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Dissipative hydrodynamics for viscous relativistic fluids
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Explicit equations are given for describing the space-time evolution of nonideal (viscous) relativistic fluids
undergoing boost-invariant longitudinal and arbitrary transverse expansion. The equations are derived from
the second-order Israel-Stewart approach which ensures causal evolution. Both azimuthally symmetric (1+1)-
dimensional and nonsymmetric (2+1)-dimensional transverse expansion are discussed. The latter provides the
formal basis for the hydrodynamic computation of elliptic flow in relativistic heavy ion collisions including
dissipative effects.
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I. INTRODUCTION

Ideal fluid dynamics has been used successfully to predict
the collective flow patterns in Au+Au collisions at the BNL
Relativistic Heavy-Ion Collider (RHIC) (for a review, see
Ref. [1]). The ideal fluid description works well in almost
central Au+Au collisions near midrapidity at top RHIC en-
ergy, but gradually breaks down in more peripheral collisions,
at forward rapidity, or at lower collision energies [2], indicating
the onset of dissipative effects. To quantitatively describe such
deviations from ideal fluid dynamics and to use the experimen-
tal data for the extraction of values or phenomenological limits
for the transport coefficients of the hot and dense matter created
during the collision requires the numerical implementation of
dissipative relativistic fluid dynamics. A formulation of such
a theory which avoids the long-standing problems of acausal
signal propagation and other instabilities associated with the
original relativistic fluid equations given by Eckart [3] and
Landau and Lifshitz [4] has been known for almost 30 years
[5]. Nevertheless, significant progress toward its numerical
implementation has only been made very recently [6–9]. At
this point, we are only at the very beginning of a program that
will eventually apply viscous relativistic fluid dynamics to
heavy-ion collision data. Existing numerical implementations
are (1+1)-dimensional and can only describe cylindrically
symmetric transverse expansion with boost-invariant longi-
tudinal dynamics [8,9]. As we will show here, even the (1+1)-
dimensional case still presents some open formal issues which
we address in the present paper. The numerical codes are still
in the process of being tested and will not be discussed here.

The paper is organized as follows: In Sec. II, we briefly
review relativistic ideal fluid dynamics and the conditions
for its applicability. While most of this is standard textbook
material, it helps to establish notation and to better appreciate
the differences in the nonideal case. In Sec. III, we discuss
the nonideal fluid decomposition and introduce the dissipative
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flows (bulk and shear viscous pressure, heat conduction)
and how they manifest themselves in the baryon current
and energy-momentum tensor in the Eckart and Landau
frames. Section IV deals with the derivation of equations to
determine the evolution of these dissipative flows. We follow
the treatment of Israel and Stewart [5] and discuss both the
(acausal) first-order and (causal) second-order theories (this
nomenclature will be explained in Sec. IV). While most of the
material up to this point can already be found elsewhere [5,6]
(see also the beautiful lecture notes by Rischke in Ref. [10]),
it is needed here for a self-contained presentation and for a
critical discussion of some systematic expansion issues which
we point out in Sec. IV B and which are of practical relevance.
Section V contains the main results of this paper (with many
technical details deferred to the Appendix), namely, complete
sets of causal equations of motion for the dissipative trans-
verse hydrodynamic expansion of systems undergoing boost-
invariant longitudinal flow. The discussion of the azimuthally
symmetric (1+1)-dimensional case in Sec. VA improves on
the presentation given recently by Muronga and Rischke [8],
while the equations for the nonsymmetric (2+1)-dimensional
case in Sec. V B are original and, to our knowledge, have not
been presented before. The concluding Sec. VI summarizes
our results and gives some further discussion.

II. IDEAL FLUID DYNAMICS

Before explaining the structure of the equations for causal
dissipative relativistic fluid dynamics, let us quickly review the
case of ideal fluid dynamics. Any fluid dynamical approach
starts from the conservation laws for the conserved charges
and for energy-momentum,

∂µN
µ

i = 0, i = 1, . . . , k, (2.1)

∂µT µν = 0. (2.2)

For simplicity, we will restrict ourselves to k = 1 (say, Nµ =
net baryon number current) and drop the index i in Eq. (2.1).
It must also ensure the second law of thermodynamics

∂µSµ � 0, (2.3)
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where Sµ is the entropy current. Ideal fluid dynamics follows
from these equations under the assumption of local thermal
equilibrium; i.e., if the microscopic collision time scale is
very much shorter than any macroscopic evolution time scale,
then the underlying phase-space distribution f (x, p) relaxes
essentially instantaneously to a local equilibrium form (upper
signs for fermions, lower signs for bosons)

feq(x, p) = 1

e[p·u(x)+µ(x)]/T (x) ± 1
, (2.4)

where uµ(x) is the local fluid velocity at point x, µ(x) is
the local chemical potential associated with the conserved
charge N (it enters with opposite sign in the distribution f̄

for antiparticles), and T (x) is the local temperature. Plugging
this into the kinetic theory definitions

Nµ(x) =
∫

d3p

E
pµ[f (x, p) − f̄ (x, p)], (2.5)

T µν(x) =
∫

d3p

E
pµpν[f (x, p) + f̄ (x, p)], (2.6)

Sµ(x) = −
∫

d3p

E
pµ[f (x, p) ln f (x, p)

± (1∓f (x, p)) ln(1∓f (x, p)) + (f ↔ f̄ )], (2.7)

leads to the ideal fluid decompositions

Nµ
eq = nuµ, (2.8)

T µν
eq = e uµuν − p�µν(with�µν = gµν−uµuν), (2.9)

Sµ
eq = suµ, (2.10)

where the local net charge density n, energy density e, pressure
p, and entropy density s are given by the standard integrals over
the thermal equilibrium distribution function in the local fluid
rest frame and are related by the fundamental thermodynamic
relation

T s = p − µn + e. (2.11)

Inserting Eqs. (2.5)–(2.7) into Eqs. (2.1) and (2.2) yields the
relativistic ideal fluid equations shown in Eqs. (2.12)–(2.14)
below. Using Eq. (2.11) together with the Gibbs-Duhem
relation dp = s dT + n dµ, it is easy to prove that in the
absence of shock discontinuities, these equations also conserve
entropy, i.e., ∂µSµ = 0.

