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Time-dependent aspects of the semiclassical approach in the analysis of heavy ion reactions
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The semiclassical approach is one of the fundamental tools used to investigate and analyze heavy ion reaction
processes. We show in this contribution that the evolution of the motion that emerges from the knowledge of the
semiclassical amplitudes for the reaction channels as a function of time cannot be taken as a reliable representation
for an actual wave function of the intrinsic states.
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I. INTRODUCTION

A large variety of nuclear reaction processes have been
(and continue to be) studied with the aid of semiclassical
time-dependent formalisms. In these, one blends a classical
description of the relative motion of the colliding ions with a
quantum-mechanical treatment of the excitation of the intrinsic
degrees of freedom of the systems involved [1,2]. To deal with
the intrinsic part of the formulation, one introduces specific
reaction channels which can be put in correspondence with
observables such as angular distributions and cross sections,
that is, structural information that conforms to the particular
nuclear model that one is applying and/or willing to test.

The microscopic construction of the coupling matrix ele-
ments between these two components of the scheme—relative
and intrinsic motion—are calculated statically and yield form
factors that are functions of the relative distance between the
projectile and the target �R. It is then clear that an essential
element of the semiclassical approach is to convert that spatial
dependence into a function of time by the identification of a
suitable “trajectory” of relative motion �R(t).

With such framework in mind, one introduces the expansion
of the time-dependent intrinsic wave function

|�(t)〉 =
∑

n

an(t)|�n(t)〉 (1.1)

on the basis of the chosen, relevant eigenchannels |�n(t)〉
and arrives at the familiar semiclassical equations for the
amplitudes an(t)

dan(t)

dt
= − i

h̄

∑
m

Fnm(t) exp

[
i

h̄
(εn − εm)t

]
am(t), (1.2)

where the form factors Fnm(t) acquire their time dependence
through the aforementioned trajectory of relative motion.

The function �R(t) can be chosen, under especial circum-
stances, to be independent of the coupling to the internal
degrees of freedom. For instance, at relativistic bombarding
energies—where the energies of the intrinsic transitions are
negligible compared to the beam energy—it is safely assumed

that the trajectories are uniform, rectilinear, and essentially
unaffected by the excitation process. At the other extreme of
the scale, for Coulomb excitation at energies well below the
barrier, one finds also many applications where the orbits are
approximated by “unperturbed” Rutherford hyperbolae with
the familiar correspondence between impact parameter and
scattering angle.

There are occasions, however, when the average transfer of
energy and angular momentum from the relative motion into
the intrinsic degrees of freedom is large enough to prompt an
improvement of the function �R(t). The idea is to make use of
conservation laws along the time and adjust, accordingly, the
trajectory of relative motion by the introduction of effective
damping forces. This procedure is crucial to the treatment
of deep inelastic collisions in which the transfer of energy
and angular moment can reach values of hundreds of MeV
and dozens of , respectively. However, it is also done quite
often in the case of ordinary Coulomb excitation mentioned
earlier, where appropriate adjustments (symmetrization) of the
hyperbolae take into account the finite energies and spins of
the excited levels.

In the implementation of these procedures, it is tacitly
implied that the expression (1.1) is valid not only asymp-
totically for t → ∞ but also at all times in between. Actually,
in most situations, there is no way to generate an alternative
time evolution of the intrinsic wave function (1.1) since
the problem is fully specified by the choice of Hamiltonian.
This identification becomes crucial whenever theories are put
forward for processes that occur in a scale of time comparable
to that of the collision itself. In such case, a precise knowledge
of the state of excitation at all times is a necessary ingredient
of the scheme from either the classical or semiclassical
points of view; to this end, the quantity Pn(t) = |an(t)|2 is
taken to represent the actual probability of the channel n to be
populated at time t. It has assumed this physical meaning in
preequilibrium theories [3,4], in the introduction of effective
damping forces [5], and—not to be overlooked—in shaping
our intuition about how this valuable tool for the analysis of
nuclear reactions does work.
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Another related topic that we would like to call attention
to is the following. We know that it is possible to solve
unambiguously the classical equations of motion associated
with a given problem in terms of the acting forces. On the other
hand, Schroedinger’s quantal equations (which evolved from
Hamilton’s formulation of classical mechanics) are written
down making use of the corresponding Hamiltonians. In most
familiar circumstances, the potentials are specified only up
to an arbitrary constant and, under these conditions, questions
about the invariance of the time evolution of a reaction process
generated by the semiclassical formalism can be conveniently
sidestepped. Is it always that simple?

