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Structure of and E2 transition in 16C in a 14C + n + n model
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A three-body model of 14C + n + n is applied to study the energy spectrum and the hindered E2 transition
in 16C. A realistic two-nucleon potential is used for the valence neutrons. Both spin-singlet and spin-triplet
components for the neutrons are taken into account. The three-body problem with a Pauli constraint is solved in
a stochastic variational method. For the n-14C potential chosen to reproduce the properties of 15C, the low-lying
energy spectrum agrees reasonably well with experiment, but the ground state is predicted to be about 1 MeV
high. The calculated B(E2; 2+

1 → 0+
1 ) value is about twice the measured value if the polarization charge of the

valence neutrons is taken to be the same as that required to fit the 15C data. The correlated motion of the valence
neutrons is displayed through the two-neutron density distribution.
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Recently the E2 transition from the first 2+ state to the
ground 0+ state in 16C has been studied through a lifetime
measurement by use of a recoil shadow method [1] and 16C +
208Pb inelastic scattering [2]. The B(E2) value is found to
be 0.63 ± 0.12 e2fm4, which corresponds to an anomalously
small strength of about 0.26 W.u. The anomaly is apparent
by comparison with other C isotopes. The B(E2; 2+

1 → 0+
1 )

values of 10C, 12C, and 14C decrease gradually as expected
from the increasing excitation energies. However, the case of
16C strongly deviates from this expectation: The excitation
energy of the 2+

1 state of 16C is only 1.77 MeV, much smaller
than the case of 14C (7.01 MeV), but the B(E2) value of
16C is nevertheless much smaller than that of 14C, which is
3.74 e2 fm4 (1.87 W.u.). The B(E2) value for the 5

2

+
1 →

1
2

+
1 transition in 15C is also small, 0.97 ± 0.02 e2 fm4

(0.44 W.u.) [3].
In a previous paper [4], a three-body model of 14C + n + n

was applied to study the anomalous E2 transition in 16C under
the assumptions that the 14C core has a neutron shell closure
of the p shell and that the two valence neutrons are in a
spin-singlet state. The 14C + (sd)2 model for the low-lying
levels of 16C is supported by experiment as well [5,6]. The
calculated B(E2) value was 1.38 e2 fm4, 2.2 times larger than
that of experiment if one uses the same neutron polarization
charge as that required for 15C. The deformations of both
proton and neutron densities of the C isotopes are studied in
antisymmetrized molecular dynamics calculation [7], in which
the neutron shape is found to change significantly with the
neutron number and the B(E2) value of 16C in a variation after
projection calculation is 4–6 times too large compared with
that of experiment. The B(E2) value is overestimated also in
the deformed Hartree-Fock model and the shell-model calcu-
lations [8]. The purpose of the present investigation is to study
the structure of 16C thoroughly and to reexamine a mechanism
that leads to the hindered transition. Our basic assumption is
the same as before, so the relevant levels of 16C are assumed to
be generated from the 14C + n + n model. There are, however,
some noticeable differences. Here we use more general

basis functions, allowing for both spin-singlet and spin-triplet
neutrons. This makes it possible to obtain unnatural parity
states such as 3+. In addition, we use a realistic interaction for
the two neutrons in order to avoid uncertainties of the model,
while in the previous paper an effective interaction was used
and its strength was increased so as to fit the ground-state
energy.

The wave function for 16C is determined from the following
Hamiltonian:

H = TR + Tr + U1 + U2 + v12, (1)

where the subscripts of the kinetic energies stand for the
relative distance vector, R, from the center of mass of 14C to
that of the two neutrons and the relative distance vector of the
neutrons, r . The two-neutron potential v12 is taken from the
G3RS (case 1) potential [9], which contains central, tensor,
and spin-orbit forces and reproduces the nucleon-nucleon
scattering data as well as the deuteron properties. The n-14C
potential U takes the form

U = −V0f (r) + V1� · s
1

r

d

dr
f (r), (2)

where f (r) = [1 + exp( r−Rc
a

)]−1 with Rc = r0A
1
3

c (Ac = 14).
The parameters of U are determined to reproduce the energies
of the 1

2
+
1 and 5

2

+
1 states of 15C. To make the 1s1/2 state lower

than the 0d5/2 state, the � · s strength V1 was chosen in the
previous study to be about half of the standard value [10].
This potential is called set A hereafter. We also test other
possibilities to fit these single-particle (s.p.) energies. In set
B we use the standard value of V1 but weaken V0 for all
the partial waves other than the s wave, while in set C a
potential with a larger diffuseness parameter is chosen. The
parameters of each set are listed in Table I. These potentials
generate almost the same s.p. wave function for both 1s1/2 and
0d5/2.
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TABLE I. Parameters of the n-14C potential.