Note that the validity of the decompositions (2.5)–(2.7)
only requires local momentum isotropy [i.e., in the local
fluid rest frame the phase-space distribution reduces to a
function of energy E only, f (x, p) = f (p · u(x); T (x), µ(x))],
but does not require that the distribution function have the
specific exponential form (2.4) which maximizes entropy.
This may have relevance in situations where the time scale
for local momentum isotropization is much shorter than for
thermalization [11–13] (i.e., it is much easier to change the
direction of the particles’ momenta than their energies), with
the macroscopic hydrodynamic time scale in between. In this
case, the local microscopic states would not maximize entropy,
and the relation (2.11) would not hold between the quantities
e, p, n, and s defined through Eqs. (2.5)–(2.10). Still, they
would follow ideal fluid dynamical evolution since entropy
production by microscopic kinetic energy-shifting processes

would happen only on time scales that are large compared
to the macroscopic evolution time scales. (Note that in the
absence of such a clear separation of time scales, entropy
production can not be neglected during the macroscopic
evolution, and ideal fluid dynamics must be replaced by
dissipative fluid dynamics.)

The ideal fluid equations read (with θ ≡ ∂ · u denoting the
local expansion rate)

ṅ = −nθ, (2.12)

ė = −(e + p)θ, (2.13)

u̇µ = ∇µp

e + p
, (2.14)

where we decomposed the partial derivative ∂µ = uµD + ∇µ

into “longitudinal” and “transverse” components D = uν∂ν

and ∇µ = �µν∂ν , which in the local fluid rest frame reduce
to the time derivative ḟ ≡ Df and spatial gradient ∇f . The
first two equations describe the dilution of the local baryon
and energy density due to the local expansion rate θ , while the
third describes the acceleration of the fluid by the spatial (in
the local frame) pressure gradients, with the enthalpy e + p

acting as inertia. The five equations (2.12)–(2.14) for the six
unknown functions n, e, p, uµ (remember that uµuµ = 1)
must be closed by supplying an equation of state (EOS)p =
p(e, n).

III. NONIDEAL FLUID DECOMPOSITION

As the hydrodynamic evolution changes the local energy
and baryon density, microscopic processes attempt to readjust
the local phase-space distribution to corresponding new
local temperatures and chemical potentials. If this does not
happen fast enough, the phase-space distribution will start
to deviate from its local equilibrium form (2.4): f (x, p) =
feq(p · u(x); T (x), µ(x)) + δf (x, p). The optimal values for
the (readjusted) local temperature and chemical potential in
the first term are fixed by imposing the “Landau matching
conditions” [4]

uµδT µνuν =
∫

d3p

E
(u · p)2 δf (x, p) = 0, (3.1)

uµ δNµ =
∫

d3p

E
(u · p) δf (x, p) = 0. (3.2)

The remaining deviations δf from local equilibrium generate
additional terms in the decompositions of Nµ, T µν, and Sµ:

Nµ = Nµ
eq + δNµ = n uµ + V µ, (3.3)

T µν = T µν
eq + δT µν = e uµuν − (p + �)�µν + πµν

+Wµuν + Wνuµ, (3.4)

Sµ = Sµ
eq + δSµ = n uµ + �µ. (3.5)

The new terms describe a baryon flow V µ = �µνNν in
the local rest frame, an energy flow Wµ = e+p

n
V µ + qµ

(where qµ is the “heat flow vector”) in the local rest
frame, the viscous bulk pressure � = − 1

3�µνT
µν − p (which

contributes to the trace of the energy momentum ten-
sor), the traceless viscous shear pressure tensor πµν =
T 〈µν〉 ≡ [ 1

2 (�µσ�ντ + �νσ �µτ ) − 1
3�µν�στ ]Tτσ (where the

expression 〈µν〉 is shorthand for “traceless and transverse to
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uµ and uν ,” as defined by the projector in square brackets),
and an entropy flow vector �µ in the local rest frame.

Inserting the decompositions (3.1), (3.4) into the conserva-
tion laws (2.1), (2.2) yields the nonideal fluid equations

ṅ = −nθ − ∇ · V + V · u̇, (3.6)

ė = −(e + p + �)θ + πµν∇〈µuν〉 − ∇ · W + 2W · u̇, (3.7)

(e + p + �) u̇µ = ∇µ(p + �) − �µν∇σπνσ + πµνu̇ν

− [�µνẆν + Wµθ + (W · ∇)uµ]. (3.8)

The matching conditions (3.1) and (3.2) leave the choice
of the local rest frame velocity uµ ambiguous. This ambiguity
can be used to eliminate either V µ from Eq. (3.3) (“Eckart
frame,” no baryon flow in the local rest frame [3]), in which
case the energy flow reduces to the heat flow vector Wµ = qµ,
or Wµ from Eq. (3.4) (“Landau frame,” no energy flow in the
local rest frame [4]), in which case there is a nonzero baryon
flow V µ = − n

e+p
qµ due to heat conduction in the local rest

frame. (Intermediate frames are also possible, but yield no
practical advantage.) For systems with vanishing net baryon
number (as approximately realized in RHIC collisions) the
Eckart frame is ill defined, and heat conduction disappears as
an independent transport effect [14], so we will use the Landau
frame. In this frame, for baryon-free systems with n = 0 and
no heat conduction, the nonideal fluid equations (3.6)–(3.8)
simplify to

ė = −(e + p + �)θ + πµν∇〈µ uν〉, (3.9)

(e + p + �) u̇µ = ∇µ(p + �) − �µν∇σπνσ + πµνu̇ν.

(3.10)

The nonequilibrium decompositions (3.3)–(3.5) involve
1 + 3 + 5 = 9 additional dynamical quantities, the “dissi-
pative flows” �, qµ, and πµν (the counting reflects their
transversality to uµ and the tracelessness of πµν). This means
that we need nine additional dynamical equations which should
be compatible with the underlying transport theory for the
nonequilibrium deviation δf (x, p). For the baryon-free case
without heat conduction, the number of additional equations
needed reduces to six.

IV. KINETIC EQUATIONS FOR DISSIPATIVE FLOWS

The key property of the kinetic equation governing the
evolution of the phase-space distribution function f = feq +
δf is that the collision term satisfies the second law of
thermodynamics (2.3); i.e., entropy is produced until the
system has reached a new state of local thermal equilibrium.
We do not want to solve the kinetic theory; instead, we
want to write a phenomenological macroscopic theory that
is consistent with the constraints arising from the underlying
kinetic theory, in particular the second law. The macroscopic
theory will be constructed from an expansion of the entropy
production rate in terms of the dissipative flows which
themselves are proportional to the off-equilibrium deviation
δf of the phase-space distribution [5]. Assuming the latter to
be small, |δf | � |feq|, this expansion will be truncated at some
low order in the dissipative flows δNµ, δT µν . The expansion
will involve phenomenological expansion coefficients which,
in principle, should be matched to the kinetic theory [5]. In

practice, they will often be considered as phenomenological
parameters to be adjusted to experimental data. The extracted
values must then be checked for consistency with the entire
approach by making sure that the dissipative corrections are
indeed sufficiently small to justify truncation of the expansion
a posteriori.

