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Strangeness spin, magnetic moment, and strangeness configurations of the proton
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The implications of the empirical signatures for the positivity of the strangeness magnetic moment µs and
the negativity of the strangeness contribution to the proton spin �s on the possible uudss̄ configurations of five
quarks in the proton are analyzed. The empirical signs for the values for these two observables can only be
obtained in configurations where the uuds subsystem is orbitally excited and the s̄ antiquark is in the ground state.
The configurations in which the s̄ is orbitally excited, including the conventional K+�0 configuration, with the
exception of that in which the uuds component has spin 2, yield negative values for µs . Here, the strangeness spin
�s , strangeness magnetic moment µs , and axial coupling constant Gs

A are calculated for all possible configurations
of the uudss̄ component of the proton. In the configuration with [4]FS[22]F [22]S flavor-spin symmetry, which is
likely to have the lowest energy, µs is positive and �s � Gs

A � −1/3µs .
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I. INTRODUCTION

Four recent experiments on parity violation in electron-
proton scattering suggest that the strangeness magnetic mo-
ment of the proton µs is positive [1–4]. In contrast, most
theoretical calculations have led to negative values for this
observable [5], with but few exceptions [6–11]. The implica-
tions of the empirical result for the configuration of the proton
constituents is considered by a calculation of µs for all positive
parity configurations of the uudss̄ system with one constituent
in the first orbitally excited state, which may be contained in the
proton, have recently been studied in Ref. [12]. The formalism
summarized in that reference is elaborated here in more detail
along with a few minor corrections. In addition, it is now
applied to the strangeness contribution to the proton spin �s

and the corresponding strangeness axial form factor Gs
A.

In the case of the strangeness contribution to the proton
spin �s , the empirical indications are that it is very small [13]
or small and negative (−0.10 ± 0.06) [14,15]. Extrapolation
of the empirical values for the strangeness axial form factor
Gs

A to low Q2 indicates a nonzero negative value for that
quantity [16].

Here it is noted that µs is positive and that both �s and Gs
A

are negative and smaller in magnitude than µs in the uudss̄

configuration, which is likely to have the lowest energy, where
the s̄ quark is in the ground state and the uuds system is in the
P state. If, in contrast, the strange antiquark is in the P state and
the four quarks are in their ground state, the µs has the opposite
and empirically contraindicated sign. The latter configurations
include that of a fluctuation of the proton into a kaon and a
strange hyperon, which is well known to lead to a negative
value for the strangeness magnetic moment [17–20].

This paper gives a detailed description of the wave functions
of the uudss̄ configurations that may be contained in the
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proton. The paper has six sections. Section II contains the
definitions of the strangeness observables and flavor wave
functions for the uudss̄ components of the proton and dis-
cusses their expected hyperfine splittings. The configurations
in which the uuds system is in the ground state are considered
in Sec. III, and the corresponding configurations in which
the uuds system is in the P state are considered in Sec. IV.
The implications of the empirical values for µs and �s on
the probability of the ss̄ being in the proton are considered in
Sec. IV. A summarizing discussion is given in Sec. V.

II. STRANGENESS OBSERVABLES AND FLAVOR WAVE
FUNCTIONS FOR uudss̄ COMPONENTS

In the nonrelativistic quark model, the strangeness magnetic
moment µs and the strangeness contribution to the proton spin
�s are defined as the expectation value of the following two
operators in the proton state:

�µs = e
∑

i

Ŝi

2ms

(l̂i + σ̂i),

(1)
�σs = σ̂s + σ̂s̄ ,

where Ŝi is the strangeness counting operator with eigenvalue
+1 for s and −1 for s̄ quark and ms is the constituent mass of
the strange quark. The strangeness axial form factor is in turn
defined as the matrix element of the strangeness axial current
operator

�As = �γ s
i γ s

5 + �γ s̄
i γ s̄

5 . (2)

The matrix element of this operator in the proton is denoted
as Gs

A. In the nonrelativistic limit and at Q2 = 0, one has
Gs

A = �s .
Key ingredients in the calculation of the matrix elements

of these operators are the flavor wave functions for the uudss̄

components in the proton. These are usually constructed by
coupling uuds flavor wave functions with the s̄ flavor wave
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function. There are four possible flavor symmetry patterns for
the uuds system: [4]F , [31]F , [22]F , and [211]F in the Weyl
tableaux of the SU(3) group [21,22]. Combining of these with
the antiquark with flavor symmetry [1]∗F leads to the following
pentaquark multiplet representations of SU(3):