Set V0 (MeV) V1 (MeV fm2) r0 (fm) a (fm)

A −50.31 16.64 1.25 0.65
B −50.31 (l = 0),

−47.18 (l �= 0)
31.25 1.25 0.65

C −51.71 26.24 1.20 0.73

Trial wave functions are assumed as a combination of
correlated Gaussian bases:

�JM (1, 2) =
K∑

i=1

Ci�JM (λi, Ai), (3)

�JM (λ,A) = (1 − P12)

×{e− 1
2 x̃Ax[[Y�1 (x1)Y�2 (x2)]LχS(1, 2)]JM},

(4)

where P12 is a permutation of the two neutrons. The basis
function is specified by a set of angular momenta λ =
(�1, �2, L, S) and a 2×2 positive-definite, symmetric matrix A.
Here x̃Ax stands for A11x2

1 + 2A12x1 · x2 + A22x2
2, and x1 =

R + 1
2 r and x2 = R − 1

2 r are the distance vectors of the
neutrons from the center of mass of the 14C core. The two
neutrons are explicitly correlated because of the presence of the
cross term A12x1 · x2, the inclusion of which is very important
to obtain a precise solution [11,12]. The angular parts of
the two-neutron orbital motion are described with Y�m(r) =
r�Y�m(r̂), and they are coupled with the spin part χS to the
total angular momentum J. In the previous study, the angular
motion was described with much simpler functions specified
by a global vector [13], but here a general form is used to take
into account important L, S contents of the wave functions.

The energy and the corresponding wave function are
determined from a solution of the generalized eigenvalue
problem:

K∑
j=1

[Hij − EBij ]Cj = 0 (i = 1, 2, . . . , K), (5)

(
Hij

Bij

)
= 〈�JM (λi, Ai) |

(
H

1

)
| �JM (λj ,Aj )〉. (6)

It is vital to take into account the Pauli principle for the motion
of the valence neutrons. Under the assumption that 14C is
neutron closed, the Pauli constraint is fulfilled by the condition
that the trial wave function has no overlap with any orbit un�jm

occupied in the 14C core:

〈un�jm(i)|�JM (1, 2)〉 = 0 (i = 1, 2), (7)

where the s.p. orbit un�jm is generated from U and n�j runs over
0s1/2, 0p3/2, and 0p1/2. Condition (7) is practically achieved
by the orthogonal projection method [14]. The accuracy of the
present calculation is such that the probability of mixing in of
the occupied orbits is of the order of 10−4.

Before superposing basis functions with different λ, we did
a pilot calculation in a single λ channel. We use the algorithm
called the stochastic variational method (SVM) [11,12] to
optimize the parameter matrices A. The SVM increases the
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FIG. 1. Low-lying energy levels of 16C for different sets of the
n-14C potential. Energy is given from the 14C + n + n threshold.

basis dimension one by one by testing a number of candidates
that are chosen randomly and in addition fine tunes the already
chosen parameters by a refinement process. The basis selection
with the SVM is effectively performed not only to take care of
the short-range repulsion of v12 but also to satisfy condition (7).
For Jπ = 0+, those channels that give an energy lower than the
14C + n + n threshold are only λ = (0, 0, 0, 0) and (2, 2, 0, 0),
while for Jπ = 2+ such a bound solution is obtained only for
λ = (0, 2, 2, 0). Channels with �i � 3 play a minor role. We
also studied levels with Jπ = 3+ and 4+. The most important
channel is λ = (0, 2, 2, 1) for 3+ and λ = (2, 2, 4, 0) and
(2, 2, 3, 1) for 4+. Thus the S = 1 channel is important for 4+.