The equilibrium identity (2.11) can be rewritten as

Sµ
eq = p(α, β)βµ − αNµ

eq + βνT
νµ

eq , (4.1)

where α ≡ µ

T
, β ≡ 1

T
, and βν ≡ uν

T
. The most general off-

equilibrium generalization of this is [5]

Sµ ≡ Sµ
eq + �µ

= p(α, β)βµ − αNµ + βνT
νµ + Qµ(δNµ, δT µν), (4.2)

where, in addition to the first-order contributions implicit in
the second and third terms of the right-hand side, Qµ includes
terms which are second and higher order in the dissipative
flows δNµ and δT µν . [Note that, by using the identity (2.11)
between the equilibrium quantities, Eq. (4.2) can be written
in the simpler-looking form Sµ = s uµ + qµ

T
+ Qµ, but this is

not helpful for calculating the entropy production rate.]
The form of the expansion (4.2) is constrained by the second

law, ∂µSµ � 0. To evaluate this constraint, it is useful to rewrite
the Gibbs-Duhem relation dp = s dT + n dµ as

∂µ(p(α, β)βµ) = Nµ
eq∂µα − T µν

eq ∂µβν. (4.3)

With additional help from the conservation laws (2.1) and
(2.2), the entropy production then becomes

∂µSµ = −δNµ∂µα + δT µν∂µβν + ∂µQµ. (4.4)

Using Eqs. (3.3) and (3.4) to express δNµ and δT µν in terms
of the scalar, vector, and tensor dissipative flows �, qµ,

and πµν , and introducing the corresponding scalar, vector,
and tensor thermodynamic forces (in terms of gradients
of the thermodynamic equilibrium variables) which drive
these dissipative flows, X ≡ −θ = −∇ · u,Xν ≡ ∇νT

T
− u̇ν =

− nT
e+p

∇ν
(

µ

T

)
[15], and Xµν ≡ ∇〈µ uν〉 (note that Xµν = X〈µν〉

is traceless and transverse to u), the second law constraint can
be further recast into

T ∂µSµ = �X − qµXµ + πµνXµν + T ∂µQµ � 0. (4.5)

Note that the first three terms on the right-hand side are first
order, whereas the last term is higher order in the dissipative
flows.

A. Standard dissipative fluid dynamics (first-order theory)

The standard approach (which can be found, for example,
in Ref. [4]) neglects the higher-order contributions and sets
Qµ = 0. The inequality (4.5) can then always be satisfied by
postulating linear relationships between the dissipative flows
and the thermodynamic forces,

� = −ζθ, (4.6a)

qν = −λ
nT 2

e + p
∇ν

(µ

T

)
, (4.6b)

πµν = 2η∇〈µ uν〉, (4.6c)
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with positive transport coefficientsζ � 0 (bulk viscosity), λ � 0
(heat conductivity), and η � 0 (shear viscosity):

T ∂S = �2

ζ
− qαqα

2λT
+ παβπαβ

2η
� 0. (4.7)

(The minus sign in front of the second term is necessary
because qµ, being orthogonal to uµ, is spacelike, q2 < 0.)
These are the desired nine equations for the dissipative flows.

Unfortunately, using these relations in the hydrodynamic
equations (3.6)–(3.8) leads to hydrodynamic evolution with
acausal signal propagation: If in a given fluid cell at a
certain time a thermodynamic force happens to vanish, the
corresponding dissipative flow also stops instantaneously. This
contradicts the fact that the flows result from the forces through
microscopic scattering which involves relaxation on a finite
albeit short kinetic time scale. To avoid this type of acausal
behavior, one must keep Qµ.

B. Second-order Israel-Stewart theory

A causal theory of dissipative relativistic fluid dynamics is
obtained by keeping Qµ up to terms which are second order
in the irreversible flows. For simplicity, we consider here only
the baryon-free case n = qµ = 0; for a general treatment, see
Refs. [5,6]. One writes [5]

Qµ = −(β0�
2 + β2πνλπ

νλ)
uµ

2T
(4.8)

(with phenomenological expansion coefficients β0, β2) and
computes (after some algebra using similar techniques as
before) the entropy production rate as

T ∂S = �

[
−θ − β0�̇ − �T ∂µ

(
β0u

µ

2T

)]

+ παβ

[
∇〈α uβ〉 − β2π̇αβ − παβT ∂µ

(
β2u

µ

2T

)]
.

(4.9)

From the expressions in the square brackets, we see that
the thermodynamic forces −θ and ∇〈α uβ〉 are now self-
consistently modified by terms involving the time derivatives
(in the local rest frame) of the irreversible flows �,παβ . This
leads to dynamical (“transport”) equations for the latter. We
can ensure the second law of thermodynamics by again writing
the entropy production rate in the form (4.7) (without the
middle term), which amounts to postulating

�̇ = − 1

τ
�

[
� + ζθ + �ζT ∂µ

(
τ

�
uµ

2ζT

)]

≈ − 1

τ
�

[� + ζθ ], (4.10)

π̇αβ = − 1

τπ

[
παβ − 2η∇〈α uβ〉 + παβηT ∂µ

(
τπuµ

2ηT

)]

≈ − 1

τπ

[παβ − 2η∇〈αuβ〉]. (4.11)

Here we replaced the coefficients β0,2 by the relaxation times
τ

�
≡ ζβ0 and τπ ≡ 2ηβ2. In principle, both ζ, η and τ

�
, τπ

should be calculated from the underlying kinetic theory. We

will use them as phenomenological parameters, noting that for
consistency the microscopic relaxation rates should be much
larger than the local hydrodynamic expansion rate, τ

π,�
θ � 1.

Let us briefly discuss the approximation in the second
equalities in Eqs. (4.10) and (4.11). We are using an expansion
scheme for the entropy production rate in which the ther-
modynamic forces and irreversible flows are assumed to be
small perturbations. The approximation in Eqs. (4.10), (4.11)
neglects terms which are products of the irreversible flows with
gradients of the thermodynamic equilibrium quantities which
are of the same order as the thermodynamic forces. These
terms are thus effectively of second order in small quantities
and should, for consistency, be neglected relative to the other
terms in the square brackets which are of first order. If one
wants to keep them (as done by Muronga [6,8]), one should
also keep third-order terms in the entropy flow vector Qµ for
consistency. Of course, where the thermodynamic forces and
irreversible flows are really small, it should not matter whether
we keep or drop these terms. In practice, however, one will
use this approach when dissipative effects are expected to be
significant, and the dropped terms may not be extremely small.
In this case, we believe that dropping them is more consistent
than keeping them.

