleus of 236U
are taken from Möller et al. [20]. Because the deformation
parameters from Möller et al. [20] agree well with the
magnitude of experimental deformation [21], the values from
Möller et al. [20] are usually used for calculations of α-decay
half-lives of deformed nuclei [18,19]. Another reason to prefer
the values of [20] is that the experimental value of deformation
is the absolute value [21] and it cannot differentiate the
sign of deformation (i.e., the prolate shape or oblate one).
The experimental value of hexadecapole deformation is also

FIG. 1. (Color online) The double-folding nuclear potential of
236U for two orientations, β = 0◦ and β = 90◦.
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rare [21]. The difference between the experimental deforma-
tion and that from Möller et al. [20] is small and its influence
on calculated half-lives is not large.

It is seen from Fig. 1 that the nuclear potentials at β = 0◦
and at β = 90◦ are almost the same in both the inner and
the outer regions. In the middle region, the shape of the
double-folding potentials varies significantly for these two
orientations. We can see that the nuclear potential at β = 0◦
is much deeper than that at β = 90◦ in the region of 2–12 fm.
This is not surprising because there is a large overlap of nuclear
density distributions at angle β = 0◦. For smaller deformation
parameters, the shape of the double-folding nuclear potentials
becomes closer for different orientations. Obviously, it is back
to that of the spherical case if we take zero-quadrupole and
zero-hexadecapole deformations.

In previous studies, we made systematic calculations of
α-decay half-lives by the spherical DDCM [17]. It is quite
useful to compare the variation of each term of the decay
width between the spherical case and the deformed one. The
first term of the decay width [Eq. (9)] is the preformation
factor, which is usually assumed to be a constant in α decay.
The normalization factor F and the penetration factor P in
the decay width are both obtained by the same averaging
procedure [Eq. (9)]. Through a detailed analysis, we found
that the value of the normalization factor F remains almost
unaffected in the two approximations, but the penetration
factor P varies significantly if the deformation effect is
taken into account. This is due to the expression of the
penetration factor as an exponential [see Eq. (8)], and its
variation is larger than that of a nonexponential function when
averaging in all directions. Therefore the penetration factor
is more sensitive to the nuclear deformations than are other
terms of the decay width. The experimental preformation
factor is smaller than 1.0 in both α-transfer reactions and
α decays [7]. The microscopic calculation also gives a value
of Pα = 0.3 for the α preformation factor of 212Po [9]. Very
interestingly, we have found that the experimental half-lives
of all even-even nuclei can be well reproduced by using the
same preformation factor Pα = 0.38 in deformed calculations.
This is for available experimental data of all even-even nuclei
with Z = 52−104. Its value agrees with both the experimental
facts and the microscopic calculations [7–9]. We also note
that the preformation factor of the α cluster is not used in a
generalized liquid-drop model (GLDM), which is also a very
successful model of half-lives based on a fission approach [15].
The assault frequency is used in GLDM [15].

Now we discuss the calculation of half-lives of favored
α decays in which favored α decays mean zero angular
momentum of an α particle. This is true for the case of
α decay between the ground states of even-even nuclei [30].
In this communication we restrict our study mainly to the
ground-state α transitions of even-even nuclei (Z = 52−104)
with accurate experimental data. A more comprehensive
investigation including the odd-A and odd-odd nuclei will be
presented later. In our calculations, we use the experimental
α-decay energies Qα [17,30], and the values of the quadrupole
and hexadecapole deformations (β2, β4), are taken from
Ref. [20], correspond to the daughter nucleus. We give both
the experimental α-decay half-lives and theoretical ones for a

FIG. 2. (Color online) The comparison of experimental α-decay
half-lives and theoretical ones for even-even nuclei (Z = 52−104).

total of 157 even-even nuclei with Z = 52−104 for comparison.
The variation of α-decay half-lives with the proton number is
drawn in Fig. 2 for isotopic chains. The blue circles denote the
experimental data, and the red stars represent the theoretical
results. It is known from Fig. 2 that α-decay half-lives vary in a
wide range from 10−8 to 1024 s. Although the amplitude of the
variation of half-lives is as high as 1032 times, the theoretical
points follow the experimental ones well where they almost
coincide with the experimental ones. For the long-lived nuclei
(Tα > 1020 s), such as 144Nd, 148Sm, 152Gd, 174Hf, and 186Os,
the agreement between model and data is very good. Contrary
to these nuclei, there are some short-lived α emitters in the
trans-Pb region (Z = 84−90), with Tα<10−6 s. Our theoretical
results are also consistent with the experimental data for these
nuclei.

To show the agreement more clearly, we illustrate in
Fig. 3 the total agreement between experiment and theory.
The X axis is the factor of agreement (FA). When the ratio
of experimental half-lives to theoretical ones is between 1/2

FIG. 3. (Color online) The distribution of the number of
α emitters for different factors of agreement.
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TABLE I. Comparison of average and rms deviations of DDCM
and GLDM.