The basis sets chosen in the single-channel calculation
serve as the basis functions for a coupled-channels calculation.
Channels are truncated to those with �1 + �2 � 4. A basis
dimension K used in the calculation is about 450 for 0+ and
500–650 for the other cases. Figure 1 compares the calculated
energy levels of 16C with experiment. The U dependence of the
spectrum is moderate. The ground-state energy is about 1 MeV
too high compared with that of experiment, but the energies of
the other Jπ states are in fair agreement with experiment. No
state with Jπ = 1+ was obtained below the 15C + n threshold.

Table II summarizes some properties of the states calculated
with the set B potential. The other potentials give similar
results. The root-mean-square radius of 16C, r(16C), for the
point nucleon distribution is calculated from the equation
r2(16C) = 14

16 r2(14C) + 7
64 〈R2〉 + 8

256 〈r2〉, where we substitute
the point proton radius, 2.35 fm [3], for r(14C). The r(16C)
value for the ground state agrees well with that extracted
from the reaction cross-section analysis [15]. The probability
of spin-singlet components, PS=0, shows that our previous
calculation [4] with no S = 1 components is not very good for
the 2+

1 state but quite acceptable for the ground state. Pss, Psd ,
and Pdd stand for the probabilities for the two neutrons to
occupy the (1s1/2)2, (1s1/20d5/2), and (0d5/2)2 configurations,
respectively. The sum of the probabilities, Pss + Psd + Pdd ,
is less than unity, which signals the importance of unbound
s.p. orbits or n + 14C continuum states. Its effect appears more
important in the 0+

1 and 2+
1 states. The previous calculation
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TABLE II. Properties of the states in 16C. Set B parameters are used. Energy and length are in mega-electron-volts and
femtometers, respectively.

J π Ecal Eexp 〈x2
1〉 〈R2〉 〈r2〉 〈x1· x2〉 r(16C) PS = 0 Pss Psd Pdd

0+
1 −4.40 −5.469 17.8 10.4 29.5 3.04 2.63 0.92 0.52 – 0.37

0+
2 −2.52 −2.466 19.7 10.4 37.3 1.10 2.67 0.86 0.43 – 0.53

2+
1 −3.18 −3.699 16.8 9.39 29.7 1.95 2.61 0.75 – 0.67 0.24

2+
2 −1.65 −1.483 17.1 8.95 32.5 0.84 2.62 0.55 – 0.26 0.72

3+
1 −1.82 −1.381 22.3 11.5 43.1 0.73 2.73 0.00 – 0.99 –

4+
1 −1.44 −1.327 15.9 8.30 30.4 0.70 2.59 0.35 – – 0.96

gave Pss = 0.49 and Pdd = 0.39 for the ground state, which
is consistent with the present result. We thus expect that
the momentum distribution data of 15C fragments from 16C
breakup [16] are well reproduced in the present model as in
the previous paper [4].

The two-neutron correlation is examined with the density
distribution function

ρ(x1, x2, θ ) = 1

2J + 1

∑
M

〈�JM (1, 2) | �JM (1, 2)〉spin, (8)

where θ is the angle between x1 and x2 and 〈· · ·〉spin indicates
that the integration is to be done over the spin coordinates only.
Figure 2 displays the contour map of 8π2x4sinθ ρ(x, x, θ ) for
the 0+ states. For the 0+

1 state, we have two distinct peaks:
One peak with smaller angles is the highest (about 0.02 fm−2

in height), suggesting the correlation of “dineutron” type, and
the other with larger angles reaches half the highest peak,
corresponding to a “cigarlike” configuration in which the two
neutrons sit on the opposite sides of the core. For the 0+

2
state, however, only one distinct peak with a height of about
0.014 fm−2 appears around θ = 90◦ (a “boomerang” shape).
These different characteristics are expected from the expec-
tation value of cos θ , which is estimated from 〈x1 · x2〉/〈x2

1〉.
This value is 0.17 for 0+

1 and 0.06 for 0+
2 , as seen from Table II.

We also confirmed that the 2+
1 state has two peaks, similar to
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FIG. 2. Contour maps of the two-neutron densities ρ(x, x, θ ),
weighted by 8π 2x4sinθ , for the 0+

1 and 0+
2 states of 16C. The contour

shows peaks, and the difference between any two neighboring contour
levels is 0.002 fm−2. See text.

the ground state, but the other states all have one peak at the
boomerang configuration.