There is another, more physical reason for dropping
these terms: without them, Eqs. (4.10), (4.11) are relaxation
equations which describe (in the local rest frame) exponential
relaxation (on the time scales τ

π,�
) of the irreversible flows to

the values given by (4.6) in the first-order theory. However, if
these terms are kept, one has instead equations of the form

�̇ = − 1

τ
�

[� + ζθ + �ζγ
�

]

= −1 + γ
�
ζ

τ
�

[
� + ζ

1 + γ
�
ζ

θ

]
= − 1

τ ′
�

[� + ζ ′θ ], (4.12)

[where γ
�

≡ T ∂µ(
τ
�

uµ

2ζT
)], and similarly for the shear pressure

tensor. One sees that the (small) last term in Eq. (4.10)
modifies both the kinetic relaxation time and the viscosity
by an amount ∼γ� which involves the macroscopic expansion
rate ∂µuµ. This contradicts the intuitive expectation that the
effective relaxation time and viscosity which control the
kinetic evolution of � should be expressible through integrals
of the kinetic collision term that involve only microscopic
physics (cross sections, local densities, etc.).

In the second-order Israel-Stewart formalism, one thus
solves the dissipative hydrodynamic equations (3.6)–(3.8)
simultaneously with the kinetic relaxation equations (4.10),
(4.11) for the irreversible flows. Let us now look at these
equations in more detail when expressed in a global coordinate
system (and not in local rest frame coordinates as done up to
now).

V. TRANSVERSE EXPANSION DYNAMICS IN SYSTEMS
WITH LONGITUDINAL BOOST INVARIANCE

We are restricting our discussion to systems with longitudi-
nal boost invariance. With this approximation, we can describe
the transverse expansion in very high energy heavy-ion colli-
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sions in a domain near midrapidity. Boost-invariant systems are
conveniently described in (τ, x, y, η) coordinates, where τ =√

t2−z2 is longitudinal proper time, η = 1
2 ln[(t + z)/(t−z)]

is space-time rapidity, and r⊥ = (x, y) are the usual Cartesian
coordinates in the plane transverse to the beam direction z.
Boost-invariant systems are then characterized by macroscopic
observables which are independent of η and by phase-space
distributions which depend only on the difference Y−η (where
Y = 1

2 ln[(E + pz)/(E−pz)] is the momentum-space rapidity
of a particle with longitudinal momentum pz and energy
E). We denote two-dimensional vectors in the transverse
plane by r⊥, v⊥, ∇⊥, etc., and generally use lower-case
Latin letters to denote vector and tensor components in this
curvilinear space-time coordinate system. The metric tensor
in this coordinate system reads

gmn = diag (1,−1,−1,−1/τ 2),
(5.1)

gmn = diag (1,−1,−1,−τ 2).

The flow velocity is parametrized as

um = γ⊥(1, vx, vy, 0) = γ⊥(1, v⊥, 0), (5.2)

where

γ⊥ = 1√
1 − v2

⊥
= 1√

1 − v2
x − v2

y

, (5.3)

with vanishing flow component uη in η direction and trans-
verse flow velocity v⊥(τ, r⊥). For vectors and tensors, the
usual Cartesian derivatives ∂µ must be replaced by covariant
derivatives, denoted by semicolons,

∂µjν → jn
;m = ∂mjn + �n

mkj
k, (5.4a)

∂µT νλ → T nl
;m = ∂mT nl + �n

mkT
kl + T nk�l

km, (5.4b)

where �i
jk = 1

2gim(∂jgkm + ∂kgmj−∂mgjk) are the Christoffel
symbols. The only nonvanishing components of �i

jk are

�η
ητ = �η

τη = 1

τ
, �τ

ηη = τ. (5.5)

The time derivative in the local comoving frame and the local
expansion rate are thus computed as

D = u · ∂ = γ⊥(∂τ + v⊥ · ∇⊥), (5.6)

θ = ∂ · u = 1

τ
∂τ (τγ⊥) + ∇⊥ · (γ⊥v⊥) . (5.7)

If the expanding system has additionally azimuthal symme-
try around the beam direction (for example, central collisions
between spherically symmetric nuclei), it is advantageous to
replace the Cartesian transverse coordinates (x, y) by polar
coordinates (r, φ) since macroscopic quantities are then φ

independent, that is,

xm = (τ, r, φ, η), (5.8a)

gmn = diag (1,−1,−1/r2,−1/τ 2), (5.8b)

gmn = diag (1,−1,−r2,−τ 2). (5.8c)

This leads to the following additional [to Eq. (5.5)] nonvan-
ishing Christoffel symbols

�
φ
φr = �

φ
rφ = +1

r
, �r

φφ = −r. (5.9)

The flow velocity now simplifies to

um = γr (1, vr , 0, 0), with γr = 1√
1 − v2

r

, (5.10)

radial transverse flow velocity v⊥ = vr (τ, r) er , and vanishing
flow components uφ and uη. Correspondingly, the time
derivative in the local comoving frame and the local expansion
rate reduce to

D = u · ∂ = γr (∂τ + vr∂r ), (5.11)

θ = ∂ · u = 1

τ
∂τ (τγr ) + 1

r
∂r (rvrγr ). (5.12)

We will now treat the azimuthally symmetric and nonsymmet-
ric cases separately.

A. (1+1)-dimensional viscous hydrodynamics: Azimuthally
symmetric case

Due to azimuthal symmetry and longitudinal boost invari-
ance, the n = φ and n = η components of the equations of
motion T mn

;m = 0 are redundant. Using the results of the
appendix Sec. 1, the n = τ and n = r components can be
written as

1

τ
∂τ (τT ττ ) + 1

r
∂r (rT τr ) = − p + � + τ 2πηη

τ
, (5.13)

1

τ
∂τ (τT τr ) + 1

r
∂r (r(T τrvr + Pr )) = + p + � + r2πφφ

r
.

(5.14)

With the shorthand notations T̃ mn = rτT mn, P̃r = rτPr , and
ṽr = T̃ τ r

T̃ ττ = T τr

T ττ these are brought into standard (Cartesian)
form

∂τ T̃
ττ + ∂r (ṽr T̃

ττ ) = −r(p + � + τ 2πηη),
(5.15)

∂τ T̃
τr + ∂r (vr T̃

τr + P̃r ) = τ (p + � + r2πφφ).

