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In this work, we examine critically the relation between orbital magnetic dipole (scissors mode) strength and
quadrupole deformation properties. Assuming a simple K = 0 ground-state band in an even-even nucleus, the
quantities Q(2+

1 ) (i.e., the static quadrupole moment) and B(E2)01→21 both are described by a single parameter—
the intrinsic quadrupole moment Q0. In the shell model, we can operationally define Q0(static) and Q0(BE2)
and see if they are the same. Following a brief excursion to the sd shell, we perform calculations in the fp shell.
The nuclei we consider (44,46,48Ti and 48,50Cr) are far from being perfect rotors, but we find that the calculated
ratios Q0(static)/Q0(BE2) with an FPD6 interaction are often very large (very close to unity) and far from the
simple vibrational limit of zero. The experimental ratios for 46Ti and 48Ti are somewhat smaller (∼0.75), but
the 50Cr value is larger, exceeding unity. We also discuss the quadrupole collectivity of orbital magnetic dipole
transitions. We find that the large orbital B(M1) strength in 44Ti relative to 46Ti and 48Ti cannot be explained by
simple deformation arguments.
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In this work we make a comparison of the shell model
and the collective model for several quantities that are
sensitive to nuclear deformation. These include B(E2)’s, static
quadrupole moments, and orbital magnetic dipole transitions.
This will be a theory versus theory work. Some experimental
results are quoted and serve as anchors for our results,
but we will not be inhibited by the lack of experimental
data in doing these calculations. We plan in the near future
to make a more extensive theory/experiment comparison.
But there are holes in the experimental data that must be
filled.

The main thrust of our work is to understand the relationship
of orbital magnetic dipole transitions to quadrupole defor-
mations in the nucleus. For example, after the experimental
discovery in heavy deformed nuclei of the relation between
the orbital magnetic dipole strength and nuclear deformation
[1], there have been many works that relate the orbital M1
(scissors mode) strength to electric quadrupole transition rates
[B(E2)01→21 ], often assuming that they are proportional to
each other [2–7].

First, though, we do survey calculations of B(E2)’s and
static quadrupole moments in the fp shell to see how well
the shell model relates to the simple rotational model of
Bohr and Mottelson [8]. In this rotational model, the formulas
for B(E2)’s and static quadrupole moments involve a single
parameter—the intrinsic quadrupole moment. These formulas

are, respectively,

B(E2) = 5

16π
Q2

0(B) |〈I1K20|I2K〉|2 (1a)

Q(I ) = 3K2 − I (I + 1)

(I + 1)(2I + 3)
Q0(S), (1b)

where B and S stand for B(E2) and “static,” respectively. Here
Q0 is the intrinsic quadrupole moment—what we would see
in the rotational frame. However, Q(I ) is what we measure in
the laboratory. In the simple rotational model, Q0(B) is equal
to Q0(S).

For the case I1 = 0, I2 = 2, the Clebsch-Gordan coefficient
above is 1. For a simple K = 0 band in an even-even nucleus,
we obtain

B(E2)0→2 = 5

16π
Q2

0(B) (2a)

Q(2+) = −2

7
Q0(S). (2b)

Note that the laboratory quadrupole moment has the opposite
sign of the intrinsic quadrupole moment—a well-known result.
It can be understood physically by imagining rotating a cigar
(which has a positive quadrupole moment; i.e., prolate) about
an axis perpendicular to the line of the cigar. This will trace
out a flat pancake shape that is oblate.
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TABLE I. Experimental data on Q(2+
1 ) and B(E2) in the sd shell

and the ratio |Q0(S)/Q0(B)|; we also give the experimental values of
E(4)/E(2).

Q(2+
1 ) B(E2) |Q0(S)/Q0(B)| E(4+

1 )/E(2+
1 )

[e fm2] [e2 fm4]

20Ne −23 (3) 340 (30) 1.38 (19) 2.600
22Ne −19 (4) 230 (10) 1.38 (28) 2.634
24Mg −16.0 (8) 432 (12) 0.85 (4) 3.012
28Si +16 (3) 326 (12) 0.98 (18) 2.596
32S −15 (2) 300 (13) 0.96 (13) 2.000
36Ar +11 (6) 340 (40) 0.66 (36) 2.240
40Ar +1 (4) 330 (39) 0.06 (24) 1.980

We then find that the ratio

Q0(S)

Q0(B)
= −7

2

√
5

16π

Q(2+)√
B(E2)

= −1.1038705
Q(2+)√
B(E2)

. (3)

Although we will be performing calculations in the fp shell,
we shall here briefly look over the experimental situation in the
sd shell. In Table I we show experimental values of Q(2+

1 ) [9],
B(E2) [10], and the ratio |Q0(S)/Q0(B)| as given by Eq. (3).
We also show the experimental values of E(4+

1 )/E(2+
1 ) as a

measure of how close we are to the rotational limit of 10/3, or
the vibrational limit of 2/1.

