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Approximate analytical solution for nuclear matter in a mean-field Walecka
model and Coester line behavior
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We study nuclear matter, at the mean-field approximation, by considering as equal the values of the scalar
and the vector density in the Walecka model, which is a very reasonable approximation up to the nuclear matter
saturation density. It turns out that the model has an analytical solution for the scalar and vector couplings as
functions only of the nuclear matter density and binding energy. The nuclear matter properties are very close to
the original version of the model. This solution allows us to show that the correlation between the binding energy
and the saturation density is Coester line like. The liquid-gas phase transition is also studied and the critical and
flash temperatures are again very similar to the original ones.
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At the mean-field level the linear σ -ω (or Walecka) model
[1] explains satisfactorily many properties of nuclear matter
and finite nuclei. This model employs nucleons and mesons
as degrees of freedom, is renormalizable, and has two free
parameters to fit. The sources for the fields are the scalar
(ρs) and the vector (ρ) densities associated with the Lorentz
scalar (S) and vector (V ) interactions. An interesting result of
this model was to show the relativistic mechanism for nuclear
matter saturation. It occurs at a saturation density ρ0, for which
the S and V potentials largely cancel each other out.

For infinite nuclear matter in the Walecka model, the mean-
field vector and scalar potentials are V = C2

vρ/M2 and S =
−C2

s ρs/M
2 [1], where Cs and Cv are coupling constants that

need to be found numerically in a self-consistent way to fit the
correct nuclear matter binding energy and saturation density.
Taking into account that, at ordinary nuclear densities, the
scalar (ρs) and baryon (ρ) densities are equal to within a few
percentages, we can assume that these potentials closely follow
linearly the baryon density: S = S0ρ/ρ0 and V = V0ρ/ρ0,
where S0 and V0 are the values of the potentials at the nuclear
matter equilibrium density ρ0.

The main purpose of this Brief Report is to show, using a
reasonable approximation, that it is possible to find analytical
expressions for the couplings constants Cs and Cv of the
Walecka model that depend only on the nuclear matter binding
energy and density. This analytical—and not numerical—
solution allows us also to find a simple equation for nuclear
matter binding energy as a function of the equilibrium
density and the potential difference V0 − S0. This relation
explains why the correlation between these two nuclear matter
properties is Coester line like in the Walecka model, a behavior
recently found only numerically for this model when V0 − S0

is kept fixed [2].
In this model, the one-body Dirac equation for the nucleons

under scalar and vector mean-field potentials reads,

[α · p + β(M + S) + V ] ψ = Eψ, (1)

where α and β are matrices. If we write ψ , a relativistic four
component spinor, in terms of its small (χ ) and large (φ)

components, we get

σ · pχ + (M + S + V )φ = Eφ, (2)

σ · pφ − (M + S − V )χ = Eχ, (3)

where σ is a three-vector whose components are the Pauli
matrices.

Substituting χ from Eq. (3) into Eq.(2), one obtains

[(E − V )2 − (M + S)2 − p2]φ = 0, (4)

which gives us the known dispersion relation for the energy in
the Walecka model. Let us define the quantities

	 = V + S and 
 = V − S, (5)

which allow us to write, from Eqs. (2) and (3), a decoupled
equation for the large component φ[

p2

2M
(
1 − ε′+


2M

) + 	

]
φ = ε′φ, (6)

where ε′ = M − E is the system binding energy.
The Eq. (4) describes a relativistic nucleon with an effective

mass M∗ = M + S and energy E∗ = E − V , whereas Eq. (6)
suggests that the nucleon is described by the Hamiltonian

H = 	 + p2

2M̄
(7)

that has a nonrelativistic form, where

M̄ = 2M

(
1 − ε′ + 


2M

)
, (8)

may be understood as the nucleon effective mass. It is
important to stress that Eqs. (4) and Eq. (6) are equivalents,
despite the different M∗ and M̄ definitions. They are related
by

M̄ = 1
2 [M∗ + (M − V − ε′)]. (9)

Now, we assume that the scalar and vector potentials closely
follow the baryon density,

	 = 	0
ρ

ρ0
and 
 = 
0

ρ

ρ0
, (10)
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where 
0 = V0 − S0 and 	0 = V0 + S0 are free parameters.
In this approximation ρs = ρ, we are neglecting higher-order
terms in kf /M , where kf is the fermi momentum. However,
this cannot be seen as a nonrelativistic approximation because
the kinetic energy in Eq. (7) depends on the effective mass M̄

and not on the bare nucleon mass M. Therefore, the kinetic
term still has relativistic content.