The E2 operator, Mµ, for 16C in the 14C + n + n model is
expressed as [4]

Mµ = 1
2 δ eY2µ(r) + qeff eY2µ(R), (9)

with qeff = 3
32 + 49

32δ, where δ is a polarization charge of the
valence neutron. The value of δ can be estimated so as to fit
the B(E2) value of 15C within the 14C + n model, which
leads to δ = 0.160 (set A), 0.159 (set B), and 0.151 (set
C). The first term on the right-hand side of Eq. (9) is the
E2 operator corresponding to the relative motion of the two
neutrons, while the second term corresponds to the relative
motion between the 14C core and the center of mass of the
two neutrons. If the valence neutrons have no charge (δ = 0),
the E2 operator reduces to the second term of Eq. (9) with
a small qeff . In this case, the B(E2) value is contributed by
the difference between the center of mass of 14C and that of
16C. For nonzero δ, both terms of Eq. (9) contribute to the
E2 transition matrix element. The B(E2; 2+

1 → 0+
1 ) values

calculated with the different potentials are shown in Fig. 3.
All the cases give similar results. The B(E2) value is about
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FIG. 3. The B(E2) value for the transition from the 2+
1 state to

the ground state in 16C as a function of the polarization charge δ. The
measured value [1,2] 0.63 ± 0.12 e2 fm4 is indicated by horizontal
lines.
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twice the measurement for such δ that is determined from the
15C data. It is interesting to see how the B(E2) value changes
with the admixture of the S = 1 components. E2 operator (9)
is independent of spin, so its reduced matrix element consists
of two parts:

〈0+
1 ||M||2+

1 〉 =
√

(1 − a2)(1 − b2)〈M(S = 0)〉
+ ab〈M(S = 1)〉, (10)

where a and b are the probability amplitudes of the S = 1
components in the 0+

1 and 2+
1 states, respectively, and 〈M(S)〉

stands for the reduced matrix element between their (nor-
malized) wave-function components with spin S. For set B
and for δ = 0.159, we have 〈M(S = 0)〉 = 2.75 e fm2 and
〈M(S = 1)〉 = 1.56 e fm2. If both of the 0+

1 and 2+
1 states

are purely spin singlet (a = b = 0), the B(E2) value would be
2.752/5 = 1.51 e2 fm4. In fact, they have S = 1 admixtures
whose magnitudes are a2 = 0.08 and b2 = 0.25 (see Table II),
and therefore the B(E2) value reduces to 1.25 e2 fm4, as shown
in Fig. 3. In the previous calculation with S = 0 only [4],
〈M(S = 0)〉 was 2.63 e fm2, leading to the B(E2) value of
1.38 e2fm4. Thus the S = 1 admixture has led to reducing the
B(E2) value.

We have studied the structure and anomalous E2 transition
of 16C in the 14C + n + n model, in which the two valence
neutrons interact by means of the realistic potential. We have
tested three different n-14C potentials that all reproduce the
energies of the 1

2
+
1 and 5

2

+
1 states of 15C in the 14C + n model.

Both spin-singlet and spin-triplet components are included in
the calculation. The SVM has been used to solve the three-body
problem with the Pauli constraint on the valence neutrons. The
energy spectrum of 16C below the 14C + n + n threshold is
in fair agreement with experiment except that the ground-state
energy is about 1 MeV too high. The dependence of the B(E2;
2+

1 → 0+
1 ) value on the polarization charge of the valence

neutrons was studied and found not to be very sensitive to the
choice of the n-14C potential. We have seen that admixing the
S = 1 components in the wave functions reduces the B(E2)
value considerably. The calculated B(E2) value is, however,
about twice the observed value if the polarization charge is set
to reproduce the B(E2; 5

2

+
1 → 1

2
+
1 ) of 15C.

Within the 14C + n + n model, the present calculation is
probably the most unambiguous because it is free from any
adjustable parameters and the result is rather insensitive to the
choice of the n-14C potential. The fact that the ground-state
energy is predicted to be 1 MeV high and that the theoretical
B(E2) value is still twice as large may point to the necessity
of other mechanisms such as core distortion or excitation.
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