Keeping these considerations in mind, we chose to ex-
plore these fundamental issues in a deliberate context: The
relativistic Coulomb excitation of the giant dipole resonance
(GDR) in nuclei [6–12]. As we know, this regime brings
into the construction of the couplings the scalar and vector
potentials � and �A [1]. Thus, contrary to most other situations,
the formulation of this specific problem allows us to take a
diversity of versions of the scalar and vector potentials as long
as they are related by the gauge transformation

�′ = � − 1

c

∂�

∂t
,

(1.3)�A ′ = �A + �∇�,

where � is any arbitrary function of the space coordinates
and time. It is clear that this freedom in the selection of
the Hamiltonian for the Coulomb excitation problem has no
counterpart at the level of classical forces since these are
uniquely specified. To be concrete, the electromagnetic scalar
and vector potentials may be selected in a large variety of ways,
as it follows from Eqs. (1.3), but the Lorentz force acting on
a charge q is given, for all choices, by the same expression,
namely,

�F = q( �E + �v × �B). (1.4)

Two immediate questions that emerge are (i) is the time
evolution of the wave function (1.1) independent of the
choice of �, and (ii) does the average excitation energy
derived from the semiclassical equations coincide at all times
with the classical result, as one has been conditioned to
expect?

In the following, we proceed to see what can be learned
from posing these questions in the context of the problem
at hand. We will limit ourselves to weak-coupling situations
that allow for an appropriate truncation of the intrinsic space
to the zero-, one- and two-phonon states. This limitation is
quite important to stress. We are only interested in instances
in which the results of the calculations emerge from a
correct formulation and are numerically reliable throughout. A
presentation on a breakdown of gauge invariance caused either
by neglecting terms of the equations that should be there or
by an excessive truncation of the space is, in our opinion,
unnecessary.

In this contribution, we will show that there are indeed in-
stances where the time-evolution of the intrinsic wave function
is not unique-an outcome that goes beyond the introduction
of an overall, trivial, multiplicative phase. Also, we will see

that there are considerable differences between the classical
motion and the quantal evolution of the system predicted by
the semiclassical approximation. This realization challenges
the common belief expressed earlier in the Introduction
concerning the interpretation of the wave function (1.1).
explicitly given as a function of time. When this expansion
in the unperturbed channels is introduced in textbooks (cf.,
e.g. Ref. [13]) it is only natural to assume that it represents the
evolution of the intrinsic state at all times.

We have just advanced a couple of reasons to be wary
about using the semiclassical approximation uncritically. It
seems reasonable, however, to expect some sort of stability
in the physical predictions that emerge from fundamentally
equivalent but apparently conflicting representations of the
state vector at intermediate times. We will provide an answer
to this puzzle but, nevertheless, show that some uncertainty in
the interpretation of semiclassical solutions of the scattering
problem does remain. An interesting discussion on the connec-
tion between quantal and semiclassical aspects of scattering
processes has recently appeared in Ref. [14].

The paper is organized as follows. Section II introduces
the set of semiclassical coupled equations that need be solved
when � �= 0. We devote Sec. III to a preliminary analysis of
the situation in which we present simple arguments to prepare
the reader about what to expect. Section IV illustrates, with
selected examples, the way in which the gauge transformation
affects the probabilities of excitation of the different channels
as a function of time. This is done first for a purely harmonic
mode and then, also, for a mode in which the energies of the
levels and the coupling matrix elements deviate considerably
from the harmonic limit. In Sec. V, we obtain the time
dependence of the average excitation energy in the equivalent
classical problem and compare it with the results obtained in
the preceeding section. A discussion on the manifestation of
these effects outside of the relativistic regime is also included.
We close in Sec. VI with a brief summary of the work and our
conclusions.