Note that the static quadrupole moments of 20Ne, 22Ne,
24Mg, and 32S are negative, whereas those of 28Si and 36Ar are
positive. If we limit ourselves to axial symmetry, this indicates
that the first group has prolate ground-state bands and the
second group has oblate ones. Skyrme II Hartree-Fock results
by Jaqaman and Zamick [11] correctly give the signs of all
the static quadrupole moments. The small static quadrupole
moment of 40Ar is consistent with magnetic moment results
of the 2+

1 state by Stefanova et al. [12].
The ratio |Q0(S)/Q0(B)| for 20Ne is larger than the

rotational limit, 1.38 versus 1; likewise 22Ne. In the case of
24Mg, |Q0(S)/Q0(B)| is smaller than for 20Ne or 22Ne, despite
the fact that the spectrum is closer to rotational for 24Mg.
Also surprisingly for 32S, the ratio E(4)/E(2) is 2.000, the
vibrational limit, for which one might expect a near-zero static
quadrupole moment. But the ratio |Q0(S)/Q0(B)| is 0.96,
close to the simple rotational prediction of unity. In general, it is
difficult to correlate |Q0(S)/Q0(B)| with E(4)/E(2) assuming
a simple axially symmetric rotor.

We should mention that an analysis of the relationship of
Q0(S) and Q0(B) has already been performed by Bender,
Flocard, and Heenen [13] and Bender et al. [14], albeit not
for the fp-shell nuclei considered here and using a different
method. They perform angular momentum projections on
BCS-Hartree-Fock states obtained with the Skyrme interaction
SLy6 for the particle-hole channel and a density-dependent
contact force in the pairing channel [13]. Their calculations
are mainly in the sd shell [13] and neutron-deficient lead
region [14]. For one nucleus in common, 40Ca, their results
for 0p-0h, 2p-2h, 4p-4h, 6p-6h, 8p-8h, and 12p-12h do
not differ so much from previous calculations of Zheng,
Berdichevsky, and Zamick [15] as far as the intrinsic properties
are concerned, but their calculation has the added feature of

providing an energy spectrum and expectation values in the
laboratory frame.

In Ref. [11], the authors predict that 36Ar is oblate. This is
confirmed by the fact that the static quadrupole moment of the
2+

1 state is positive: +11e fm2 [9]. The experimental B(E2) is
340 e2 fm4 and |β2| = 0.273 [10]. Using Eq. (3), we find

Q0(S)

Q0(B)
= 0.6585236. (4)

The energy ratio is

E(4+
1 )

E(2+
1 )

= 4414.36

1970.35
= 2.240. (5)

These results are consistent with a nucleus not being too
rotational.

The corresponding numbers in the calculation of Bender
et al. [13] are

Q(2+
1 )lab = 13 e fm2, B(E2) ↑= 220 e2 fm4, β = −0.21.

(6)

The calculated ratios are

Q0(S)

Q0(B)
= 0.9675,

E(4+
1 )

E(2+
1 )

= 2.6545. (7)

These calculations [13] give a more rotational picture than
experiment. There is a consistency, however, in that a larger
ratio E(4)/E(2) yields a larger ratio Q0(S)/Q0(B).

It should be noted that there have been random interaction
studies of Q(2+) by Velázquez et al. [16] and Zelevinsky and
Volya [17] for nuclei in the region that we are considering;
these works were based on that of Johnson, Bertsch, and Dean
[18]. However, we do not discuss them in this work.

We now put the above relation ((3)) to the test in a shell-
model approach for the following nuclei: 44Ti, 46Ti, 48Ti, 48Cr,
and 50Cr. We use the OXBASH [19] and ANTOINE [20] codes
with the FPD6 [21] and KB3 [22] interactions.

The nuclei that we have chosen are far from being perfect
rotors. Their description falls somewhere between vibrational
and rotational. The ratios E(4)/E(2), which would all be 10/3
in the simple rotational case are as follows with FPD6: 1.922,
2.010, 2.118, 2.459, 2.342 for 44Ti, 46Ti, 48Ti, 48Cr, and 50Cr,
respectively.

We perform shell-model calculations in a complete fp space.
We assign effective charges of 1.5 for the protons and 0.5
for the neutrons. We calculate B(E2)01→21 and Q(2+) (the
laboratory Q, of course) and put them into Eq. (3) to get
operational values of Q0(S)/Q0(B). The results are given in
Table II.

