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The incoherent transition strength of the exotic µ− − e− conversion in the 208Pb nucleus is investigated by
utilizing the continuum random-phase-approximation method, appropriate for the evaluation of the rate that goes
to the continuum of the nuclear spectrum. We find that the contribution of resonances lying high in the continuum
is not negligible. Special attention is paid to the detailed study of the pronounced 1− contribution that according
to previous calculations, dominates the overall incoherent rate in about all the nuclear targets. The spurious
center-of-mass admixture to the partial rate originating from the 1− excitations is explored, and its elimination is
performed by correcting properly the dipole operators. The results found this way show that the greatest portion
of the total 1− contribution to the incoherent rate is spurious.
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I. INTRODUCTION

The exotic neutrinoless conversion of a bound muon to an
electron,

µ−
b + (A,Z) → e− + (A,Z)∗, (1)

is an interesting lepton flavor violating process [1–4]. One
of its basic characteristics is the possibility of the coherent
channel, i.e., the ground-state-to-ground-state transition [5,6].
Experimentally, only the ratio of the coherent rate divided
by the total muon capture rate, which is the dominant
branching ratio exhausting a great part of the total (µ−, e−)
rate could be measurable; by a judicious choice of the target
nucleus, this channel could be free from the reaction induced
background [1–3].

The incoherent (µ−, e−) rate is a less significant portion of
the total rate and much harder to calculate, but its knowledge is
important for determining the fraction of the coherent process
to the total (µ−, e−) rate, which experimentally is also an
interesting quantity. The theoretical calculation of the total
rate requires reliable coherent and incoherent nuclear matrix
elements [7–10]. Transitions of the reaction (1) have been
previously studied by employing various methods, such as
(i) closure approximation within the shell model [7] and
the quasiparticle random-phase approximation (QRPA) for
calculating the average contribution of the transitions to all
excited states of the target nucleus, (ii) a Fermi gas method
utilizing a relativistic Lindhard function to compute the sum
of all partial rates of the incoherent channel [11], (iii) state-by-
state calculations by using shell model [8], and various QRPA
versions [4,9,10], to construct explicitly the final nuclear states.

Within method (ii), the incoherent rate is calculated by
integrating over a continuum of excited states of a local Fermi
sea. Therefore, this method is not appropriate for individual
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calculations of each accessible channel, but it offers the
advantage of taking into consideration the part of the rate
that goes to the continuum, which is not explicitly included in
state-by-state calculations. This is one of the reasons why the
incoherent matrix elements obtained with shell model [8] and
the various versions of RPA calculations [4,9,10], appear to
be smaller compared to those of the method (ii). However, the
common RPA and the various refinements of the QRPA offer a
relatively simple and detailed state-by-state calculation of all
the individual low-lying excitations induced by the µ− − e−
conversion operators [4,9].

An important conclusion of the state-by-state calculations is
that the contribution of the 1− states to the incoherent (µ−, e−)
rate is very large (for most of the isotopes it is the maximum
one) compared to that of the other multipolarities [9,10].
The portion of the 1− contribution was found to be about
50% for all mechanisms leading to the µ− − e− conversion.
Therefore, it is essential to properly remove possible spurious
contaminations when describing this process and other similar
ones.

The methods considered so far for the removal of
the spurious center-of-mass (c.m.) admixture from the 1−
contribution [12,13] can be classified in two categories:
(i) those that remove from the contaminated Hamiltonian the
spurious terms, i.e., those containing the c.m. position (R) and
the total momentum (P) operators and their couplings with
the intrinsic Hamiltonian Hint [12,13]. The diagonalization of
Hint obviously gives the real spectrum of the studied nucleus.
In this way, the eigenstates of the system separate into the
intrinsic nuclear spectrum and the pure c.m. excitation that
can be omitted. (ii) Those that construct first a set of purified
wave functions to be used for the diagonalization of the
contaminated Hamiltonian. The orthonormalization, however,
usually necessary in these methods, hinders their use. We
should also mention that a recent method by Bes and Civitarese
[14], which removes exactly the spurious contaminations of
the dipole operator, shows that the spurious portion is much
bigger than previously thought and other methods give.
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In QRPA calculations, an effective elimination of spurious
components from the 1− states may be achieved by adjusting
the parameters that scale the effective interaction, so that the
energy of the first 1− state becomes equal to zero (equal to
the purely spurious c.m. eigenstate). In most of the cases, this
requires unphysical values for the parameters that renormalize
the individual particle-particle (gpp) and particle-hole (gph)
channels (usually gpp ≈ 1.3–1.5, gph ≈ 0.2–04). Even when
the spurious state occurs very close to zero energy, spurious
admixtures remaining at higher energies cannot be avoided
completely.