Neglecting ε′/2M corrections, which are small, we obtain
from Eq. (6) a nonrelativistic energy density

E = 	ρ + γ

(2π )3

∫
k2

2M̄
d3k, (11)

where γ is the degeneracy factor (γ = 4 for nuclear matter
and γ = 2 for neutron matter) with a nucleon effective mass

M̄ = M

(
1 − 


2M

)
. (12)

By minimization of E/ρ at ρ = ρ0, and defining the binding
energy E/ρ0 − M = −B0, we obtain analytical expressions
for 
0 and 	0:


0 = 2M

[
1 + 2Eo

f

3B0

(
1 −

√
1 + 9B0

4Eo
f

)]
, (13)

and

	0 = −B0 − Eo
f

1 − 
0/2M
, (14)

where

Eo
f = 3

10

ko2
f

M
and ρ0 = γ

6π2
ko3
f (15)

are the Fermi kinetic energy and the equilibrium density
respectively. Notice that by fixing B0 and ρ0, the parameters

0 and 	0 are automatically determined.

The expressions for energy density and pressure are

E = 	0
ρ2

ρ0
+ 3

10M

(
6π2

γ

)2/3
[

ρ5/3

1 − 
0ρ

2Mρ0

]
, (16)

and

P = 	0
ρ2

ρ0
+ 1

5M

(
6π2

γ

)2/3


 1 + 
0ρ

4Mρ0(
1 − 
0ρ

2Mρ0

)2


 ρ5/3. (17)

We verify the thermodynamic consistency of the model
through the calculation of the chemical potential,

µ = ∂E
∂ρ

= 2	0
ρ

ρ0
+ 1

2M

(
6π2

γ

)2/3


 1 − 2

5

0ρ

2Mρ0(
1 − 
0ρ

2Mρ0

)2


 ρ2/3,

(18)
that can also be obtained by µ = (E + P )/ρ.

We can solve Eqs. (13) and (14) to give 	0 and B0 in terms
of Eo

f and 
0,

	0 = −Eo
f

1
3

(
2 + 
0

2M

)
(
1 − 
0

2M

)2 . (19)
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FIG. 1. Binding energy as a function of the density for the models
WS and WA.

and

B0 = Eo
f

3

( 2
0
M

− 1
)

(
1 − 
0

2M

)2 . (20)

We can also find an analytical expression for the incompress-
ibility,

K = 9
∂P

∂ρ

∣∣∣∣
ρ=ρ0

= 2Eo
f(

1 − 
0
2M

)3

[
4
0

M
+ 
2

0

2M2
− 1

]
. (21)

It is important to notice that once ρ0 is fixed, K depends only
on 
0.

In Fig. 1, we present the binding energy curves for the
original Walecka model (WS) and the approximate one (WA).

Notice how the approximate model presents a harder
equation of state (EOS) than the Walecka original one.
The proximity of the models suggests that the saturation
mechanism of the Walecka model is the result of the increase
of the kinetic energy coming from the relativistic corrections.
This relativistic effect is still present after the approximation
because, from Eq. (16), we see that the kinetic energy depends
on the effective mass. The nonrelativistic limit, which is the
same of the ordinary Walecka model, is to take 
0 = 0. In this
case M̄ = M and Eq. (16) reduces to

E
ρ

= 	0
ρ

ρ0
+ 3

10M

(
6π2ρ

γ

)2/3

. (22)

The dominant term comes from the attractive part, collapsing
the system for high values of ρ. This only shows the essential
relativistic character of the Walecka model. The ordinary
explanation for the saturation mechanism in the original WS
model is that it occurs from the balance between the scalar
and baryonic density in which the later one dominates at
high density. However, because the results of WS and the
approximate WA model are very similar, we are forced to
conclude that, in fact, this mechanism occurs as a result
of the increase of the kinetic energy that is sufficient to saturate
the system. Looking at Eqs. (7) and (16) of the WA model,
we identify 	 and 
 as the physical scales of the problem.
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TABLE I. Equilibrium properties of nuclear matter obtained
from WS and WA. Binding energy, incompressibility, and nucleon
effective mass are given in MeV and ρ0 is given in fm−3.

Models B0 ρ0 	0 
0 K m∗

W 16.0 0.148 −77 785 551 0.539
WA 16.0 0.148 −53 813.7 656.6 0.566

We identify 	 as the nonrelativistic scale associated with the
depth of the nuclear potential, whereas 
, which saturates
the model by the increase of kinetic energy, is the proper
relativistic scale. This is the main reason why we wrote the
model with those two potentials, instead of the usual scalar S
and vector V potentials.