Except for 48Ti, the FPD6 results for the ratios are all
greater than 0.9, reaching a maximum of 0.9892 for 48Cr.
It is somewhat surprising that these ratios are so close to 1,
given that the ratios E(4)/E(2) are much further away from
the rotational limit 10/3.

We can also obtain some of the above ratios from exper-
iment. We refer to the compilation of nuclear moments of
Stone [9] and of B(E2)’s by Raman et al. [10]. Taking these
experiments at face value, we see that the ratio Q0(S)/Q0(B)
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TABLE II. Calculated and experimental values for Q(2+
1 ) and

B(E2), as well as the ratios Q0(S)/Q0(B) and E(4+
1 )/E(2+

1 ).

Q(2+
1 ) B(E2) Q0(S)/Q0(B) E(4+

1 )/E(2+
1 )

[e fm2] [e2 fm4]

FPD6
44Ti −20.156 607.24 0.9029 1.922
46Ti −22.071 682.06 0.9329 2.010
48Ti −17.714 560.78 0.8257 2.118
48Cr −33.271 1378.4 0.9892 2.459
50Cr −30.955 1219.0 0.9787 2.342

KB3
44Ti −12.437 530.47 0.5958 1.887
46Ti −16.154 571.35 0.7458 1.904
48Ti −14.298 455.65 0.7394 2.189
48Cr −29.388 1124.8 0.9672 2.263
50Cr −26.815 951.08 0.9598 2.345

Experiment
44Ti 610 (15) 2.266
46Ti −21 (6) 950 (5) 0.75 (22) 2.260
48Ti − 17.7 (8) 720 (40) 0.728 (39) 2.334
48Cr 1330 (20) 2.471
50Cr −36 (7) 1080 (6) 1.21 (23) 2.402

reduces to about 0.75 for 46Ti and 48Ti, but is bigger than 1 for
50Cr.

It should be noted that in the simplest version of the
vibrational mode, Q0(S) is zero. We can imagine a nucleus
vibrating between a prolate shape and an oblate shape and
causing the quadrupole moment to average to zero. However,
the B(E2)01→21 is quite large in this vibrational limit, causing
the ratio Q0(S)/Q0(B) to be zero or, in more sophisticated
vibrational models, quite small.

To test the sensitivity of our results to the effective
interaction, we also show results with KB3 in Table II. The
ratio Q0(S)/Q0(B) is now smaller for 44Ti (0.60 vs 0.90) and
for 46Ti (0.74 vs 0.93), but about the same for the 48,50Cr.

We also plot the ratios E(4+
1 )/E(2+

1 ) to get a feeling as to
where we are relative to the rotational limit of 10/3 and the
vibrational limit of 2/1. One might expect a priori that, if the
ratio E(4+

1 )/E(2+
1 ) is close to 10/3, the ratio Q0(S)/Q0(B)

would be close to 1, and for an energy ratio of 2/1,Q0(S)/
Q0(B) would be close to zero. But this is clearly not the case,
and it is difficult to find a precise correlation between the two
ratios.

The orbital magnetic isovector dipole transitions, i.e.,
scissors mode excitations, also display collective behavior [1].
There are systematics that suggest that B(M1)orbital is roughly
proportional to B(E2). There are more detailed, sophisticated
relationships as well. If one uses a simple quadrupole-
quadrupole interaction, the energy-weighted B(M1)orbital is
proportional to the difference [B(E2)isoscalar−B(E2)isovector]
[3].

The bare orbital M1 operator is√
3

4π

∑
l(i)gl(i), (8)

where gl is 1 for a proton and 0 for a neutron. This is the
operator that we use in the calculations.

TABLE III. The calculated orbital M1 strengths (µ2
N ). Unless

indicated, the calculations are made with the FPD6 interaction.

44Ti 46Ti 48Ti 48Ti/46Ti 48Cr

T → T

Lowest state 0.0017 0.305 0.105 0.3443
Lowest 10 states 0.0320 0.5979 0.3056 0.5111
Lowest 100 states 0.79 0.504 0.6380
All states 0.0355 0.9195 0.7191 0.7820

T → T + 1
Lowest state 0.862 0.0991 0.0041 0.4450 0.784
Lowest 10 states 1.4317 0.368 0.1951 0.5302 1.3855
Lowest 100 states 2.12 1.994
All states 2.127 0.5616 0.3099 0.5518 2.271a

aLowest 300 states.

How to extract the scissors mode strength is not completely
unambiguous. The mode is associated with low-lying 1+ ex-
citations at around 3 MeV. But the strength can be fragmented
even at this lowest energy. In addition to this, there is orbital
strength at higher energies, a somewhat grassy behavior where
individual states are very weakly excited but, because there are
so many of them, the total orbital strength can be significant.