In Ref. [10] an approximate removal of the spurious
1− components was performed by constructing the properly
normalized purely spurious state |S〉 and evaluating its overlap
with all 1− states involved in the chosen model space. This
showed that mostly the lowest lying 1− state is affected
by the translational invariance breaking caused by the use
of empirical single particle energies and a truncated model
space in RPA. This state was considered as fully spurious
and the others were treated as real nuclear excitations. After
removing the spurious contributions, a renormalization of the
interaction was required for reproducing the energy spectrum
of the nucleus with the use of realistic two-body forces. The
above method is simple and easy to apply, but it is not as exact
as that of Refs. [12,14].

The purpose of the present work is to study in detail the
incoherent rate of the µ− − e− conversion, by using the
continuum RPA (CRPA) method. We evaluate the contribu-
tion of high-lying continuum excitations. Such an explicit
calculation has not yet been addressed. As an application, we
study extensively the incoherent rate for the heavy nuclear
target 208Pb by using Skyrme interactions. To eliminate
spurious c.m. contaminations in the dominant 1− channel,
we obtain the corresponding energy distributions by using
properly corrected dipole operators, which induce the µ− − e−
conversion intrinsic 1− excitations.

This article is organized as follows. In Sec. II we describe
briefly the µ− − e− conversion operators and the formalism
of the CRPA method. In Sec. III we calculate the strength
distributions as functions of the excitation energy. The elimi-
nation of the spurious c.m. contaminations is also discussed.
In Sec. IV we summarize our main conclusions.

II. DEFINITIONS AND BRIEF DESCRIPTION OF THE
METHOD OF CALCULATION

The inclusive (µ−, e−) rate is evaluated by summing the
partial contribution of all final states |f 〉. For spherical or
nearly spherical nuclei, the vector contribution is given by [4]

Sa =
∑
f

(
qf

mµ

)2

|〈f |Oa(qf )|0〉|2, (2)

where Oa(qf ) represents the µ− − e− vector-type transition
operator resulting in the context of a given mechanism
mediated by a photon (a = γ ), a W-boson (a = W ) or a
Z-particle exchange (a = Z). Here qf , with magnitude qf =
mµ − εb − Ef , is the momentum transferred to the nucleus.

Ef is the energy of the final state |f 〉 with respect to the ground
state |0〉, εb is the binding energy of the muon, and mµ its mass.
The transition operators have the form

Oa(q) = g̃V fV

A∑
j=1

6ca(τj )e−iq·rj , ca(τj ) ≡ 1
2 + 1

6βaτj ,

(3)

where τj is the third component of the jth particle’s isospin.
The parameter fV = 1.0 represents the vector static nucleon
form factor and the normalization coefficient g̃V takes the
value 1/6 for the photonic case and 1/2 for the nonphotonic W
boson and SUSY Z exchange [5]. The value of βa depends on
the model assumed. (We have taken the relevant values from
Ref. [8].) Thus, protons (neutrons) contribute to a given process
with a “charge”whose value is determined by ca(1/2) = 1/2 +
βa/6 [ca(−1/2) = 1/2 − βa/6]. In the photon and Z case, the
isoscalar and isovector components of the transition operator
are (almost) equally important, whereas OW is predominantly
isoscalar.

By assuming that the initial and final states are of definite
spin and parity, a multipole decomposition of the operators
of Eq. (3) into operators TaLM of orbital angular momentum
rank L can be carried out. For spherical nuclei we can assume,
without loss of generality, q̂ = ẑ. Then, only terms with M = 0
survive, for which we obtain

TaL(q) ≡ TaL0(q) = g̃V fV

√
4π (2L + 1)

×
A∑

j=1

6ca(τj )jL(qrj )YL0(r̂j ). (4)

A phase factor (−i)L has been omitted. The contribution of
each multipolarity to the transition rate Sa reads

SaL =
∑
f

(
qf

mµ

)2

|〈f |TaL(qf )|0〉|2. (5)

We now rewrite the rate SaL as the integral of a suitable
distribution over excitation energy:

SaL ≡
∫

dERaL(E) (6)

with

RaL(E) =
∑
f

(
1 − εb + Ef

mµ

)2

× |〈f |TaL(mµ − εb − Ef )|0〉|2δ(E − Ef )

=
[(

1 − εb

mµ

)2 2

m2
µ

(mµ − εb)E + 1

m2
µ

E2

]
R′

aL(E).