Nuclide Number Average rms deviation
deviation

Even-even 157 (131) 0.209 0.267(0.35)
Odd-A 231 (192) 0.229 0.285(0.57/0.71)
Odd-odd 79 (50) 0.318 0.435(0.99)

and 2, the FA is defined as FA = 2 because the experimental
half-lives are reproduced within a factor of 2 by the DDCM.
When the ratio is between 1/3 and 1/2 or 2 and 3, the FA
is FA = 3 and the definitions of other factors are similar
to FA = 2 and FA = 3. The Y axis is the number of
α emitters in each case. As shown in Fig. 3, we reproduce
the half-lives of 120 α emitters within a factor of 2 and
24 within a factor of 3. The FA is larger than 3 for only a
few nuclei. The slightly large deviation occurs for the nucleus
210Po, where the ratio between the experimental half-life and
the theoretical one is 5.34 {log10[T ([exp)/T (the)] ≈ 0.73}.
This is due to the influence of the spherical shell closure N =
126 in which the experimental facts also reveal a sudden
decrease of the preformation factor of the α cluster for it
[7,8,31]. Here we briefly summarize the overall agrement.
The average deviation for the total 157 even-even α emitters
is S = �i=157

i=1 |log10T
exp

1/2 (i) − log10T
the

1/2(i)|/157 = 0.209. The
logarithm of the average deviation 0.209 corresponds to an
absolute deviation of the half-life with a factor of 1.6. This
means that the deformed DDCM successfully reproduces the
experimental half-lives of even-even nuclei (Z = 52−104)
within a factor of 2. The spherical version of the DDCM
reproduces experimental half-lives within a factor of 2–3 for
many medium nuclei and within a factor of 3 for many heavy
nuclei [17]. Therefore the deformed version of the DDCM
improves greatly the results of spherical calculations.

Before ending this article, let us make a systematic
comparison of the deformed DDCM with the GLDM, which
also reproduces well the data of α-decay half-lives [15].

We list the average deviations and root-mean-square (rms)
deviations between experimental half-lives and theoretical
ones of both even-even nuclei and odd nuclei [32] in
Table I. In Table I the second column is the number of
α-emitters of our calculation and the quantity in bracket is
that of GLDM [15]. The third column is the average deviation
of DDCM and the fourth column is the RMS deviation (in
logarithm with a base 10). The quantity in the bracket of
column 4 is that of GLDM from Royer [15]. It is seen that
both models work very well for the half-lives because the
logarithms of deviations 0.3 and 0.6 corresponds to factors
of 2 and 4 between experimental half-life and theoretical
one, respectively. In future it will be interesting to develop
GLDM [15] by including the deformation effect and this can
further improve the agreement between the theoretical results
and the data. The idea of including deformation in this article
is useful for future development of GLDM.

In summary, we present a new version of the DDCM by
including the nuclear deformation effect. We calculate the
α-decay half-lives of ground-state transitions of even-even
nuclei with Z = 52−104. The double-folding potentials
between the spherical α-particle and the deformed daughter
nucleus are evaluated by the multipole expansion method.
The nuclear and Coulomb potentials are fully microscopic
and well grounded in physics because the popular M3Y
nucleon-nucleon interaction is used for calculations. It is
found that the nuclear deformations significantly affect the
barrier penetration probabilities and the reason is explained.
The theoretical α-decay half-lives are found to be in excellent
agreement with the experimental data. A unified description
of α-decay half-lives of both spherical and deformed nuclei
throughout the periodic table is obtained by the deformed
version of the DDCM. It is also expected that the deformed
version of the DDCM can be used to extract the magnitude of
nuclear deformation from very accurate data of α decays.
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[1] G. Gamov, Z. Phys. 51, 204 (1928).
[2] E. U. Condon and R. W. Gurney, Nature (London) 122, 439

(1928).
[3] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733

(2000).
[4] Yu. Ts. Oganessian et al., Phys. Rev. C 72, 034611 (2005).
[5] J. O. Rasmussen, in Alpha-, Beta-, and Gamma-Ray Spec-

troscopy (North-Holland, Amsterdam, 1965).
[6] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus

(Academic, New York, 1977).
[7] P. E. Hodgson and E. Beták, Phys. Rep. 374, 1 (2003).
[8] Zhongzhou Ren and Gongou Xu, Phys. Rev. C 36, 456 (1987);

J. Phys. G 15, 465 (1989).
[9] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37

(1992).
[10] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett. 59, 262

(1987).

[11] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45,
2247 (1992); Phys. Rev. Lett. 72, 1326 (1994).

[12] F. Hoyler, P. Mohr, and G. Staudt, Phys. Rev. C 50, 2631 (1994);
P. Mohr, ibid. 61, 045802 (2000).

[13] S. B. Duarte et al., At. Data Nucl. Data Tables 80, 235 (2002).
[14] B. A. Brown, Phys. Rev. C 46, 811 (1992).
[15] G. Royer, J. Phys. G 26, 1149 (2000).
[16] Z. Ren, C. Xu, and Z. Wang, Phys. Rev. C 70, 034304 (2004).
[17] C. Xu and Z. Ren, Nucl. Phys. A753, 174 (2005); A760, 303

(2005).
[18] T. L. Stewart, M. W. Kermode, D. J. Beachey, N. Rowley, I. S.

Grant, and A. T. Kruppa, Nucl. Phys. A611, 332 (1996).
[19] V. Yu. Denisov and H. Ikezoe, Phys. Rev. C 72, 064613 (2005).
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