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Long- and short-range correlations in the ab-initio no-core shell model
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In the framework of the ab-initio no-core shell model (NCSM), we describe the longitudinal-longitudinal
distribution function, part of the inclusive (e, e′) longitudinal response. In the two-body cluster approximation,
we compute the effective operators consistent with the unitary transformation used to obtain the effective
Hamiltonian. When short-range correlations are probed, the results display independence from the model space
size and length scale. Long-range correlations are more difficult to model in the NCSM and they can be des-
cribed only by increasing the model space or increasing the cluster size. In order to illustrate the model space
independence for short-range observables, we present results for a large set of model spaces for 4He, and in
0−4 h̄ � model spaces for 12C.
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Atomic nuclei are the result of a delicate interplay between
short- and long-range correlations among the nucleons, which
makes their theoretical description rather challenging. For light
nuclei, very successful methods, such as Green’s function
Monte Carlo [1], hyperspherical harmonics [2], and the no-
core shell model (NCSM) [3–7], have been developed recently.
They allow an ab-initio description of nuclear properties,
the only ingredients being realistic nucleon-nucleon (NN)
interactions, which describe the experimental phaseshifts with
high accuracy, and theoretical three-nucleon forces.

In the ab initio NCSM, one starts with a realistic NN
interaction (theoretical three-body forces can also be used,
but we will not discuss this case here) and performs a unitary
transformation [8–10] to a model space, which allows an exact
diagonalization in a finite many-body space, defined by the
number of excitations above a mean-field-like configuration.
Details of the procedure are available to the interested reader
in previous publications [3–6]. Recently, we have extended
the same procedure from the Hamiltonian to general one- and
two-body operators [11–13]. The effect of the procedure is
to reduce the dependence of the observables upon the model
space and harmonic oscillator (HO) frequency, and, in the
lowest approximation, it has proven to be effective only for
short-range operators [12].

Using the unitary transformation approach [8–10], we
obtain the following expression for the effective operators
[8,14]

POP = P + Pω†Q√
P + ω†ω

O
P + QωP√

P + ω†ω
, (1)
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where the transformation operator ω satisfies the condition
QωP = ω, with P and Q the projector operators in the model
and complementary spaces, respectively, and O is the bare
general operator, which acts in the entire space.

In principle, the transformation operator ω can be computed
using a finite set of eigenvectors in the full space, making use
of the overlap of the full space eigenvectors with the basis
states in the P and Q spaces [4,5], i.e.,

〈αQ|ω|αP 〉 =
∑
k∈K

〈αQ|k〉〈k̃|αP 〉. (2)

In the last equation, |αP 〉 and |αQ〉 are the basis states in the P
and Q spaces, respectively. The summation runs over a finite
subset, K, of eigenvectors in the full space, and the tilde stands
for the inverse of the overlap matrix, i.e.,

∑
αP

〈k′|αP 〉〈αP |k̃〉 =
δkk′ .

Equation (2) shows that in order to obtain the transformation
operator ω one needs the solution to the initial A-body problem.
This makes its application impractical, unless we use approx-
imations. In the simplest approximation, the transformation
operator ω and, therefore, the effective interaction are obtained
in the relative system of two particles, in a large HO basis. The
Q space is chosen to be a few hundred h̄ � excitations in
order to obtain an exact solution to the two-body Schrödinger
equation. Due to the rotational symmetry, we formulate the
problem in two-nucleon channels with good total spin s, total
angular momentum j, and isospin t, reducing drastically the
dimensions involved, when performing the summation over
the states in the Q space in Eq. (1). The same procedure can be
applied to operators that can be analytically expressed in terms
of relative and center-of-mass coordinates of pairs. However,
note that in the case of non-scalar operators calculations
performed with Eq. (1) become more difficult, because
such operators can in general couple different channels. As
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expected, since the transformation operator is a scalar, this
procedure changes neither the character nor the rank of the bare
operator. By construction, keeping the cluster approximation
fixed (in this case, the two-body cluster) and increasing the
model space decreases the effect of the renormalization. This
was demonstrated in earlier papers in the case of 3H for
the ground-state energy [7], and in this paper we will also
demonstrate this by comparisons between the effective and
bare results for an observable related to the Coulomb sum
rule.