(7)

In the above expressions,

R′
aL(E) =

∑
f

|〈f |TaL(mµ − εb − Ef )|0〉|2δ(E − Ef ) (8)

stands for the “strength distribution” corresponding to the
operator TaL(q), with q = mµ − εb − E. The total rate of
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Eq. (6) is subsequently written as

SaL =
(

1 − εb

mµ

)2

M0 − 2

m2
µ

(mµ − εb)M1 + 1

m2
µ

M2,

where Mk ≡ ∫
R′

aL(E)EkdE is the k-moment of R′
aL(E). The

final states |f 〉, excited by the single-particle operator TaL,
are of particle-hole (ph) type. Then, the distribution R′

aL(E),
and from it RaL(E) and SaL, can be calculated following the
standard RPA method.

We consider ph excitations, built on top of the Hartree-Fock
(HF) ground state of a closed-shell nucleus and subjected
to the ph residual interaction (HF+RPA method). In this
work, the quantities introduced above are calculated using
a self-consistent Skyrme-Hartree-Fock (SHF) plus CRPA
model. The HF equations describing the ground state are
derived variationally from the Skyrme energy functional and
solved numerically using the code of P.-G. Reinhard [15]. The
CRPA is formulated in coordinate space, as described, e.g., in
Refs. [16,17] and outlined below.

The main ingredient of the model is the ph Green function
GL(E) in coordinate space. In particular, we are interested
in the radial part GLij (rτ, r ′τ ′; E), which describes the
propagation of a fluctuation (or ph state) of multipolarity L and
energy E, excited by the operator VLi at the point r, τ and
decaying via the operator VLj at the point r ′τ ′, where τ or
τ ′ corresponds to the isospin character (proton or neutron)
of the fluctuation. VLi(j ) stands for one of the rank-L opera-
tors YL, [YL ⊗ (∇2 + ∇′2)]L, [YL±1 ⊗ (∇ − ∇′)]L, [YL±1 ⊗
(∇ + ∇′)]L present in the Skyrme interaction. In practice,
the radial coordinates are replaced by points on a dis-
cretized mesh. A radial step �r and a maximum value
rmax (larger than the nuclear radius by a factor of about 3
or more, usually) are introduced. Then the Green function
GL(E) can be represented as a supermatrix in coordinate
space, isospin character, and operator indices i. The oper-
ator TaL(q), Eq. (4), is a multipole operator of the type
YL—let us label it as VL1. Therefore, within our RPA model,
the distribution R′

aL(E) of Eq. (8) is given in terms of the
RPA Green function GRPA

L (E) by

R′
aL(E) = Im

π
Tr

[
T

†
aL(q)GRPA

L11 (E)TaL(q)
]

(9)

in a matrix notation. In practice, this reads

R′
aL(E) = 144g̃2

V f 2
V (2L + 1)

∑
τ,τ ′

ca(τ )ca(τ ′)

× Im
∫

jL(qr)GRPA
L11 (rτ, r ′τ ′; E)

× jL(qr ′)dr dr ′, (10)

q = mµ − εb − E. The integrations are to be understood as
numerical ones, carried out by summing over the radial mesh
points.