II. GAUGE TRANSFORMATION

We recall in this section the formalism used to solve—
within the semiclassical approximation—the problem of rela-
tivistic Coulomb excitation of the giant dipole resonance. The
calculation setup is, in many respects, the same one described
in Ref. [15]. To the coupled-channel equations given there,
we just append the additional terms that allow us to check the
consequences of a gauge transformation such as the one shown
in Eqs. (1.4).

The projectile moves in the y direction, and the classical
trajectory of relative motion is contained in the (x, y) plane.
It is then a good approximation to retain only the Cartesian
components of the dipole mode along these orientations,
leading to a coupling scheme, as indicated in Fig. 1. Here, the
channels are labeled by the pair of integer numbers (nx, ny),
the number of quanta excited in each direction in the harmonic
limit. To explore the effects of possible anharmonicities, we
have generalized the scheme of Ref. [15] and introduced a
factor f (cf., Fig. 1) that will be allowed (in Sec. IV) to
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FIG. 1. (Color online) Schematic represen-
tation of the spectrum of levels retained for
the semiclassical calculation of the reaction
amplitudes. The channel labels are the pair of
integer numbers (nx, ny) that correspond to the
number of phonons in the x, y directions, i.e.,
those defining the reaction plane. Notice that for
f = 1, the energies and matrix elements reduce
to the case of a pure harmonic mode.

deviate slightly from 1. This changes the spectrum of excitation
energies and the magnitude of the couplings sufficiently to
invalidate the quite special properties that apply only to the
case of a pure harmonic mode. The procedure thus mocks
up anharmonic conditions and will be useful for checking
the general character of our conclusions. It also emphasizes
the advantage of solving the problem numerically instead of
relying on analytic expressions of limited validity.

The model Hamiltonian describing the excitation of the
intrinsic degrees of freedom by the electromagnetic field
generated by the moving charge is (cf., e.g. [15,16])

H = 1

2D

(
�p − q

c
�A
)2

+ q� + 1

2
C r2, (2.1)

where C and D are the restoring force and mass parameters
of the GDR and � and �A are the Liènard-Wiechert scalar and
vector potentials

�(�r, t) = γZpe√
(x − b)2 + γ 2(y − vt)2 + z2

(2.2)

and

�A(�r, t) = v

c
�(�r, t) �y

|y| . (2.3)

The Hamiltonian (2.1) was used in [15] to construct the
coupling matrix elements between the intrinsic states and
to set up the time-dependent semiclassical coupled-channel
equations. Following the gauge transformation (1.3), the
operator assumes the new form

H → H ′ = 1

2D

(
�p − q

c
�A − q

c
�∇�

)2
+ q�

− q

c

∂�

∂t
+ 1

2
Cr2, (2.4)

which can be recast in a form that explicitly separates
the contributions associated with the gauge transformation,
namely,

H ′ = H − q

2mc

(
�p − q

c
�A
)

�∇� − q

2mc
�∇�

(
�p − q

c
�A
)

+ q2

2mc2
( �∇�)2 − q

c

∂�

∂t
. (2.5)

As in our previous paper, we can expand the Hamiltonian
(2.5) to lowest order in powers of x, px, y, py . The explicit
expressions are given in the appendix. From this expansion,

one can easily obtain the radial matrix elements among the
different harmonic oscillator states and then proceed to solve
the coupled equations (1.2).

III. PRELIMINARY ANALYSIS

One expects that different choices of physically equivalent
gauges should, in the solution of a given problem, lead to
identical answers. But to which questions? This is an important
point to determine. In this section, we will try to shed light on
this issue by way of some theoretical considerations and within
a specially simple context.