[4]F ⊗ [1]∗F = 10 ⊕ 35, (3)

[31]F ⊗ [1]∗F = 8 ⊕ 10 ⊕ 27, (4)

[22]F ⊗ [1]∗F = 8 ⊕ 1̄0, (5)

[211]F ⊗ [1]∗F = 1 ⊕ 8. (6)

Here, the numbers in boldface indicate the dimensions of the
pentaquark representations. For example, the tentative θ+ pen-
taquark belongs to the baryon antidecuplet 1̄0 representation.
Since the proton belongs to the baryon octet representation, the
possible flavor symmetry patterns for the uuds in the proton
are limited to [22]F , [211]F , and [31]F . The corresponding
flavor wave functions can be obtained as in Refs. [21,22]. For
convenience, we list the relevant ones here explicitly.

For the mixed flavor symmetry representations [22]F and
[211]F , there are two and three independent flavor wave
functions, respectively,

|[22]F1〉= 1√
24

[2|uuds〉 + 2|uusd〉 + 2|dsuu〉 + 2|sduu〉
− |duus〉 − |udus〉 − |sudu〉 − |usdu〉
− |suud〉 − |dusu〉 − |usud〉 − |udsu〉], (7)

|[22]F2〉 = 1√
8

[|udus〉 + |sudu〉 + |dusu〉 + |usud〉
− |duus〉 − |usdu〉 − |suud〉 − |udsu〉], (8)

|[211]F1〉 = 1√
16

[2|uuds〉 − 2|uusd〉 − |duus〉 − |udus〉
− |sudu〉 − |usdu〉 + |suud〉 + |dusu〉
+ |usud〉 + |udsu〉], (9)

|[211]F2〉= 1√
48

[3|udus〉 − 3|duus〉 + 3|suud〉 − 3|usud〉
+ 2|dsuu〉 − 2|sduu〉 − |sudu〉 + |usdu〉
+ |dusu〉 − |udsu〉], (10)

|[211]F3〉= 1√
6

[|sudu〉 + |udsu〉 + |dsuu〉
− |usdu〉 − |dusu〉 − |sduu〉]. (11)

In the case of the mixed flavor symmetry [31]F for the
uuds system, there is a need to separate the isospin 1/2 and
3/2 states, both of which are listed in Ref. [21]. The reason
for the presence of two separate classes of wave functions
with the flavor [31]F is the following. In the case of flavor
SU(3) model, the �+ resonance is composed of uud valence
quarks with the flavor symmetry [3]F . In the case of the uudss̄

component of this baryon and its uuds subsystem, the latter
may also have the mixed flavor symmetry [31]F . This flavor
state of the uuds subsystem is therefore a combination of a
�+ and a proton component. There are six independent flavor
wave functions for uuds of the flavor symmetry [31]F . Among

them, by using the weight diagram method [22], the three wave
functions labeled as ψθ in Ref. [21] are found to correspond
to isospin 1/2. These are explicitly

|[31]F1〉 = 1√
18

[2|uusd〉 + 2|suud〉 + 2|usud〉
− |sudu〉 − |usdu〉 − |dusu〉 − |udsu〉
− |dsuu〉 − |sduu〉], (12)

|[31]F2〉 = 1

12
[6|uuds〉 − 3|duus〉 − 3|udus〉 − 4|dsuu〉

− 4|sduu〉 + 5|sudu〉 + 5|usdu〉 + 2|uusd〉
− |suud〉 − |dusu〉 − |usud〉 − |udsu〉], (13)

|[31]F3〉 = 1√
48

[−3|duus〉 + 3|udus〉 − 3|dusu〉 + 3|udsu〉
− 2|dsuu〉 + 2|sduu〉 − |sudu〉 + |usdu〉
− |suud〉 + |usud〉]. (14)

The color symmetry of all the uuds configurations is
limited to [211]C in order to combine with the s̄ antiquark
to form a color singlet [cf. (6)]. The Pauli principle requires
that corresponding orbital-flavor-spin states have the mixed
symmetry [31]XFS so as to combine with the mixed color
symmetry state [211]C to form the required completely
antisymmetric four-quark state [1111]. Since the intrinsic
parity is positive for a quark and negative for an antiquark,
the uudss̄ component in a proton, which has positive parity,
requires that either the s̄ is in the P state with the uuds system
in the ground state with spatial symmetry [4]X or that one of
the quarks is in the P state so that the uuds system has mixed
spatial symmetry [31]X.