The inclusive (e, e′) longitudinal data presents one of the
clearest experimental signatures for short-range correlations in
the wave-function of the ground state, at least for light nuclei.
The Coulomb sum rule

SL(q) = 1

Z

∫ ∞

ωel

dωSL(q, ω) (3)

is the total integrated strength measured in electron scattering.
In Eq. (3), SL(q, ω) = R(q, ω)/|GE,p(q, ω)|2, with R(q, ω)
the longitudinal response function and GE,p(q, ω) the proton
electric form factor, while ωel is the energy of the recoiling A-
nucleon system with Z protons. The Coulomb sum rule SL(q),
which is related to the Fourier transform of the proton-proton
distribution function [15], can be expressed as [16]

SL(q) = 1

Z
〈g.s.|ρ†

L(q)ρL(q)|g.s.〉 − 1

Z
|〈g.s.|ρL(q)|g.s.〉|2

≡ 1 + ρLL(q) − ZFL(q)/GE,p(q, ωel),

where FL(q) is the longitudinal form factor. If one neglects the
relativistic corrections and two-body currents, ρL(q) is simply
the charge operator

ρL(q) = 1

2

A∑
i=1

exp(iq · ri)(1 + τz,i).

Consequently, the longitudinal-longitudinal distribution func-
tion becomes [16]

ρLL(q) = 1

4Z

∑
i 	=j

〈g.s.|j0(q|ri − rj |)(1 + τz,i)(1 + τz,j )|g.s.〉.

We present the results for ρLL(q) for 4He in Figs. 1 and 2.
We have limited this investigation to two-body interactions
only, and, in particular, have used the phenomenological CD-
Bonn NN force [17], because it yields reasonable convergence
properties with increasing the size of the model space.
Although experimental data for the longitudinal-longitudinal
distribution function exist, a direct comparison with exper-
iment is not suitable, because we neglect: on one hand,
(i) three-body forces in the model Hamiltonian, and, on
the other hand, (ii) exchange currents and (iii) relativistic
corrections for the charge operator. Nevertheless, the results
demonstrate the behavior of short- and long-range operators
within the framework of the NCSM.

Using a Gaussian operator of variable range, we have
shown previously how the renormalization of this two-body
operator depends upon its range [12]. We found that a
short-range two-body operator is renormalized accurately at
the two-body cluster level, while a long-range operator is
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FIG. 1. (Color online) The longitudinal-longitudinal distribution
function ρLL(q) in 4He for two model spaces (10h̄ � and 18h̄ �)
and fixed frequency h̄ � = 28 MeV, using bare (dashed curves) and
effective (continuous curves) operators. As discussed in the text, the
results obtained with effective operators are almost indistinguishable.

weakly renormalized. The same behavior can also be inferred
from Fig. 1, where we present ρLL(q) calculated in two
model spaces for a fixed frequency, using both bare and
effective operators. Thus, at large momentum transfer, the
use of effective operators produces model-space independent
results. Even in small model spaces we obtain good results,
although Fig. 3 shows that the ground-state wave function is
not fully converged in such small spaces, since the ground-state
enegy is not converged to the exact value. In particular,
for Nmax = 10 (or 10h̄ �, in terms of allowed excitations
beyond the lowest configuration) the ground-state energy is
−28.30 MeV for h̄ � = 19 MeV and −27.56 MeV for h̄ � =
28 MeV, compared to the exact 4He CD-Bonn ground-state

10
-4

10
-3

10
-2

10
-1

10
0

0 1 2 3 4
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

bare operator

effective operator

q −1

|ρ
L
L
(q

)|

10 Ω
10 Ω

18 Ω
18 Ω

Ω = 19

Ω = 28

4

FIG. 2. (Color online) Longitudinal-longitudinal distribution
function, using bare (upper panel) and effective (lower panel)
operators. We used two different HO frequencies, 19 MeV and
28 MeV, and two model spaces, 10h̄ � and 18h̄ �.
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FIG. 3. (Color online) The convergence of the ground-state
energy for the two frequencies used to compute the ρLL(q). The dotted
line is the exact ground-state energy for the CD-Bonn interaction
(−26.16 MeV [18]).