Let us start by noticing that in order to set appropriate
boundary conditions for t ± ∞ (or, equivalently, for the
relative motion variable | �R| → ∞), one must choose the
function � so that it vanishes in those limits. Under these
conditions, it is easy to anticipate that the final probability
of populating the various channels will be independent of
�. In fact, consider the state vector |�(t)〉, a solution to the
Schroedinger equation

H |�(t)〉 = ih̄
∂|�(t)〉

∂t
, (3.1)

where H is the Hamiltonian (2.1). It is well known that the
solution to the gauge-transformed Hamiltonian (2.5) can be
obtained from the former solution by a simple operation,
namely,

|� ′(t)〉 = exp

[
i
q�(x, y, t)

h̄c

]
|�(t)〉. (3.2)

It follows from this expression and the character of � that

|� ′(t = ∞)〉 ≡ |�(t = ∞)〉, (3.3)

and, consequently, the asymptotic complex amplitudes for
each and all the states of the GDR are identical.

We now turn to the question of time evolution. The state
|�(t)〉 may be expanded in the basis |nx, ny〉 of the dipole
mode in Cartesian components as

|�(t)〉 =
∑
nx,ny

anx,ny
(t) exp

[
− i

h̄
εnx,ny

t

]
|nx, ny〉, (3.4)

where εnx,ny
are the energy eigenvalues for the stationary states

labeled by nx, ny . To make things easier, let us for the moment
consider the particular case where � during the entire time
evolution of the system fulfills |q�/h̄c| 	 1. Making use of
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Eq. (3.2), the solution for the gauge-transformed potentials can
be approximated by

|� ′(t)〉 ≈
[

1 + i
q�(x, y, t)

h̄c

]
|�(t)〉

≈
[

1 + i
q

h̄c
(�(0, 0, t) + ∂�

∂x
(0, 0, t)x

+ ∂�

∂y
(0, 0, t)y)

]
|�(t)〉. (3.5)

Here, we have expanded the operator to lowest order in x, y

to be in tune with the situations covered in Ref. [15] and
attentive to the fact that the expectation values and matrix
elements of x, y are indeed sufficiently small to justify the
dipole approximation (cf., e.g., Fig. 2 of [15]). This is, of
course, also consistent with being close to the perturbation
limit and having the configuration space properly truncated to
the first three steps of the harmonic ladder.

By inspection of Eq. (3.5), one can see that the operators
x and y have the effect of changing the states |nx, ny〉 in the
right-hand side of (3.4) into combinations of |nx ± 1, ny〉 and
|nx, ny ± 1〉, respectively. In a nonlinear case, the admixture of
phonon numbers caused by x2, y2, xy terms, or higher order,
would reach even farther from plus or minus 1. All of this
amounts to a reshuffling of the amplitude labels leading to
a situation in which the amplitude a′

n′
x ,n

′
y

turns out to be a
combination of terms involving unprimed amplitudes anx,ny

in
several channels |nx, ny〉 close to but other than |n′

x, n
′
y〉. To

be concrete, in the harmonic and linear case and for the lowest
three channels, one gets

a′
0,0(t) ≈

(
1 + iq

h̄c
�(0, 0, t)

)
a0,0(t) + iq

h̄c
βw

×
[
∂�

∂x
(0, 0, t)a1,0(t) + ∂�

∂y
(0, 0, t)a0,1(t)

]
,

a′
1,0(t) ≈

(
1 + iq

h̄c
�(0, 0, t)

)
a1,0(t)

+ iq

h̄c
β

[
∂�

∂x
(0, 0, t)(a0,0(t)/w +

√
2 wa2,0(t))

+ ∂�

∂y
(0, 0, t)a1,1(t) w

]
,

a′
0,1(t) ≈

(
1 + iq

h̄c
�(0, 0, t)

)
a0,1(t)

+ iq

h̄c
β

[
∂�

∂x
(0, 0, t)a1,1(t) w

+ ∂�

∂y
(0, 0, t)(a0,0(t)/w +

√
2 wa0,2(t))

]
, (3.6)

where β is the deformation parameter associated with the
GDR, ω its characteristic frequency, and w = exp(−iωt).

Let us now look at the following interesting situation:
Assume that there are no electric or magnetic fields at all
and � = 0, �A = 0 (for instance, set the projectile charge to
zero). One can still consider a gauge transformation in this
case and conclude that all scalar and vector potentials of the

form

�′ = 1

c

∂�

∂t
,

(3.7)�A ′ = �∇�,

should be associated with the absence of any true, physi-
cally meaningful, electromagnetic excitation. The state vector
|�(t)〉 in the absence of any coupling between relative and
intrinsic motion has coefficients

a0,0(t) ≡ 1,
(3.8)

anx,ny
(t) ≡ 0 otherwise.