The corresponding transport equations for the dissipative
fluxes read [using the explicit expressions (A11) for the shear
tensor from appendix]

(∂τ + vr∂r )πηη = − 1

γrτπ

[
πηη − 2η

τ 2

(
θ

3
− γr

τ

)]
,

(∂τ + vr∂r )πφφ = − 1

γrτπ

[
πφφ − 2η

r2

(
θ

3
− γrvr

r

)]
,

(∂τ + vr∂r )� = − 1

γrτ�

[� + ζθ ]. (5.16)

Similar equations were derived in Ref. [8] [with extra
terms, however, resulting from the higher-order corrections in
Eqs. (4.10) and (4.11) which we argued should be neglected].
These equations can be solved with the code LCPFCT [16],
using subroutine LCPFCT for Eq. (5.15) and subroutine CNVFCT
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for Eq. (5.16). First attempts at a numerical solution have
been reported in Refs. [8,9], but a number of open questions
remain at this point, and we leave a detailed discussion of the
numerical aspects to a subsequent publication.

The hydrodynamic equations require the equation of state
p(e) for closure; i.e., after each transport step in time, we must
extract at each spatial grid point the boost velocity vr between
the global and local rest frames and the local energy density
e from the dynamical variables T ττ and T τr . Equations (A8)
give the energy density as

e = T ττ − vrT
τr , (5.17)

where the radial velocity vr must be extracted from the implicit
equation

vr = T τr

T ττ + p(e = T ττ−vrT τr ) + � − r2πφφ − τ 2πηη

(5.18)
by a one-dimensional zero search. This is still the same
degree of numerical complexity as in the ideal fluid case [10];
we will see in the next subsection, however, that this part of the
problem becomes numerically more involved for dissipative
hydrodynamics without azimuthal symmetry.

B. (2+1)-dimensional viscous hydrodynamics
with longitudinal boost invariance

In the absence of azimuthal symmetry, only the n = η

component of the equations of motion T mn
;m = 0 is redundant

(due to boost invariance). Using the relations (A21) from the
appendix, the n = τ, x, y components can be written as

1

τ
∂τ (τT ττ ) + ∂xT

τx + ∂yT
τy = − p + � + τ 2πηη

τ
, (5.19a)

1

τ
∂τ (τT τx) + ∂x((T τx−πτx)vx) + ∂y((T τx−πτx)vy)

= −∂x(p + � + πxx) − ∂yπ
xy, (5.19b)

1

τ
∂τ (τT τy) + ∂x((T τy−πτy)vx) + ∂y((T τy−πτy)vy)

= −∂xπ
xy − ∂y(p + � + πyy). (5.19c)

The further manipulation of these equations depends on
our choice of independent shear pressure components as
dynamical variables. In the following two subsections, we
explore two different choices, each with its own advantages
and disadvantages.

1. Choosing πττ ,� = π xx−π yy, and πηη

as independent dynamical variables

In the first approach, we select πττ , πηη, and the difference
� = πxx−πyy as independent dynamical components of the
shear pressure tensor. The last choice has the advantage
that it vanishes in the azimuthally symmetric case, thereby
automatically reducing the number of independent dynamical
variables. The choice of πττ instead of the orthogonal
combination � = πxx + πyy is a matter of taste and not
essential. They are related by Eq. (A19), πττ = � + τ 2πηη.

Introducing the shorthand notations T̃ mn = τT mn (with-
out the factor r this time), π̃mn = τπmn, p̃ = τp, �̃ =
τ�, and ṽi = T̃ τ i

T̃ ττ = T τi

T ττ for i = x, y, and following the
procedure in the appendix, Eqs. (5.19) can be recast into
standard form

∂τ T̃
ττ + ∂x(T̃ τx ṽx) + ∂y(T̃ τy ṽy) = −(p + � + τ 2πηη),

(5.20a)

∂τ T̃
τx + ∂x((T̃ τx−π̃ τx)vx) + ∂y((T̃ τx−π̃ τx)vy)

= −∂x(p̃ + �̃ + π̃ xx) − ∂yπ̃
xy, (5.20b)

∂τ T̃
τy + ∂x((T̃ τy−π̃ τy)vx) + ∂y((T̃ τy−π̃ τy)vy)

= −∂xπ̃
xy − ∂y(p̃ + �̃ + π̃ yy), (5.20c)

where we have resisted inserting the lengthy explicit expres-
sions (A22) for πτx, πτy, πxy, πxx , and πyy . Note that the
latter involve the velocities vx and vy ; so, to evaluate the
sources at time step n which drive the propagation to time
step n + 1, we must explicitly solve for the velocities vx,y(r⊥)
at time step n. We will return to this issue momentarily.

The transport equations to be solved together with
Eqs. (5.20) are (see appendix)

(∂τ + vx∂x + vy∂y)πηη = − 1

γ⊥τπ

(πηη − 2ησηη), (5.21a)

(∂τ + vx∂x + vy∂y)πττ = − 1

γ⊥τπ

(πττ − 2ησ ττ ), (5.21b)

(∂τ + vx∂x + vy∂y)� = − 1

γ⊥τπ

(� − 2ησ�), (5.21c)

(∂τ + vr∂r )� = − 1

γ⊥τ
�

(� + ζθ ), (5.21d)

where σηη, σ ττ , and σ� are given by Eqs. (A23).
In order to compute the pressure p from the equation of state

p(e), we calculate from the dynamical variables T ττ , T τx , and
T τy the energy density by combining Eqs. (A21a)–(A21c):

e = T ττ − vxT
τx − vyT

τy. (5.22)

(Note that all viscous pressures cancel in this relation.) This
requires the velocities vx and vy which are given (implicitly!)
by

vx = T τx − πτx

T ττ + p(e) + � − πττ
, (5.23a)

vy = T τy − πτy

T ττ + p(e) + � − πττ
. (5.23b)

Since the vectors (T τx, T τy) and (πτx, πτy) are not parallel to
each other, the direction of the flow velocity v⊥ = (vx, vy) is
no longer given by the direction of (T τx, T τy) as is the case
in ideal fluid dynamics [10], and Eqs. (5.23) can no longer
be reduced to a simple one-dimensional zero search. Instead,
one must simultaneously iterate two equations, one for the
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magnitude of the transverse velocity,

v2
⊥ = T ττ − πττ − e

T ττ − πττ + p(e) + �
, (5.24)

which is easily verified from Eq. (A21a), and one for the
azimuthal angle of the velocity vector φv = tan−1( vy

vx
). The

latter is obtained by writing vx = v⊥ cos φv ≡ v⊥z, and vy =
v⊥ sin φv = v⊥

√
1−z2, dividing the two equations (5.23) by

each other, and inserting Eqs. (A22a), (A22b) to obtain

z2

[
2v⊥

√
1−z2 T τy − πττ

+ v2
⊥
2

(
(πττ−τ 2πηη)(2z2−1) + �

2

)]

− (1−z2)

[
2v⊥zT τx − πττ

− v2
⊥
2

(
(πττ−τ 2πηη)(2z2−1) + �

2

)]
= 0. (5.25)

Since Eq. (5.24) requires knowledge of the direction of
v⊥ on the right-hand side because of Eq. (5.22), and
Eq. (5.25) requires knowledge of v⊥, these two equations
cannot be decoupled, and the iteration problem is genuinely
two-dimensional. This is of serious concern since this problem
must be solved at every spatial grid point after each time step
which makes it numerically very expensive.