energy of −26.16 MeV [18]. The complete convergence of
the ground-state energy can be obtained within the NCSM, as
demonstrated, e.g., in Fig. 1 of Ref. [19]. As expected, Fig. 1
shows that in the large model space the renormalization is
weaker, i.e., there is less need for renormalization, so that the
value obtained with the bare operator is similar to the value
obtained with the renormalized operator. Thus, for q <∼ 3 fm−1

one cannot distinguish between the results obtained using
bare operators in the 18h̄ � model space for HO frequency
h̄ � = 28 MeV and the ones obtained using effective operators.
For momenta q > 3 fm−1 the results using the bare operator
deviate from the renormalized values, because the short-range
correlations induced by the interactions are cast into the
effective interaction. If one wants to account for short-range
correlations using a bare short-range operator, one has to
increase the model space, so that the effect of the short-range
renormalization is negligible. However, such a scheme would
require a vast number of h̄ � excitations to obtain a convergent
result.

In Fig. 2, we present ρLL(q) calculated in 10h̄ � and 18h̄ �

model spaces, with HO frequencies of 19 and 28 MeV. In the
upper panel we show the results obtained using bare operators.
In this case, the values are spread over orders of magnitude.
In contrast, the lower panel demonstrate independence of
both model space and frequency, when using the appropriate
effective operator, although the ground-state energy is not
converged, as illustrated in Fig. 3. Moreover, Fig. 2 shows that
the convergence depends strongly upon the HO frequency,
when using bare operators. Thus, the results obtained with
the bare operator in 18h̄ � with h̄ � = 19 MeV are far from
the results using effective operators; moreover, this curve
shows a second minimum around q � 4.25 fm−1, whereas
the converged results are almost flat and several orders of
magnitude larger for this value of the momentum transfer. In
contrast, even if still significantly different from the converged
values, the results for h̄ � = 28 MeV are closer to the ones
obtained with effective operators.

One can better observe the influence of the frequency
and model space in Fig. 4, where we present the results
for 12C. For 12C, unlike the case of 4He, where we have
used a Jacobi-coordinate HO basis (see, e.g., Ref. [7]),
the investigation was performed using the MANY-FERMION

DYNAMICS code [20], which employs a Slater determinant basis
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FIG. 4. (Color online) Longitudinal-longitudinal distribution
function for different model spaces and frequencies in 12C, using
bare (upper panel) and effective (lower panel) operators. For the 4h̄ �

model space, we show only the results using h̄ � = 15 MeV. While
the frequency dependence is not completely removed, the use of
effective operators produces indistinguishable results at large q for
different model spaces, as discussed in the text.

and becomes much more efficient for A > 5 than a Jacobi-
coordinate approach. In this case, the number of many-body
configurations increases very rapidly and one has to limit the
truncation to a smaller model space. We present results for up
to 4h̄ � model spaces. Again, note in the upper panel that the
results obtained with the bare operators differ widely in shape
and magnitude. When using effective operators, however, all
curves collapse into the same shape and agree with each other
for q >∼ 3 fm−1, as shown in the lower panel. Because the
calculation is not fully converged, the minima still change
significantly with frequency and model space, even when one
uses effective operators. One observes that, although the results
at high momentum transfer are very close together, a small
dependence upon the HO frequency persists.

In summary, we have investigated the longitudinal-
longitudinal distribution function (part of the Coulomb sum
rule) in the framework of the NCSM, utilizing the two-body
cluster approximation. Thus, we have extended our previous
application of the effective operator formalism [11–13] to
the calculation of an observable that probes the short-range
correlations. We find that even very small model spaces can
provide an accurate description of the short-range observables,
if effective operators are employed. This investigation shows
that reliable results can be obtained for short-range operators,
even for heavier nuclei, such as 12C, for which the 0h̄ �

results are accurate at higher q. As expected, intermediate- and
long-range correlations can be best described by increasing the
size of the model space and/or by a using higher order cluster
approximation.
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[14] P. Navrátil, H. Geyer, and T. T. S. Kuo, Phys. Lett. B315, 1
(1993).

[15] S. D. Drell and C. L. Schwartz, Phys. Rev. 122, 568 (1958);
K. W. McVoy and L. Van Hove, ibid. 125, 1034 (1962).

[16] R. Schiavilla, R. B. Wiringa, and J. Carlson, Phys. Rev. Lett. 70,
3856 (1993); J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70,
743 (1998).

[17] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53,
R1483 (1996); R. Machleidt, ibid. 63, 024001 (2001).

[18] A. Nogga, private communication.
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