Therefore, we give three sets of values (see Table III). First,
we give the strength to the lowest state, then to the lowest 10
states, and finally to the lowest 1,000 states (except for 48Cr,
where we include only 300 states). The 10-states strength
should encompass what we usually call the scissors mode,
whereas the 1,000-states strength is close to the total strength
including the grassy, noncollective part. It would appear that
the highest excitation energies reached in the experiments
[1,23] are not sufficient to reach the T + 1 part of the spectrum.

We first discuss the nuclei 46Ti and 48Ti, for which there
are some data on B(M1). We see consistently that the orbital
B(M1) strength is larger in 46Ti than in 48Ti. This is consistent
with the fact that 46Ti has a greater B(E2) and static 2+
quadrupole moment than 48Ti.

We next consider the N = Z nucleus 44Ti, for which there
are no data because this nucleus is unstable. The isoscalar
orbital B(M1) strength is very weak. This is also true for
the spin B(M1), but for a different reason. The isoscalar spin
coupling is much smaller than the isovector one. For the orbital
case, the couplings are equal because the operator is

∑
protons

��.
So the reason why the B(M1) isoscalar is very weak is that
the correlations because of the nuclear interaction move the
ground state toward the SU(4) limit, in which LS coupling
holds and for which the ground state is a pure L = 0 state. For
this extreme case, the B(M1) orbital isoscalar will vanish.

The transitions of interest for 44Ti are, therefore, the
isovector orbital dipole ones. The (T → T + 1) B(M1)orbital

summed strength is larger in 44Ti than the (T → T + 1) and
[(T → T ) + (T → T + 1)] strengths in 46Ti and 48Ti, which
are 0.5615 (1.4811) and 0.3099 (1.0290) µ2

N , respectively.
However, 44Ti is not more deformed than 46Ti. According to
Raman et al. [10], the values of the quadrupole deformation
parameters β for 44,46,48Ti and 48,50Cr are, respectively, 0.27,
0.317, 0.269, 0.335, and 0.293. Thus, we have here in fp-shell
nuclei a counterexample to the experimentally established
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proportionality between the orbital B(M1) and the B(E2) in
heavy deformed nuclei. Perhaps there are correlations that
cause an enhancement for N = Z nuclei.

An analysis by Retamosa et al. [24] in the sd shell
comparing 20Ne, 22Ne, and 24Mg was performed (somewhat
analogous to 44Ti and 46Ti for the first two cases), but no
anomaly was reported there. In the SU(3) model, they found
consistency in the relation of B(M1)orbital to deformation. In
this limit, the summed M1 strengths (all orbital) for 20Ne,
22Ne, and 24Mg were 1.1, 1.17, and 1.6 µ2

N , respectively.
Looking at the Raman tables [10] for these nuclei, there
is some complication—the deformation parameters β2 are
not in one-to-one correspondence with the B(E2)’s. The
values of [B(E2), β] for these three nuclei from the Raman
tables [10] are, respectively, (0.034, 0.728), (0.0236, 0.562),
and (0.0432, 0.606), where the units for B(E2) are b2. The
authors also do calculations with a more realistic interaction,
but not enough strengths are listed to make a comparison for
the point we are trying to make. Retamosa et al. [24] also
give strengths to the first 10+ states in 44Ti; our numbers are
consistent with theirs. Earlier works on the shell model for
light nuclei include L. Zamick [25] and A. Poves [26].

Cases where the simple picture of a scissors mode breaks
down have been discussed by Guliyev et al. [27], Georgii
et al. [28], and Schwengner et al. [29]. These occur near
shell closures. In these references, the tellurium isotopes
122,124,126,130Te are considered. They interpret the lowest 1+

state as a member of a two-phonon state 2+
1 ⊗ 2+

2 , where the 2+
2

state is a mixed-symmetry state. Another example is 94Mo [30],
which has been discussed by A. F. Lisetskiy et al. [31], and Lo
Iudice and Stoyanov [32].

In this work we have examined what predictions the shell
model makes for collective properties that are after dealt with
in the rotational model. Although the nuclei are far from perfect
rotors, the calculated ratio Q0(S)/Q0(B) is fairly close to 1
(the rotational limit) in many cases. When the FPD6 interaction
is used, the orbital magnetic dipole transitions for 46,48Ti also
fit into this picture, although there is the added complication
of separating the collective from the noncollective part in
this case. Also there is a substantial enhancement for the
N = Z nucleus 44Ti, which cannot be explained as purely
a deformation effect. We hope our work will stimulate more
experimental investigations. There is information of B(M1)
rates in 46Ti and 48Ti, but thus far the orbital B(M1) has been
extracted only in 48Ti. However, in a short time, we will be
able to make a more extensive theory/experiment study of
these magnetic dipole transitions.
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