2. Choosing πττ , πτ x, πτ y, and πηη as independent
dynamical variables

This problem can be avoided if, instead of �,πτx and
πτy are kept as dynamical variables which are directly
evolved in time via their own kinetic transport equa-
tions. Defining the two-dimensional vector M = (Mx,My) ≡
(T τx−πτx, T τy−πτy) (which is just the transverse momentum
density vector without the shear pressure contributions), we
see from Eqs. (5.23) that v⊥ and M are parallel, v⊥ ·
M = v⊥M with M =

√
M2

x + M2
y . Furthermore, introducing

M0 ≡ T ττ−πττ , Eq. (5.22) can with the help of Eq. (A20c) be
rewritten as

e = M0 − v⊥ · M = M0 − v⊥M, (5.26)

which requires knowledge of only the magnitude of v⊥. The
latter can then be obtained by a normal one-dimensional zero
search from Eq. (5.24), which can also be written as

v⊥ = M

M0 + p(e = M0−v⊥M) + �
, (5.27)

and the velocity components are reconstructed from

vx = v⊥
Mx

M
, vx = v⊥

My

M
. (5.28)

Note that this procedure requires direct knowledge of
πττ , πτx , and πτy at all spatial grid points at each time step, so
πτx and πτy cannot be computed from the constraints (A22a)
and (A22b) (for which velocities vx and vy would need to
be already known). On the other hand, πττ , πτx , and πτy

are not independent, but related by Eq. (A20c). The suggested
procedure requires independently propagating all three of these
shear pressure components via kinetic transport equations
[which, of course, should accurately preserve the constraint
(A20c) if correctly implemented numerically]. Therefore, we
have to solve one more kinetic transport equation (involving
one physically redundant component) than in the procedure of
Sec. VB 1. Instead of the three independent kinetic transport
equations (5.21a)–(5.21c), we have to solve four equations for
πττ , πτx, πτy , and πηη.

The set of equations to be solved simultaneously in this
approach is given by Eqs. (5.20) and (5.21a,b,d), plus the
following two equations:

(∂τ + vx∂x + vy∂y)πτx = − 1

γ⊥τπ

(πτx − 2ησ τx),

(5.29)

(∂τ + vx∂x + vy∂y)πτy = − 1

γ⊥τπ

(πτy − 2ησ τy).

The shear tensor components required here are given in
Eqs. (A25).

Is this approach more economical than the two-dimensional
zero search from the previous subsection? We believe so. If a
one-dimensional zero search requires N iterations, each with K
algebraic manipulations, a two-dimensional zero search would
require O(N2KK ′) algebraic manipulations at each spatial
grid point and time step. Solving instead an additional kinetic
transport equation for, say, πτx requires O(KsKt ) algebraic
manipulations at each time and grid point, where Ks is the
number of algebraic steps required to evaluate the source σ τx

and Kt is the number of algebraic steps involved in the time
evolution algorithm. Taking the number K ′ of manipulations
required to evaluate Eq. (5.25) to be comparable to Ks should
make solving the extra kinetic transport equation numerically
less expensive since we expect Kt to be significantly smaller
than N2K . The actual numerical implementation will tell
whether this expectation is borne out. In any case, dissipative
hydrodynamics is considerably more expensive than ideal fluid
dynamics, and efficient coding will be required.

VI. SUMMARY

In this paper, we derived explicit equations of motion
in a form that makes them directly amenable to publicly
available transport algorithms [16] for a causal theory of
dissipative hydrodynamic evolution for relativistic viscous
fluids such as those created in relativistic heavy-ion collisions.
In doing so, we followed the pioneering work of Israel and
Stewart [5], which was recently brought to wider attention and
worked out in greater detail by Muronga [6]. Our treatment
is still not completely general in that it continues to assume
boost-invariant expansion along the beam direction (thereby
reducing the spatial dimensionality of the problem by 1),
but it goes beyond the existing literature [6,7] by allowing
for arbitrary transverse expansion, without the additional
restriction of azimuthal symmetry around the beam direction.
It thus provides the formal basis for a numerical calculation
of elliptic flow in relativistic heavy-ion collisions including
dissipative effects. Such calculations will be needed for the
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phenomenological determination of the viscosity of the quark-
gluon plasma from heavy-ion collision data.

We have also added to the discussion in Ref. [8] of
azimuthally symmetric (1+1)-dimensional viscous hydrody-
namics by reanalyzing the Israel-Stewart approach [5] as
presented in Ref. [6] and pointing out a systematic issue with
the expansion of the entropy current in terms of higher-order
terms in the dissipative fluxes. The practical importance of the
improved truncation scheme suggested here will only be fully
assessed once the numerical implementation of our equations
[9] has been thoroughly tested and becomes available for
systematic investigations.

The simplification of the problem resulting from azimuthal
symmetry, by exploiting polar coordinates in the transverse
plane, is significant. The effects of viscosity can be subsumed
into an effective radial pressure, leaving intact the diagonal
structure of the energy-momentum tensor in the local rest
frame. As a consequence, the numerically critical problem of
extracting at each time step from the dynamical components
of T µν the local flow velocity and energy density in order
to compute the pressure from the equation of state remains
one-dimensional, i.e., of the same complexity as for ideal
fluids. The additional complexity resulting from dissipation
thus resides entirely in the need for solving, together with
the two hydrodynamic evolution equations, three additional
kinetic transport equations for the bulk viscous pressure and
for two components of the shear viscous pressure.

For the general situation without azimuthal symmetry, the
use of polar coordinates (with their coordinate singularity at
r⊥ = 0) only complicates matters. It provides no help toward
solving the now in general two-dimensional self-consistency
problem associated with the extraction of the flow velocity
and local energy density from the dynamical variables. We,
therefore, use Cartesian coordinates in the transverse plane,
as has been the tradition in (2+1)-dimensional ideal fluid dy-
namics. Unfortunately, this choice eliminates the possibility of
coding the equations in such a way that the code automatically
takes full advantage of all the simplifications resulting from
azimuthal symmetry when handed an azimuthally symmetric
problem. Azimuthally symmetric (1+1)-dimensional expan-
sion and asymmetric (2+1)-dimensional expansion require
differently optimized algorithms.