Leaving aside the apparent complexity of Eqs. (3.6), notice that
the semiclassical approximation applied to scalar and vector
potentials of the form (3.7) would then yield, along the time
t, nonzero probabilities to populate the states |1, 0〉 and |0, 1〉
(and also others)! The excitation probability should be zero
for t → ∞, as concluded earlier, but the time evolution of this
quantity appears to be as arbitrary as the choice of � itself.

It is quite clear that the conclusions of this analysis do not
depend on having exploited the small values of |q�/h̄c|, the
linear expansion in (3.2), or the peculiar form of the interaction
potentials given in (3.7). Thus, one should be prepared to also
find evidence of these intriguing aspects of the semiclassical
approximation in the more general numerical examples that
follow.

IV. RESULTS OF THE CALCULATIONS

The most frequently used choices of the electromagnetic
potentials �, �A, belong to the so-called Coulomb or Lorentz
gauges. Our choices (2.2) and (2.3) for the scalar and vector
potentials, for example, satisfy the requirements of the Lorentz
gauge. For the purpose of our presentation, there is nothing
special about these and we do not need—or even want—to
restrict the choices of the function � to keep ourselves within
a determined family. This, of course, can be done. If we wanted
to work within the Lorentz gauge, for instance, we would pick
for � solutions of the equation ∇2� − (1/c2)∂2�/∂t2 = 0.
Similarly, starting from fields satisfying the Coulomb gauge,
any choice of � as a solution of the equation ∇2� = 0 will
keep us within the same gauge. Explicit expressions for � are
known that allow the particular transformation from Lorentz
to Coulomb gauges [17].

For the sake of generality, we prefer here to take advantage
of the full freedom in the choice of � to explore effective
Hamiltonians of different strength and interaction range. The
idea is to infer, from the results of sample calculations, what is
(or is not) preserved along the excitation process. In the course
of this investigation, we used various analytic functions (each
one defined with several adjustable parameters) to test the
response of the formalism. We arrived at the same conclusions
in all instances, indicating that the specific form of � is not
crucial to the line of argument presented here.

In this section, we specifically show results obtained for

�(x, y, t) = Rg

[(x − bg)2 + γ 2(y − vt)2]αg
. (4.1)
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FIG. 2. (Color online) Top: time evolution
of the coupled-channel amplitudes a1,0(t) (left)
and a0,1(t) (right) represented parametrically
in the complex plane. The amplitudes start
from the origin for t = −∞ and achieve their
asymptotic value for t = ∞ after following a
certain trajectory on the complex plane. The
calculations are for a bombarding energy of
1000 MeV/nucleon and an impact parame-
ter of 80 fm. Three situations are displayed:
no gauge (Rg = 0), gauge 1 (Rg = 100, bg =
24 fm, αg = 0.4), and gauge 2 (Rg = 50, bg =
24 fm, αg = 0.6). Bottom: time evolution of the
excitation probabilities |a1,0(t)|2 and |a0,1(t)|2.
The key to all curves is given only once, in the
lower-left frame. In all figures, time is expressed
in terms of t/h̄.

The particular form of Eq. (4.1), which is similar to that
of other relevant couplings in our problem, is convenient
because its magnitude at closest approach is controlled by
a simple combination of Rg and bg and its range by αg . As
mentioned above, the actual values of these parameters do not
play a significant role in our analysis. Nevertheless they are
quoted for each illustration, relegating the information to the
corresponding figure caption. To keep the function � finite at
large distances, we only considered positive values of αg .