There are several configurations of the uudss̄ system that
have positive parity, isospin 1/2, spin 1/2, and one unit of orbital
angular momentum. The spin-dependent hyperfine interaction
between the quarks splits these states, so that the configurations
with the lowest energy may be expected to be those with the
highest probability for admixture in the proton.

In most models, the hyperfine interaction between quarks
in the baryon is spin dependent. In the common color magnetic
hyperfine interaction model, the spin dependence is such that
the spin singlet state has lower energy than the spin triplet state
[23]. This is also the case for the instanton-induced interaction
model [24]. Finally, the schematic flavor and spin-dependent
interaction model

H ′ = −C
∑
i<j

�λi · �λj �σi · �σj , (15)

which gives the qualitative description with correct ordering
of the states in the low lying part of the baryon spectrum in all
flavor sectors [25,26], implies that antisymmetric flavor and
spin configurations have the lowest energy. In this interaction,
C is a constant that represents an average of the spin-spin part
of the interaction expected to be mediated by pseudoscalar
meson exchange [27]. Phenomenologically C ∼ 20−30 MeV.

In the next two sections, the strangeness spin �s and mag-
netic moment µs are calculated for all possible configurations
of the uudss̄ system that have the quantum numbers of the
proton.
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TABLE I. Flavor and spin configurations of uuds quark states in
the ground state [28] and the corresponding operator matrix elements.

uuds ground state σ̄s �s(Pss̄) µs(
mp

ms
Pss̄) −CC

(6)
2

[31]FS[211]F [22]S – −1/3 −1/3 −16C

[31]FS[211]F [31]S 13/36 85/216 −95/216 −13 1
3 C

[31]FS[22]F [31]S 1/2 5/12 −5/12 −9 1
3 C

[31]FS[31]F [22]S – −1/3 −1/3 −8C

[31]FS[31]F [31]S 65/108 281/648 −259/648 −5 1
3 C

[31]FS[31]F [4]S – 1/6 7/6 0

III. CONFIGURATIONS WITH THE uuds SYSTEM
IN ITS GROUND STATE

In configurations where the uuds quarks are in their ground
state, the spatial state has complete symmetry [4]X, and
accordingly their flavor-spin state has to have the mixed
symmetry [31]FS . All the different flavor and spin state
symmetry configurations that can combine to the required
[31]FS mixed symmetry combination have been listed in
Table I [28]. In the table, the matrix elements of the quadratic
Casimir operator of SU(6), C

(6)
2 , multiplied by the constant C

in the flavor-spin interaction (15) are also listed so as to give an
indication of the energy splitting between these configurations.
The requirement of positive parity requires that for these
configurations, the strange antiquark in the uudss̄ system has
to be in the P state.

The wave functions of the proton state with spin +1/2 that
have any one of these symmetries may be written in the general
form∣∣∣∣p,+1

2

〉
= Ass̄

∑
abc

∑
szmm′s ′

z

C
1
2

1
2

1sz,jmC
jm

1m′, 1
2 s ′

z

C
[14]
[31]a [211]a

C
[31]a
[F ]b[S]c

× [F ]b[S]c[211]C,aȲ1m′ χ̄sz′ ϕ({�ri}). (16)

Here [F ]b, [S]c, and [211]C,a represent the flavor, spin, and
color state wave functions, denoted by their Weyl tableaux.
The sums over a, b, and c run over the configurations of the
[31][F ][S] representations of the S4 permutation group for
which the corresponding Clebsch-Gordan (CG) coefficients
Ca

b,c do not vanish. The value of the first of these CG

coefficients are C
[14]
[31]a [211]a

= ± 1√
3

[21]. Finally Ȳ1m′ and χ̄s ′
z

denote the orbital and spin states of the antistrange quark,
respectively. In Eq. (16), Ass̄ is the amplitude of the ss̄

component in the proton and ϕ({�ri}) is a symmetric function
of the coordinates of the uudss̄.