Using Cartesian transverse coordinates, we found a nice
way of avoiding the above-mentioned two-dimensional nature
of the numerically critical iteration problem for the local
energy density, by increasing the set of kinetic transport
equations not by 1, but by 2 relative to the azimuthally
symmetric case. By keeping one of the redundant components
of the shear pressure tensor as a dynamical variable, we can
again bring the iteration problem for the local energy density
into scalar form. We believe that the expense for solving an
additional transport equation, although not negligible, is less
than that required for coping with a two-dimensional iteration
problem at each time step at all spatial grid points.

Compared to (2+1)-dimensional ideal fluid dynamics,
dissipative dynamics generates more complicated source terms
for the three independent hydrodynamic evolution equations
and requires the additional simultaneous solution of five kinetic
transport equations, one for the bulk viscous pressure and four

for shear viscous pressure components (one of them being
physically, but not algorithmically redundant). Altogether, the
resulting increase in numerical complexity (compared to the
ideal fluid case) is probably less than an order of magnitude.
Given the increase in computer speed and power experienced
during the past decade, this should be manageable.
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APPENDIX: SHEAR TENSOR AND VISCOUS PRESSURE
TENSOR COMPONENTS

1. Azimuthally symmetric systems

For azimuthally symmetric systems, we use polar co-
ordinates in the transverse plane: xm = (τ, r, φ, η). In this
coordinate system, the global frame and local fluid rest frame
are connected by a radial boost with velocity v = vr (r, τ ) er .
Introducing the fluid rapidity yr = tanh−1 vr such that γr =
cosh yr and γrvr = sinh vr , the corresponding Lorentz trans-
formation matrix is given by

�m
n(vr ) =




cosh yr sinh yr 0 0

sinh yr cosh yr 0 0

0 0 1 0

0 0 0 1


 . (A1)

The projector transverse to the flow vector um takes the form

�m
n =




−γ 2
r v2

r γ 2
r vr 0 0

−γ 2
r vr γ 2

r 0 0

0 0 1 0

0 0 0 1


 . (A2)

(Note that this differs from �m
n!)

Due to azimuthal symmetry and longitudinal boost invari-
ance, all mixed components involving indices φ or η of the
stress tensor

σmn ≡ ∇〈m un〉 (A3)

and the shear pressure tensor πmn vanish such that

σφτ = σφr = σφη = σητ = σηr = 0,
(A4)

πφτ = πφr = πφη = πητ = πηr = 0.

This leaves only two independent components for the shear
pressure tensor which is constrained by the conditions of
tracelessness

πττ = πrr + r2πφφ + τ 2πηη, (A5)

and of orthogonality to um = γr (1, vr , 0, 0)

πττ = vrπ
τr , πrτ = vrπ

rr . (A6)

Equations (A6) result from the n = τ and r components
of umπmn = 0; the other two components yield redundant
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equations. Equations (A5) and (A6) can be combined to yield

πrr = −γ 2
r (r2πφφ + τ 2πηη). (A7)

Identical relations hold between the corresponding compo-
nents of the shear tensor σmn. Equations (A5) and (A7) can
be used to eliminate πττ , πrτ , and πrr in favor of πφφ and
πηη, which we keep as independent dynamical variables.
Equation (A1) shows that these components are not affected
by the radial boost, i.e., the φφ and ηη components of the
shear pressure tensor are identical in the global frame and in
the local fluid rest frame. The same is not true for the other
nonzero components of the shear pressure tensor.

This observation leads to a particularly simple structure of
the energy-momentum tensor in the global frame, including
viscous pressure terms. Using Eqs. (A5)–(A7) in the ex-
pressions for T ττ and T τr (which are the two independent
components being evolved by the hydrodynamic evolution
equations), we find

T ττ = (e + p + �)γ 2
r − (p + �) + πττ

= (e + Pr )γ 2
r − Pr , (A8a)

T τr = (e + p + �)γ 2
r vr + πτr = (e + Pr )γ 2

r vr , (A8b)

where

Pr = p + � − r2πφφ − τ 2πηη. (A9)

Equations (A8) are the same expressions as those for the ideal
fluid, except for the replacement of p by the effective radial
pressure Pr which has no explicit dependence on the flow
velocity vr .

In the local rest frame, the energy-momentum tensor is
diagonal:

T̂ mn =




e 0 0 0

0 Pr 0 0

0 0 p+�+r2πφφ

r2 0

0 0 0 p+�+τ 2πηη

τ 2


 . (A10)

The nonvanishing components of the shear tensor σmn =
∇〈m un〉 are found (after some algebra which properly takes
into account the Christoffel symbol contributions to the
covariant derivatives) to be

σηη = 1

τ 2

(
θ

3
− γr

τ

)
, (A11a)

σφφ = 1

r2

(
θ

3
− γrvr

r

)
, (A11b)

σ rr = −γ 2
r

(
2θ

3
− γr

τ
− γrvr

r

)

= γ 2
r

(
θ

3
− ∂τ γr − ∂r (γrvr )

)
, (A11c)

σ ττ = (
1 − γ 2

r

) (
2θ

3
− γr

τ
− γrvr

r

)
, (A11d)

σ τr = vrσ
rr . (A11e)

Note that (A11b) differs from the corresponding result (44) in
Ref. [8] by a metric factor r2, and that the last expression in
Eq. (A11c) has an extra factor γ 2

r when compared to Eq. (43)
in Ref. [8].

2. Systems without azimuthal symmetry

Without azimuthal symmetry, there is no advantage in using
transverse polar coordinates, and it is simpler to use Carte-
sian coordinates in the transverse plane: xm = (τ, x, y, η).
The global frame and the local fluid rest frame are now
related by a Lorentz boost with velocity v⊥ = vx(x, y, τ ) ex +
vy(x, y, τ ) ey = (vx, vy), described by the Lorentz transforma-
tion matrix

�m
n(v⊥) =




γ⊥ γ⊥vx γ⊥vy 0

γ⊥vx 1 + (γ⊥−1) v2
x

v2
⊥

(γ⊥−1) vxvy

v2
⊥

0

γ⊥vy (γ⊥−1) vxvy

v2
⊥

1 + (γ⊥−1)
v2

y

v2
⊥

0

0 0 0 1


.

(A12)
The projector transverse to the flow vector um takes the form

�m
n = γ 2

⊥




−v2
⊥ vx vy 0

−vx 1−v2
y vxvy 0

−vy vxvy 1−v2
x 0

0 0 0 1


 . (A13)

In the local rest frame, the energy-momentum tensor reads

T̂ mn =




e 0 0 0
0 p + � 0 0
0 0 p + � 0
0 0 0 p+�

τ 2


 +




0 0 0 0
0 π̂ xx π̂xy 0
0 π̂ xy π̂yy 0
0 0 0 π̂ ηη


 .