We show in Fig. 2 results for the Coulomb excitation of
the GDR in the nucleus 40Ca when bombarded by 208Pb at
1000 MeV/nucleon. The excitation energy of the mode is taken
to be h̄ω1 = 11.6 MeV (see Refs. [12,15]). In the upper-left
corner we display how the real and imaginary components of
the complex number a10(t) evolve for an impact parameter
b = 80 fm and � specified as indicated in the caption. The
three different curves correspond to the solution obtained with
the potentials �, �A as in Ref. [15] (no gauge) and two different
cases of gauge-transformed potentials (gauge 1, gauge 2).
Since this is a parametric representation, the variable t is not
observable in this frame. Notice the very different excursions
that the amplitude of the channel (1, 0) performs in the
complex plane depending on the choice of �. The end of
the “promenade” is, however, in all cases identical (as we
expected).

A similar situation is displayed in the upper-right frame for
the amplitude a01(t). Here, the curves are quite complicated
because of the predominance of the coupling term proportional
to py , associated, as we shall see, with a longer interaction
range. Although it is not possible to discern the asymptotic
values in this picture, an examination of the numbers shows
clearly that also for this channel the final state of excitation is
exactly the same, regardless of the gauge employed.

The time evolution of the quantities P1,0(t) = |a1,0(t)|2
and P0,1(t) = |a0,1(t)|2 is shown in the lower half of the

figure, just below the frames corresponding to the complex
amplitudes for each channel. The time evolution for the
excitation probability P0,1(t) is now easier to interpret than the
information provided for the complex amplitude. The sudden
character of the excitation mechanism for both channels at the
chosen relativistic energy is quite evident.

The example displayed in Fig. 2, repeated for other
sets of parameters Rg, bg and αg , many impact parameters,
and various functional forms of �, leads to the following
conclusion: Alternative calculations, independent of the gauge
chosen, yield the same final probability of excitation for all
the channels. Their time evolution, however, is not unique.
Notice that it would have been impossible, by means of a few
illustrations, to prove the opposite of this latest contention. A
few counter-examples suffice, on the other hand, to sustain the
claim.

It can be argued that the invariance of the asymptotic results
with respect to gauge transformations is to be expected because
of the pure harmonic character of the GDR mode that we
have been assuming so far. This is represented in Fig. 1 as
the coupling scheme that results from setting f = 1. Other
values of f close to 1, remember, provide mock-up conditions
of anharmonicity. For instance, f = 0.9 lowers somewhat the
excitation energy for the transitions from the one- to two-
phonon levels, increases the form factor between them, and
introduces a small direct coupling between the ground state
and the second layer of excited states.

The information contained in Fig. 3, which is in all respects
the analog of Fig. 2 but for anharmonic conditions, shows
that the conclusions drawn earlier did not rely on having a
pure harmonic mode in the linear coupling limit. A value
f = 0.9 was chosen for this illustration and the parameters
b and bg were changed to 100 and 30 fm, respectively. We
have thus taken advantage of this new example to exhibit
the general character of the results. (For simplicity, F and
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FIG. 3. (Color online) Analogous in all respects
to Fig. 2, but for the case in which the pres-
ence of anharmonicities is simulated by a factor
f = 0.9. The values of the parameters used in
this illustration are identical to those quoted in
Fig. 1. Sole exceptions are the impact parameter
b = 100 fm and bg = 30 fm. Inset shows in arbitrary
scale the behavior of the function for a much larger
interval of time as it approaches a finite, nonzero
limit (dashed line).

G have been arbitrarily assigned the same radial dependence;
a better formulation incorporates in the Hamiltonian (2.1) an
anharmonic term and its effects are calculated consistently, as
was done in Ref. [18]). There is indeed a finite final excitation
energy in the channel (0,1) for which the sudden character of
the collision is most favorable. To appreciate this, however,
we have been forced to display the function multiplied by a
large factor. This is shown in the inset, were the probability in
arbitrary units is followed over a much larger interval of the
time variable. The dashed line represents here the excitation
probability after, waiting sufficiently long, it reaches a constant
(nonzero) asymptotic value.

We show in Fig. 4 the excitation probabilities as a function
of time that correspond to the case in which we take a projectile
with the mass corresponding to lead but with zero charge. This
recreates the hypothetical situation we used for the sake of
argument in Sec. III. We can see that the resulting probabilities
reflect the analytical expressions (3.6) derived above and
help us understand the features of the probability curves
resulting from the coupled-channel equations and displayed
in Figs. 2–3.