The RPA Green function is given by the equation

GRPA
L (E) = [1 + GL(E)0Vres]

−1G0
L(E), (11)

which is solved as a matrix equation in coordinate space,
isospin character, and operators VLi . The ph residual inter-

action Vres is zero range, of the Skyrme type, derived self-
consistently from the Skyrme-HF energy functional [18,19].
In this work, spin-dependent terms and the Coulomb interac-
tion are omitted from Vres. The radial part of the unperturbed
ph Green function of multipolarity L is formally given by

G0
Lij (rτ, r ′τ ′; E) = δττ ′

∑
ph

{ 〈p|VLi |h〉∗rτ 〈p|VLj |h〉r ′τ

εph − E

± 〈h|VLj |p〉∗r ′τ 〈h|VLi |p〉rτ
εph + E

}
. (12)

The sign of the second term depends on the symmetry
properties of the operators VLi and VLj under parity and time-
reversal transformations. With h(p) we denote the quantum
numbers of the HF hole (particle) state and εph = εp − εh is
the energy of the unperturbed ph excitation. A small but finite
ImE ≡ 	/2 ensures that bound transitions acquire a finite
width. The particle continuum is fully taken into account, as
follows Ref. [18]: The summation over the particle states p in
Eq. (12) is replaced by the summation over all single-particle
states k. The additional hole terms in the first term on the r.h.s
will cancel the ones in the second term. Next, εk is replaced
by the single-particle Hamiltonian. Finally, the completeness
of the k states and the properties of the particle Green function
are used to replace the sum over k by a closed expression.
Therefore, the only truncation introduced is the one of the
radial coordinate, r � rmax. The latter is very well justified,
because the amplitude of the radial wave functions of the hole
states entering expression (12) vanishes at distances much
larger than the nuclear radius.

Results derived within this model for the nucleus 208Pb are
presented and discussed in the next section.

III. RESULTS AND DISCUSSION

In the following we present results obtained using the
SkM∗ [20] parametrization of the Skyrme force. It describes
satisfactorily giant resonances of stable nuclei, and therefore
it is suitable for the present study. We have verified that our
conclusions do not change when the parametrization SGII
[16,21] is used. To test the sensitivity of our results on the
interaction used, we have also employed MSk7 [22], which
has a large effective mass, thereby shifting most excited states
to lower energies compared to the more reliable SkM∗ and
SGII.

For the nucleus 208Pb, the muon binding energy is εb =
10.475 MeV and the momentum transferred to the nucleus
by the outgoing e− of the µ− − e− conversion ranges from
q = 0.482 fm−1, when the transition energy E vanishes
(namely in the coherent process), to zero, when E reaches
the maximum value, i.e., Emax = mµ − εb = 95.183 MeV
(namely when all the available energy of the bound µ− goes
to a nuclear excitation). The particle threshold energy Ethr is
8.09 MeV in the case of the SkM∗ force. We have obtained
results for L = 0, 1, . . . , 6 and for natural parity, (−1)L. The
most important contributions to the incoherent transition rate
are expected from L < 4 [10]. In all cases we have used
	 = 0.2 MeV and rmax = 17 fm.
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FIG. 1. The distribution RaL(E) in 208Pb for L = 0. Skyrme
parametrization SkM∗ has been used.

A. Incoherent transition-strength distributions versus
excitation energy

In Figs. 1–4 the distribution RaL(E) is plotted as a function
of E, for L = 0, 1, 2, 4, and for natural-parity transitions. In
the monopole case, L = 0, the isoscalar (IS) giant monopole
resonance (GMR) is the main peak. For γ and Z, there
is considerable contribution coming from higher energies
(20–35 MeV), i.e., the isovector (IV) GMR region. For
L = 1, the IV giant dipole resonance (GDR) corresponds to
the strength clustered around E ≈ 12 MeV. For W and Z,
important contribution seems to come from higher energies
(above 20 MeV), in particular, the IS GDR. For W exchange,
the region below 10 MeV contributes significantly. In this
region we find the oscillation of the neutron skin against the
nuclear core (pygmy dipole resonance) [23]. The transition
density is isoscalar in the interior of the nucleus, whereas on
the surface the proton contribution vanishes. In the quadrupole
case, L = 2, the IS giant quadrupole resonance (GQR) is the
second peak, close to 11 MeV. The collective low-lying peak is
strong as well. There is some contribution from energies higher
than 15 MeV, i.e., from the IV GQR region, especially in the
cases γ and Z. For L = 3 (not shown) the strength is mostly
concentrated in the collective octupole state at low energy. For
L > 3, as shown in Fig. 4 for L = 4, the calculated strength is
quite fragmented and most of it lies below 20 MeV.

A finite momentum transfer qf can result in the excitation
of overtones of giant resonances [24,25]. With the exception
of the IS GDR, such states lie typically above 30 MeV, for
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FIG. 2. Same as Fig. 1, for L = 1.