(A14)
The shear pressure tensor π̂mn is no longer diagonal. It may
be useful to have expressions for the shear pressure tensor
components π̂mn in the local rest frame in terms of the
hydrodynamic solution for the energy-momentum tensor T mn

in the global frame. To this end, we follow Ref. [8] and
introduce the mutually orthogonal rest frame four vectors

ûm = (1, 0, 0, 0), îm = (0, 1, 0, 0),
(A15)

ĵm = (0, 0, 1, 0), ĥm = (0, 0, 0, 1/τ ),

with û · û = 1, î · î = ĵ · ĵ = ĥ · ĥ = −1, such that

π̂ xy = îmT̂ mnĵn ≡ (i · T · j ), (A16a)

p̂ + � = 1
3 [(i · T · i) + (j · T · j ) + (h · T · h)], (A16b)

π̂ xx = (i · T · j ) − p − �

= 2
3 (i · T · i) − 1

3 ((j · T · j ) + (h · T · h)), (A16c)

π̂ yy = 2
3 (j · T · j ) − 1

3 ((i · T · i) + (h · T · h)), (A16d)

τ 2π̂ ηη = 2
3 (h · T · h) − 1

3 ((i · T · i) + (j · T · j )). (A16e)

The right-hand sides are Lorentz invariant expressions and
thus can be evaluated in any reference frame. The vectors
um, im, jm, hm in the global frame are obtained by applying
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the Lorentz boost (A12) to the rest frame vectors (A15)

um = γ⊥(1, vx, vy, 0), (A17a)

im =
(

γ⊥vx, 1 + (γ⊥−1)
v2

x

v2
⊥

, (γ⊥−1)
vxvy

v2
⊥

, 0

)
, (A17b)

jm =
(

γ⊥vy, (γ⊥−1)
vxvy

v2
⊥

, 1 + (γ⊥−1)
v2

y

v2
⊥

, 0

)
, (A17c)

hm =
(

0, 0, 0,
1

τ

)
. (A17d)

From Eq. (A17d) it follows immediately that the ηη component
of T mn is identical in the global and fluid rest frames, i.e., that
πηη = π̂ ηη. Longitudinal boost invariance implies that

σητ = σηx = σηy = 0, πητ = πηx = πηy = 0. (A18)

The constraints from tracelessness,

πττ = πxx + πyy + τ 2πηη, (A19)

and orthogonality to um,

πxτ = vxπ
xx + vyπ

xy, (A20a)

πyτ = vxπ
xy + vyπ

yy, (A20b)

πττ = vxπ
τx + vyπ

τy, (A20c)

then leave us with three independent components of πmn.
Which should we select? From the above it is obvious that
πηη should be one of them. For the other two, there are two
different possibilities, following from two different chains of
reasoning, as explained in Secs. VB 1 and VB 2.

Before giving the explicit expressions for the shear tensor
needed in each case, let us first generalize the relations (A8),
which are needed to bring the hydrodynamic equations into
standard form:

T ττ = (e + p + �)γ 2
⊥ − (p + �) + πττ , (A21a)

T τx = (e + p + �)γ 2
⊥vx + πτx

= (T ττ + p + �−πττ )vx + πτx, (A21b)

T τy = (e + p + �)γ 2
⊥vy + πτy

= (T ττ + p + �−πττ )vy + πτy, (A21c)

T xx = (e + p + �)γ 2
⊥v2

x + p + � + πxx

= (T τx−πτx)vx + p + � + πxx, (A21d)

T xy = (e + p + �)γ 2
⊥vxvy + πxy = (T τx−πτx)vy + πxy

= (T τy−πτy)vx + πxy, (A21e)

T yy = (e + p + �)γ 2
⊥v2

y + p + � + πyy

= (T τy−πτy)vy + p + � + πyy. (A21f)

If we choose πττ , πηη, and � = πxx−πyy as independent
dynamical variables, we can solve the constraints (A19),

(A20) to give the following expressions for the dependent
components of πmn:

2vxπ
τx = πττ

(
1 + v2

x−v2
y

2

)
− τ 2πηη

v2
x−v2

y

2
+ v2

⊥
2

�,

(A22a)

2vyπ
τy = πττ

(
1 − v2

x−v2
y

2

)
+ τ 2πηη

v2
x−v2

y

2
− v2

⊥
2

�,

(A22b)

2vxvyπ
xy = πττ

(
1 − v2

⊥
2

)
+ τ 2πηη v2

⊥
2

− v2
x−v2

y

2
�,

(A22c)

πxx = 1

2
(πττ − τ 2πηη + �), (A22d)

πyy = 1

2
(πττ − τ 2πηη − �). (A22e)

In this approach, we need the following components of the
stress tensor σmn as source terms for the kinetic transport
equations for πττ , πηη, and �:

σ ττ = θ

3

(
γ 2

⊥ − 1
) + ∂τ γ⊥ − 1

2
D

(
γ 2

⊥
)
, (A23a)

σηη = 1

τ 2

(
θ

3
− γ⊥

τ

)
, (A23b)

σ� = σxx−σyy = θ

3

(
2 + γ 2

⊥
(
v2

x−v2
y

)) + ∂y(γ⊥vy)

− ∂x(γ⊥vx) − 1

2
D

(
γ 2

⊥
(
v2

x−v2
y

))
. (A23c)

If instead of � we keep πτx, πτy as dynamical variables
(as explained in Sec. VB 2), we do not need Eqs. (A22a) and
(A22b), but we still must express πxy, πxx , and πyy [which
appear as sources on the right-hand sides of Eqs. (5.20b)
and (5.20c)] in terms of those components for which we
solve kinetic transport equations. To this end, we rewrite the
constraints (A19) and (A20) as

πxx = 1

v2
⊥

(
v2

y(πττ−τ 2πηη) + vxπ
τx − vyπ

τy
)
, (A24a)

πyy = 1

v2
⊥

(
v2

x(πττ−τ 2πηη) + vyπ
τy − vxπ

τx
)
, (A24b)

πxy = − 1

v2
⊥

(
vxvy(πττ−τ 2πηη) − vxπ

τy − vyπ
τx

)
. (A24c)

The shear tensor components required on the right-hand sides
of Eqs. (5.29) are

σ τx = −1

2
∂xγ⊥ + 1

2
∂τ (γ⊥vx) − 1

2
D

(
γ 2

⊥vx

) + θ

3
γ 2

⊥vx,

(A25a)

σ τx = −1

2
∂yγ⊥ + 1

2
∂τ (γ⊥vy) − 1

2
D

(
γ 2

⊥vy

) + θ

3
γ 2

⊥vy.

(A25b)
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