The wave functions of the uuds subsystem may be organized
in groups according to their spin states. Consider first the
states with the spin symmetry [22]S . To these belong the con-
figuration [211]F [22]S , which is expected to have the lowest
energy among all the configurations with the mixed flavor-spin
symmetry [31]FS . Because the total spin of the uuds system
with this symmetry is S = 0 and the angular momentum space
is isotropic, it gives no contribution to µs and σs . In these
configurations, only the s̄ quark contributes to µs and �s (and

Gs
A), that is,

µs = −1

3

e

2ms

Pss̄ , (17)

�s = −1

3
Pss̄ . (18)

Here, Pss̄ is the probability of this configuration. In units of
nuclear magnetons, µs takes the value

µs = −1

3

mp

ms

Pss̄ . (19)

In this configuration, the numerical value of µs is negative and
∼2 times �s , as mp � 2ms .

The spin of the uuds system in the states with spin symmetry
[31]S is S = 1. If we neglect the interaction of quarks, then the
wave function of the proton in the angular momentum space
may be written in the general form∣∣∣∣p,+1

2

〉
= Ass̄√

2

{
C

1
2

1
2

11, 1
2 − 1

2

[
C11

11,10|11〉AS
|10〉BX

+ C11
10,11|10〉AS

|11〉BX

] ∣∣∣∣1

2

1

2

〉
BS

+ C
1
2

1
2

10, 1
2

1
2

× [
C10

11,1−1|11〉AS
|1−1〉BX

+ C10
1−1,11|1−1〉AS

|11〉BX

]
×

∣∣∣∣1

2

1

2

〉
BS

+ C
1
2

1
2

00, 1
2

1
2

[
C00

11,1−1|11〉AS
|1−1〉BX

+ C00
10,10|10〉AS

|10〉BX
+ C00

1−1,11|1−1〉AS
|11〉BX

]
+

∣∣∣∣1

2

1

2

〉
BS

}
. (20)

For the sake of brevity, the subindica AS and BX represent
the spin state of the uuds system and the orbital state of the
s̄ quark, respectively. Explicit evaluation of the matrix ele-
ments with these wave functions for µs and �s leads to

µs = −1

2

mp

ms

(
1 − 1

3
σ̄s

)
Pss̄ . (21)

�s = 1

3

(
1 + 1

2
σ̄s

)
Pss̄ . (22)

Here, the σ̄s is the expectation value of the z component of
the spin of the s quark in the configuration where sz = 1.
[Note that our Eq. (21)] here corrects Eq. (4) in Ref. [12]. The
numerical value of σ̄s depends on the detailed configuration
as shown below. The results in all cases satisfy the inequality
σ̄s < 1 as shown in Table I. This result implies that µs in
all these configurations is negative and that �s is positive, in
contradiction with experiment.

The final possibility is that the spin state of the uuds system
is completely symmetric: [4]S . In this case, it has spin S = 2,
and as a consequence, the total angular momentum of the s̄

quark has to be j = 3
2 in order to combine with the uuds system

to form the proton state with spin +1/2. The wave function then
may be expressed in a way analogous to Eq. (20). The relevant
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matrix elements for these configurations are found to be

µs = 7

6

mp

ms

Ps̄s, (23)

�s = 1

6
Pss̄ . (24)

This configuration thus yields positive values for both µs and
�s as well as Gs

A. It is very unlikely that this configuration has a
large probability of being in the proton, as it is expected to have
an energy 100–150 MeV above all the other configurations
with the mixed flavor-spin symmetry [31]FS .

The (tedious) calculation of the average spin value σ̄s in
Eq. (22) may be illustrated by the following explicit calculation
for the case of the configuration [31]FS[22]F [31]S . The results
for this and the other configurations are listed in Table I.