208Pb, where the corresponding momentum transfer is less
than 0.33 fm−1. As a result, the possible contribution of such
states was too small to be identified and visible on graphs.

The dipole results presented in Fig. 2 were obtained with
corrected dipole operators—see Sec. III B for more details
regarding this special case. A small amount of spurious
strength remains close to zero energy (labeled sp. on the
figure), but it is well separated from the rest of the distributions.

In Fig. 5 we plot the fraction of the total strength SaL coming
from states below the particle threshold (SaL,thr) and in Fig. 6
the fraction coming from states below 20 MeV (SaL,20 MeV), vs.
the multipolarity L. In the dipole case, the remaining strength
of the spurious state is not taken into account when evaluating
these fractions.

We see that for low multipoles L = 0, 1, 2 only a small
portion of the strength originates from energies below particle
threshold. The trend followed is similar for all mechanisms
and, as we have verified, independent of the interaction used.
For even multipoles L = 2, 4 a big portion of the contribution
is pushed to higher energies as compared to the neighboring
odd ones. Another interesting feature is the fact that, for
some multipoles (L = 0 for photonic mechanism, L = 1 for
W-boson exchange), a significant portion of the strength comes
from above E = 20 MeV.

We have also calculated the fraction of the total strength
SaL, coming from states below 50 MeV, for L up to 6. In all
cases, the fraction is practically equal to unity. This means that
the discretized versions of RPA and QRPA for the examined
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FIG. 3. Same as Fig 1, for L = 2.

nucleus 208Pb are safe to use if the energy cutoff is large enough
to sufficiently account for transitions below this value.

B. Dipole strength and the spurious c.m. motion

It is well known [12,13] that the 1− excitations contain
admixtures of the spurious excitation of the c.m. of the
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FIG. 4. Same as Fig 1, for L = 4.
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FIG. 5. Fraction of the total strength SaL, coming from states
below the particle threshold vs. the multipolarity L. Skyrme
parametrization SkM∗ has been used. (Lines are drawn to guide the
eye.)

nucleus

R = 1

A

A∑
j=1

rj (13)

corresponding to a situation in which the unexcited nucleus
moves as a whole around the localized fictitious potential well.
Normally, these spurious components are separated out by the
RPA methods. However, the use of a truncated model space
and non-self-consistent single-particle energies in ordinary
RPA and the other versions of QRPA destroys the translational
invariance and inserts spurious excitations into the spectrum.
Thus, the spurious CM state is not completely separated from
the real (intrinsic) nuclear excitations, and in addition its
energy eigenvalue is not zero.

In CRPA models with Skyrme interactions it has been
possible to achieve a high degree of self-consistency, i.e., the
same interaction is used for the HF calculation of ground-state
properties and for the residual interaction. In addition, no
truncation is involved. However, because of the formulation
of the model in coordinate space, it is common practice to
exclude the Coulomb and spin-orbit contribution (at least) to
the residual interaction. Therefore, self-consistency is violated
and, even in cases where the spurious state appears very
close to zero energy, some spurious strength may remain at
higher energies. Restoration methods like those considered
in Refs. [12–14] cannot be applied because the CRPA is not
formulated in configuration space.
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FIG. 6. As in Fig. 5, fraction of strength SaL, coming from states
below 20 MeV.

For electric dipole excitations, the problem is usually
treated by using effective charges [26]. Similarly, in the case
of IS dipole excitations, effective transition operators are
used [16,27], which minimize the spurious admixture in the
strength distribution. The effect on the IS dipole excitations
of 208Pb was examined in detail in Ref. [28]. Here we present
a similar prescription for the operators involved in µ− − e−
conversion.

We begin with a dipole excitation operator of the generic
form


1 =
A∑

j=1

c(τj )f (rj )Y10(r̂j ) =
A∑

j=1

c(τj )
f (rj )

rj

√
3

4π
zj . (14)

As far as intrinsic excitations are concerned, this operator is
equivalent to the corresponding “corrected” operator


corr
1 ≡ 
1 − η̃Rz =

A∑
j=1

[c(τj )f (rj ) − ηrj ]Y10(r̂j ), (15)

where Rz stands for the z component of the c.m. space vector
R of Eq. (13) and

η = 1

A

√
4π

3
η̃.