We present in Table I some bulk properties for the models
and we can see how the results are close to each other.

To understand better the role played by the relativistic scale

0 (the value of the potential 
 at the equilibrium density
ρ0), we see that in WA model it determines completely the
incompressibility and also the nucleon effective mass once
ρ0 is fixed. It is also known that 
0 relates directly to the
spin-orbit splitting in finite nuclei. The correlation between
this splitting and the nucleon effective mass in equilibrium
nuclear matter shows that the larger is the effective mass and
the smaller is such splitting [3]. The WA model also shows
this, because M̄ decreases as 
0 increases. It is interesting to
notice that if ε′ = −B0 in Eq. (9), M̄ = 1

2 (M∗ + M∗
L), where

M∗
L =

√
k2
f + (M + S)2 is the Landau nucleon effective mass.

We have also to point out that M̄ , which decreases linearly
with the density, may hit negative values and it happens when
ρ/ρ0 < (2M − B0)/
0. This restrict the validity of the EOS
to ρ/ρ0 < 2.28.

In Fig. 2, we present B0 as a function of ρ0 for different
values of 
0. The curves show a correlation between B0

and ρ0, expressed in Eq. (20). It is known that an N-body
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FIG. 2. Nuclear matter binding energy as a function of the
saturation density for different values of 
 in WA model. Circles
indicate calculations using RSC, Paris, HJ, AV14, Bonn A, B, and
C, extracted from Ref. [5]. Nuclear matter calculations, including the
single-particle continuum contribution, are shown with the × symbol.

TABLE II. Critical and flash parameters for WA and WS models.
Temperature is given in MeV, density in fm−3, and pressure in
MeV/fm3.

Parameter Model T ρ P

Critical WS 18.35 0.064 0.414
WA 16.6 0.066 0.441

Flash WS 14.23 0.089 0
WA 11.3 0.092 0

calculation, using a two-nucleon potential model that fits two
nucleon properties, furnishes a function B0(ρ0). This intriguing
result was analyzed by Coester et al. [4] in a two-nucleon
model interaction by varying its tensor force contribution while
keeping the deuteron binding energy fixed. They showed that
B0(ρ0) roughly follows a line. They have also observed the
similarity of such a line with that constructed from B0 and
ρ0 obtained from different calculations, using distinct two-
nucleon potentials and far from the experimental point. Even
modern calculations using BHF and including single-particle
contribution in the continuum, change the results but keeps
the correlation intact. These findings are shown in Fig. 2, in
which the continue line originated from the WA model crosses
the experimental point, by construction. Notice, however, how
the curves from the WA model follow the slope of the points
calculated with two-nucleon models. That is why we claim to
have obtained a kind of Coester line correlation. It is interesting
to point out that the relativistic effects of the WA models are
also shown in Fig. 2, where the Coester line is shifted to the
empirical region of saturation, provided the relativistic scale

 is large. This suggests a Dirac structure for the nuclear
potential with large scalar and vector parts [2].

It is important to comment that our approximation should
work even better in the case of nonlinear scalar coupling
models [6], because they need less relativistic content to
achieve saturation.

Just for the sake of completeness, we have also investigated
WA model at finite temperature. We have introduced an ideal
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FIG. 3. Pressure as a function of ρ/ρ0 for some isotherms. The
temperature is in mega electron volts.

037311-3



BRIEF REPORTS PHYSICAL REVIEW C 73, 037311 (2006)

gas contribution ρkT in the EOS to calculate the critical pa-
rameters. We have also calculated the “flash” parameters. The
“flash” temperature Tf is defined as the highest temperature at
which a self-bound system can exist in hydrostatic equilibrium.
The results are presented in Table II.

Again, we see how the critical and flash parameters obtained
from the WA model are close to those of the WS model [7,8].
In Fig. 3, we display the pressure as a function of ρ/ρ0 for
some isotherms. The behavior is similar to a Van der Waals
liquid-gas equation of state [7].

In summary, we showed that, when the scalar and the
vector potentials follow the baryonic density, the Walecka
model has an analytical solution for the scalar and vector
couplings as functions only of the nuclear matter density and
binding energy. The nuclear matter properties are very close
to the original version of the model. This solution can also
explain why the correlation between the binding energy and
the saturation density is Coester line like. The critical and flash
temperatures of the warm nuclear matter are also very similar
to the original ones.
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