There are three combinations of the mixed symmetry states
[22]F and [31]S that combine to form the mixed symmetry
state [31]FS . The explicit expressions for these are [21]∣∣[31]FS1

〉 = 1√
2

{∣∣[22]F1

〉∣∣[31]S2

〉 + ∣∣[22]F2

∣∣[31]S3

〉}
, (25)

∣∣[31]FS2

〉 = 1

2

{√
2
∣∣[22]F1

∣∣[31]S1

〉 + ∣∣[22]F1

〉∣∣[31]S2

〉
− ∣∣[22]F2

〉∣∣[31]S3

〉}
, (26)∣∣[31]FS3

〉 = 1

2

{√
2
∣∣[22]F2

〉∣∣[31]S1

〉 − ∣∣[22]F2

〉∣∣[31]S2

〉
− ∣∣[22]F1

〉∣∣[31]S3

〉}
, (27)

where the [22]F flavor functions are given by Eqs. (7) and (8)
and the three spin wave functions are

|[31]S1〉 = 1√
12

[3|↑↑↑↓〉 − |↑↑↓↑〉 − |↑↓↑↑〉 − |↓↑↑↑〉],
(28)

|[31]S2〉 = 1√
6

[2|↑↑↓↑〉 − |↑↓↑↑〉 − |↓↑↑↑〉], (29)

|[31]S3〉 = 1√
2

[|↑↓↑↑〉 − |↓↑↑↑〉]. (30)

From Eqs. (25)–(27), one obtains

σ̄s = 1
3

(
σ̄FS1 + σ̄FS2 + σ̄FS3

)
. (31)

It then follows from Eqs. (7), (8), (28)–(30) that

σ̄s = 1
2 , (32)

and at last, from Eqs. (21) and (22),

µs = − 5

12

mp

ms

Pss̄ , (33)

�s = 5

12
Pss̄ . (34)

The matrix elements needed for the values of �s and µs in
all other configurations may be calculated by the same method.

IV. CONFIGURATIONS WITH s̄ IN ITS GROUND STATE

In configurations where the s̄ antiquark is in the ground
state, the lowest possible orbital configuration allowed by the

requirement of positive parity for the uuds state is that with
an orbital angular momentum of L = 1. The corresponding
spatial state has the mixed symmetry labeled by the Weyl
tableau [31]X. The possible symmetries of the flavor-spin
state are then either complete symmetry [4]FS or the mixed
symmetries [31]FS, [22]FS , and [211]FS . All the flavor and
spin symmetry configurations that can combine to these
configurations, and which can be a component of the proton,
are listed in Table II. The wave functions of the proton with
spin +1/2 may for all of these symmetry configurations be
expressed in the general form∣∣∣∣p,+1

2

〉
=

∑
abcde

∑
Ms ′

zmsz

C
1
2

1
2

JM, 1
2 s′

z
CJM

1m,Ssz
C

[14]
[31]a [211]a

× C
[31]a
[31]b[FS]c

C
[FS]c
[F ]d [S]e

[31]X,m(b)[F ]d [S]sz
(e)

× [211]C(a)χ̄s ′
z
ϕ({ri}). (35)

Here, J is the total angular momentum of the uuds system,
and M the corresponding z component. The orbital angular
momentum of these uuds states is L = 1, with the z compo-
nent m.

These configurations may also be organized in groups
according to their spin symmetry. The method described
explicitly in the previous section may then be applied to
evaluate the matrix elements that are required for µs and �s .

Of these configurations, the configuration [4]FS[22]F [22]S
is expected to have the lowest energy. For this and all the
configurations that have the mixed spin symmetry [22]S , the
desired matrix elements for µs and �s are

µs = mp

3ms

(1 + 2l̄s)Pss̄, (36)

�s = −1

3
Pss̄ . (37)

Here, l̄s is the average value of the z component of the orbital
angular momentum of the s quark in the uuds system for
m = 1. The numerical value for l̄s depends on the detailed
configuration and may be calculated by the same method as
that described for σ̄s in the previous section. The results of
l̄s for various [31]X configurations with uuds total angular
momentum J = 1 are listed in Table II along with the
corresponding values of σ̄s . The values for l̄s are in every case
smaller than 1/2, that is l̄s < 1/2. Note that the values of l̄s
and σ̄s given in Ref. [12] for the mixed [31]F flavor symmetry
are not correct due to the neglect of the isospin decomposition
and are corrected in Table II.

In the case of the lowest energy configuration
[4]FS[22]F [22]S, l̄s = 1/4 and consequently

µs = mp

2ms

Pss̄ . (38)

The value of µs in this configuration is consequently positive,
and since mp/ms � 2, it is approximately equal to the proba-
bility of that configuration occurring in the proton. Moreover,
for this configuration, µs � −3�s , a relation that agrees with
the present experimental values within their uncertainty range.