Our task is to determine the parameter η so as to eliminate
the spurious c.m. excitation. This can be achieved within
the collective model, by imposing the translational-invariance
condition on the transition density characterizing the collective

state induced by 
corr
1 [16,26]. A condition on η is thus obtained

analytically. The result is

η = 1

3

[
c(1/2)Z

A

〈
1

r2

d

dr
[f (r)r2]

〉
p

+ c(−1/2)N

A

〈
1

r2

d

dr
[f (r)r2]

〉
n

]
, (16)

where the mean values are defined as

〈g(r)〉p,n =
∫ ∞

0 g(r)ρp,n(r)r2dr∫ ∞
0 ρp,n(r)r2dr

and ρp(r), ρn(r), are the proton and neutron densities in
the nuclear ground state. They are normalized so that
4π

∫ ∞
0 ρp,n(r)r2dr = Z,N .

By recalling from Eq. (4) the operator Ta1 that induces the
dipole 1− excitations in µ− − e−, we find that it can be cast in
the form (14) with

f (r) = 6g̃V fV

√
12πj1(qr)

and c(τ ) = ca(τ ). Then, using recursion relations of the Bessel
functions, we find that

1

r2

d

dr
[f (r)r2] = 6g̃V fV

√
12πqj0(qr). (17)

Notice that the proton, neutron form factor Fp,n(q) =
〈j0(qr)〉p,n . Under the above circumstances Eq. (16) reads

ηa = g̃V fV 4
√

3πq

[
ca(1/2)Z

A
Fp(q) + ca(−1/2)N

A
Fn(q)

]
.

(18)

The form factors are calculated numerically using the HF
ground-state densities. The subscript in ηa denotes that the
correction is different for each one of the three operators Ta1

considered.
The above prescription is a generalization of the method

used in Ref. [16], where a purely isoscalar field [c(1/2) =
c(−1/2)] was assumed and a specific form of the function
f (r) was utilized, i.e., f (r) = r3. In Eq. (16) the values of
c(±1/2) and the form of f (r) are arbitrary. However, for the
above mentioned isoscalar field, the present prescription leads
to that given in Refs. [16,27].

In Fig. 7, we plot the dipole distributions Ra1(E) of Eq. (8),
for photon, W- and Z-boson exchange diagrams, calculated by
using the corrected and uncorrected operator (they have been
obtained with the SkM∗force and for 	 = 0.2 MeV). One can
see that most of the spurious strength below ≈6 MeV has
been removed. The strength distributions above 20 MeV are
practically unaffected. The strength between 6 and 20 MeV
appeares somewhat redistributed. The effect of the correction
appears strongest in the case of the W-boson exchange
mechanism. We should note that the radial mesh used in
the CRPA calculation, with �r = 0.34 fm, may not be fine
enough to yield completely converged results in this energy
region [28]. A result that persists when other interactions are
employed, is that the pygmy dipole state below 10 MeV is
strongly affected by the correction in the photonic and W
cases.
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FIG. 7. The dipole distributions Ra1(E) for γ -photon and
W-boson exchange diagrams of the µ− → e− conversion in 208Pb. The
results have been calculated for dipole operator Ta1 (dotted line). To
estimate the spurious c.m. contribution of this operator, we also show
the distribution strength (full line) of the corresponding corrected
operator given by Eq. (15).

In Table I we list the portion of transition strength removed
from the total contaminated 1− transition strength Sa1 (denoted
s

sp
tot), as well as the portion of the strength removed from

above 6 MeV excitation energy s
sp
>6MeV (with respect to the

uncorrected strength above 6 MeV), for SkM∗ and for the
three examined channels. For all three mechanisms, about
90% of the total transition rate was spurious. We expect this
result to be independent of the interaction used, because the
spurious state at low energy always dominates the isoscalar
dipole strength distribution (which contributes in all three
mechanisms) and because the corrected operators are, by
construction, most effective for this state (thus removing
practically all its strength). We were not able to demonstrate
this in the particular cases of SGII and MSk7, because the

TABLE I. Percentage of the total 1− transition strength Sa1 (ssp
tot)

and of the strength above 6 MeV (ssp
>6MeV) consumed by spurious

transitions, for the interaction SkM∗, and for the three channels
γ, W, Z.