Because of its low energy, this is the most likely ss̄

component in the proton. The [4]FS[22]F [22]S uuds wave
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TABLE II. Flavor and spin configurations of the uuds quark states in the first orbitally excited
state [28] with total angular momentum J = 1 and the corresponding operator matrix elements.

uuds P state l̄s σ̄s �s(Pss̄) µs(
mp

ms
Pss̄) −CC

(6)
2

[4]FS[22]F [22]S 1/4 – −1/3 1/2 −28C

[4]FS[31]F [31]S 1/4 7/9 −2/27 73/108 −21 1
3 C

[31]FS[211]F [22]S 13/48 – −1/3 37/72 −16C

[31]FS[211]F [31]S 119/432 13/36 −23/108 707/1296 −13 1
3 C

[31]FS[22]F [31]S 1/4 1/2 −1/6 7/12 −7 1
3 C

[31]FS[31]F [22]S 13/48 – −1/3 37/72 −8C

[22]FS[211]F [31]S 1/4 5/12 −7/36 5/9 −5 1
3

[31]FS[31]F [31]S 295/1296 65/108 −43/324 2371/3888 −5 1
3

[22]FS[22]F [22]S 1/4 – −1/3 1/2 −4C

[211]FS[211]F [22]S 11/48 – −1/3 35/72 0

[31]FS[31]F [4]S 43/216 – 1/6 497/648 0

[211]FS[211]F [31]S 119/432 65/108 −43/324 811/1296 2 1
3 C

[22]FS[31]F [31]S 13/54 5/12 −7/36 251/324 2 2
3 C

[22]FS[22]F [4]S 1/4 – 1/6 3/4 4C

[211]FS[22]F [31]S 1/4 1/2 −1/6 7/12 6 2
3

[211]FS[211]F [4]S 23/72 – 1/6 157/216 8C

[211]FS[31]F [22]S 11/48 – −1/3 35/72 8C

[211]FS[31]F [31]S 31/144 13/36 −23/108 227/432 10 2
3 C

function has the simple form

|[4]FS〉 = 1√
2

{
[22]F1 [22]S1 + [22]F2 [22]S2

}
. (39)

The explicit form for the two flavor components [22]F1 and
[22]F2 are given in Eqs. (7) and (8). The two corresponding spin
functions are readily constructed by the substitutions u ↔↑
and d, s ↔↓ with an additional 1/

√
2 in the normalization

factor. To complete the wave function for this configuration,
one needs the explicit antisymmetric color space wave function

|[1111]CX[211]C[31]X; m〉 =
3∑

a=1

C
[14]
[31]a [211]a

[211]aC[31]aXm.

(40)

As the operators that are considered here do not depend
on color, the explicit color wave functions with the mixed
symmetry [211]C are not required. The explicit spatial wave
functions may be constructed by reference to Eqs. (28)–(30),
with the substitution of ground-state wave functions for the
three constituents denoted ↑ and a P-state wave function,
multiplied by the spherical harmonic Y1m, for the constituent
denoted ↓.

For the states which have spin symmetry [31]S , the total
angular momentum of the uuds system J may take the values
0 and 1. For J = 0 the results are

µs = −mp

ms

Pss̄ , (41)

�s = Pss̄ . (42)

These are the only configurations with the uuds system in
an orbitally excited state, which lead to negative values for

the strangeness magnetic moment. As the lowest one of these
configurations lies ∼ 140–200 MeV above the configuration
with [4]FS[22]F [22]S symmetry, it is unlikely to have a large
probability of being a component of the proton.

In the case when J = 1, the corresponding results are

µs = mp

3ms

(1 + l̄s + σ̄s)Pss̄, (43)

�s = −1

3
(1 − σ̄s)Pss̄ . (44)

Finally, for the states which have spin symmetry [4]S , the
results are

µs = 1

3

mp

ms

(
5

2
− l̄s

)
Pss̄, (45)

�s = 1

6
Pss̄ . (46)

Since these configurations give positive strangeness contri-
butions to the proton spin in apparent conflict with the
experimental situation and are expected to require a relatively
high energy of excitation, they are not likely to have any large
probability of being in the proton.