µ − e mechanism γ W Z

s
sp
tot(%) 86.9 96.3 90.5

s
sp
>6 MeV(%) −1.3 7.8 6.1

energy of the spurious state in these cases was found imaginary,
within the present calculation. In other words, we were not able
to evaluate and take into account properly the strength of the
spurious state, before or after the correction.

From Table I we notice that for s
sp
>6MeV and for a = γ the

result is small in absolute value, but negative. It represents
the numerical accuracy of our calculation and, being small,
it indicates that the degree of self consistency reached by
our HF + CRPA model is sufficient to achieve a satisfactory
separation of the spurious transition. For the W and Z cases,
however, spurious admixtures of more than 6% are found
above 6 MeV. These numbers vary when different Skyrme
interactions are used, with their values remaining below
10%. (As mentioned before, they are not free of numerical
inaccuracies.) One should apply the same treatment in the
case of other, not self-consistent RPA methods, where, e.g., the
lowest 1− state is shifted artificially, by means of additional
parameters, to zero energy. It is possible that larger corrections
would be obtained, above 6 MeV. Such a result would mean
that just excluding the lowest 1− state from the calculation of
the incoherent rate, as was done on Ref. [10], would not be an
adequate treatment. As can be seen from Fig. 2 of Ref. [10],
a considerable amount of spurious strength is distributed at
higher excitation energies in the case of the QRPA calculations
reported there.

Within the QRPA calculations of Ref. [10], for six nuclei
(including 208Pb), a more moderate correction (less than 60%)
on Sa1 was achieved by considering the lowest 1− state
as purely spurious and simply excluding it. If we follow
an equivalent procedure, namely if we use the uncorrected
transition operators and simply exclude the spurious state (the
1− strength below 6 MeV) from the calculation of the 1− rate,
we would remove 88% from Sγ 1 (photonic case) and even
more from SW1, SZ1. One should keep in mind the differences
between the models used in Ref. [10] (QRPA calculations with
a renormalized G-matrix interaction) and the ones used here.
First of all, priority was given in Ref. [10] to the best possible
reproduction of experimental spectra rather than controlling
the self-consistency. In addition, a truncated model space
was used, contrary to the method used in the present work.
The various approximations entering may have influenced the
spuriosity results in an unpredictable way. Both consistency
and completeness of the space are important to move as much
spurious strength as possible close to zero energy. Of course,
the lowest 1− state appeared very close to zero energy. It was
found, however, that it was spurious by 60%–80% (except
for 126Yb, for which it was about 90% spurious). Thus, the
approximation of considering it as purely spurious is not a very
good one. The numbers mentioned above refer to the overlap
of the lowest 1− state with the “ purely spurious ” RPA state.
Approximations were inevitable when constructing the purely
spurious state to normalize it.

More appropriate for removing spurious contributions from
(Q)RPA calculations in configuration space are the more
rigorous methods developed in Refs. [12,14]. The idea is
to calculate, for a given Hamiltonian and within a given
model space, interaction counterterms that when added to the
Hamiltonian, will eliminate the coupling between the intrinsic
and c.m. degrees of freedom. Then the intrinsic eigenstates
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of the new (Q)RPA matrix will separate exactly from the
spurious c.m. excitation. The latter will in general appear at
finite energy, but it will be purely spurious.

IV. SUMMARY AND CONCLUSIONS

In the present article we have focused on the investigation
of the incoherent rate of the exotic µ− − e− conversion in
the heavy nuclear target 208Pb. We employed, for the first
time in this process, the CRPA method that is appropriate
for explicit construction of the excited states lying in the
continuum spectrum of the nuclear target and we focused on
the distribution of the transition strength as a function of the
excitation energy of the target.

We have investigated in detail the various transition strength
distributions coming from natural-parity ph excitations up to
L = 4 by using two different Skyrme interactions. We found

that a significant portion of the incoherent µ− − e− rate comes
from high-lying nuclear excitations. A similar study could be
done for unnatural-parity transitions.

The spurious 1− admixture was eliminated by constructing
the purified dipole operators of the µ− − e− conversion
within the collective model. This study provided us with the
interesting result that the greatest portion of the 1− transition
strength is because of the spurious c.m. excitation, a result in
agreement with that of an exact method constructed recently
[14] for removing spurious contaminations. The latter is a
significant result for the µ− − e− conversion experiments
searching for the coherent rate.
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