V. PROBABILITY OF uudss̄ COMPONENT

Above, the possibility of there being transition matrix
elements between the uudss̄ and the uud components of the
proton was not considered, as only diagonal matrix elements
in configurations with ss̄ components were calculated. The
calculation of such transition matrix elements demands an
explicit model for the spatial wave functions for determining
the overlap. These transition matrix elements modify the
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proportionality coefficients between the strangeness magnetic
moment and the probability of the ss̄ components in the proton.
Referring to the analogous situation in the case of decay of
the �(1232) considered in Ref. [29], these contributions are
expected to allow smaller values for Pss̄ than, e.g., Eq. (38)
with the present empirical values for µs . For example, in
the case of the [31]X[4]FS[22]F [22]S configuration, the effect
of the transition matrix elements would lead to modification
of the expression (38) for µs by an additional factor such
that

µs = mp

2ms

(1 + δ)Pss̄ . (47)

Here, the relative modification caused by transition matrix
elements is contained in the term δ. Because the uuds
configuration is a P state, this term would have the general
form

δ ∼ C0ms

√
〈r2〉

√
Puud

Pss̄

, (48)

where Puud + Pss̄ = 1. Here, C0 is a factor that takes into
account the overlap between the wave function for the
uudγ state and the uudss̄ component of the proton, and 〈r2〉
is the mean square radius of the uudss̄ component. The mass
factor ms arises from the ss̄ → γ vertex. Provided that these
wave functions have the same phase, it follows from Eq. (47)
that the empirical value for µs sets an upper limit for Pss̄ .
For example, in the harmonic oscillator model employed in
Ref. [29], in which

√
〈r2〉 = 1/ω, the coefficient C0 = ∼0.9.

Since 2ms ∼ mp and in the oscillator model ms

√
〈r2〉 =

ms/ω ∼ 0.5 − 1, the following approximate relation emerges
for µs in the [31]X[4]FS[22]F [22]S configuration:

µs � Pss̄ + (0.45 − 0.90)
√

Pss̄ − P 2
ss̄ . (49)

If this equation is solved for the ss̄ configuration probability
Pss̄ with the mean result for µs given by the SAMPLE
experiment (µs = 0.37 ± 0.2 ± 0.26 ± 0.07) [1] as input, one
obtains Pss̄ � 0.10 − 0.20. By (37), this probability for the ss̄

configuration gives �s = −(0.03 − 0.07), which values fall
well within the range of values for this quantity (−0.10 ± 0.06)
as determined from the recently enlarged set of inclusive and
semi-inclusive polarized deep inelastic scattering data [15].
Note that in the case of �s or Gs

A, the contribution from
transition matrix elements relative to the diagonal matrix
elements is much smaller than in the case of µs .

The inclusion of pentaquark components with the
[31]X[4]FS[22]F [22]S configuration not only reproduces well
the strangeness magnetic moment and spin of the proton, but
also is consistent with the observed excess of d̄ over ū [30]
and the quark spin contribution [15] in the proton. In this
configuration, only ududd̄ and uduss̄ pentaquark components
are allowed for the proton but no uduuū component. The quark
wave function for the proton may then be expressed as

|p〉 = A3q |uud〉 + Add̄ |[ud][ud]d̄〉 + Ass̄ |[ud][us]s̄〉, (50)

with the normalization condition |A3q |2 + |Add̄ |2 +
|A2

ss̄ |2 = 1. To reproduce the observed [30] light flavor
sea quark asymmetry in the proton, d̄ − ū = 0.12, one then

needs Pdd̄ ≡ |Add̄ |2 = 12%; while to reproduce the observed
strangeness spin of the proton, �s = −0.10 ± 0.06, one
needs Pss̄ = 12−48%. With more than 24% of this kind
of pentaquark component in the proton, this can reproduce
the observed [15] u-quark spin contribution in the proton
�u = 0.85 ± 0.17 as well, since the pentaquark components
give no contribution to the �u and �u = 4

3 |A3q |2. Instead,
they give the contribution �Lq = 4

3 (Pdd̄ + Pss̄) of the proton
spin through the orbital angular momentum of quarks. In
Ref. [15], the spin contributions from both d̄ and s̄ antiquarks
were found to be negative, while that from ū is very uncertain
even as to its sign and could be far less polarized than d̄ and s̄.
The pentaquark configuration considered here gives such
quark spin contributions, with − 1

3Pdd̄ from d̄ and − 1
3Pss̄

from s̄ and zero from ū antiquarks. The total d-quark spin
contribution is predicted to be �d = − 1

3 (1 − Pss̄), which is
only slightly smaller than the lower end of the observed value
�d = −(0.33 ∼ 0.56). In Ref. [15], it was also found that the
available data do not require the gluon to be polarized.

VI. DISCUSSION

The complete analysis given above of all the positive parity
configurations of the form uudss̄ with spin 1/2 and at most
one unit of orbital angular momentum reveals that the present
empirical signs for µs and �s imply that the uuds subsystem
has to be orbitally excited and that the s̄ antiquark is in its
ground state. The configurations of the uudss̄ system that
can agree with the empirical indications that µs is positive
and that �s is negative and smaller in magnitude than µs are
the configurations with [31]X[22]S and [31]X[31]S that have
J = 1. These configurations do not include the conventional
K�0 and K�0 configurations, which yield negative signs for
µs [17–20].

The configuration [31]X[4]FS[22]F [22]S stands out by the
fact that its energy is some 140–200 MeV lower than any other
in the flavor-spin interaction model of Eq. (15). Moreover,
its energy is more than 240 MeV lower than the lowest
energy configuration with the s̄ in the P state, which would
correspond to the K�0 loop fluctuations. The lower excitation
energy should increase the probability of this configuration as
a component in the proton. Two recent diquark cluster models
[31,32] proposed for the tentative θ+ pentaquark correspond
to similar uuds configurations as [31]X[4]FS[22]F [22]S for the
uudss̄ component in the proton with the common feature that
the s̄ quark is in its ground state and, hence, similar values for
the strangeness spin and magnetic moment for the proton [12].

Another interesting point worth noting is that a negative
value for the strange electric form factor Gs

E is hinted at by
the data [4]. This indicates that strange quarks have a larger
rms radius than antistrange quarks in the proton. The uudss̄

configurations that give the empirical signs for the strangeness
spin and magnetic moment do have that feature, as the strange
antiquark is in the ground state and the uuds component is in
the orbitally excited state.

The possible smaller-than-expected role of the long-range
K�0 and K�0 fluctuations, which lead to negative values for
µs , has recently been analyzed in Ref. [33]. The conclusion
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drawn in that work is that the main contribution to µs

from these “chiral loops” arises from their high momentum
components, the determination of which a priori falls outside
of the convergence range of the effective chiral field theory
approach. As a consequence, the loop expansion as calculated
by effective field theory methods may not give realistic results.
Recent numerical QCD lattice results that have been obtained
in the quenched approximation have given both positive [10]
and negative [34] results for µs and, therefore, have not settled
the issue of the sign of µs .

The diquark cluster configuration or similar
[31]X[4]FS[22]F [22]S uuds configurations for the uudss̄

system all lead to positive values for the strangeness magnetic
moment, negative values for the strangeness spin or axial
form factor, and negative values for the strangeness electric
form factor of the proton at low values of momentum
transfer. Moreover, they also give a natural explanation for
the mass ordering of the N∗(1440)1/2+, N∗(1535)1/2−, and
�∗(1405)1/2− resonances by admixture of large pentaquark
components [28], which is otherwise very puzzling in the
conventional 3q constituent quark model. In the diquark
cluster pentaquark configuration [31,35], the N∗(1440)1/2+
is composed of the [ud][ud]d̄ with two [ud] scalar diquarks

in the relative P wave, the N∗(1535)1/2− is composed
of the [ud][us]s̄ with diquarks in the ground state, and
�∗(1405)1/2− is composed of the [ud][us]ū and [ud][ds]d̄.
The large admixture of [ud][us]s̄ in the N∗(1535)1/2−
resonance makes it heavier than the N∗(1440)1/2+ and the
�∗(1405)1/2− [28] along with a large coupling to the channels
involving strangeness, such as Nη and K� [36].

All these facts and discussions suggest that there are
significant qqqqq̄ components in baryons and they may be
mainly in colored quark cluster configurations rather than in
“meson cloud” configurations.
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