Conditions of weak coupling—which can always be en-
forced by increasing sufficiently the impact parameter—are

indeed prevalent for the values of b used in Figs. 2–3. In fact,
the adequacy of the truncation of the basis of intrinsic states
has been checked throughout (for instance, extending the set
of channels to include all three-phonon levels).

V. CLASSICALLY ANALOGOUS PROBLEM

We now turn to a comparison between the time evolution
of the system from a quantal point of view, as it was worked
out in the previous section, and the one emerging from the
solution of the classically equivalent problem. In Ref. [15],
a very compact computer code RCE was distributed that does
precisely this, exploiting the analytic expressions of the electric
and magnetic fields generated by the relativistically moving
projectile [16]. With such a tool, supplemented by the quanti-
zation rules already used in [15], we can calculate the classical
probabilities of excitation of the giant dipole resonance,
namely, PGDR(t) = P10(t) + P01(t), and compare our results
with what was presented earlier. This is done in Fig. 5. Only the
“no-gauge” results are shown, but one should keep very much
in mind that it is possible to produce an arbitrary number
of different quantal curves by changing the function �. We
appreciate in the figure that the classical and quantal values

-0.2 -0.1 0 0.1 0.2 0.3

time [MeV
-1

]

0

5e-05

0.0001

ex
ci

ta
tio

n 
pr

ob
ab

ili
ty Rg = 30 MeV

Rg = 20 MeV

Rg = 10 MeV

channel (1,0)

-0.4 -0.2 0 0.2 0.4

time [MeV
-1

]

0

1e-05

2e-05

channel (0,1)

208
Z=0Pb + 

40
Ca (1000 MeV/nucleon)    impact parameter = 80 fm

FIG. 4. (Color online) Probabilities as a
function of time for the fictitious excitation of
the two one-phonon channels, with the charge
of lead arbitrarily set to zero. The character-
istics of these curves, seen in the light of the
analytic formulas for the amplitudes derived in
Sec. III, allow us to understand the results found
in Figs. 2–3.
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FIG. 5. (Color online) Time evolution of the probability of pop-
ulating the giant dipole resonance [i.e., PGDR(t) = P1,0(t) + P0,1(t)]
in the reaction 208Pb + 40Ca, impact parameter b = 80 fm. Solid
line results from solving the classical equations of motion in the
presence of the electric and magnetic fields created by the projectile
moving with a relativistic velocity v

P
≈ c. Dashed curve shows

the outcome of the semiclassical approximation for the “no-gauge”
situation already encountered in Figs. 2–3.

for t → ∞ coincide, as we already knew from the analysis
of Ref. [15]. However, the time dependence is quite different.
Notice also that the asymptotic value of the probability is
reached much more efficiently with the classical analysis than
by making use of the semiclassical quantal amplitudes.

In retrospect, the time evolutions that came from the semi-
classical formalism are somewhat odd. In fact, the oscillations
in the probabilities for the one-phonon channels—especially
the (01)—shown in Figs. 2 and 3 mean that there is a sustained
“exchange” of probability between the ground state and the
GDR (also observed by the authors of Ref. [17]) that keeps
taking place long after there is any apparent justification for
such trade-off to occur.

Let us expand on this a bit further. The electric operators
that govern Coulomb excitation for a multipolarity λ have the
familiar radial dependence R−λ−1. For the GDR, one then
expects a cutoff of the couplings for large distances that is
R−2. In the relativistic formulation, however, the presence of
the vector potential in

( �p − (q/c) �A)2
ends up introducing,

in our context, a coupling term of the form �py . The radial
dependence of such a term is R−1, which is responsible for the
much longer interaction range noted above. It also accounts for
the rapid oscillations, because the frequency of the probability
exchange shown in Figs. 2 and 3 corresponds precisely to that
of the harmonic motion. Regardless of this “explanation,” an
indisputable fact is that the relativistic electric and magnetic
fields �E, �B, have both an asymptotic radial dependence R−2

[16]. Beyond these considerations, the semiclassical time
evolution of the probabilities displayed in Figs. 2, 3, and 5
as we have already stressed, is not even unique. Confronted
with this situation, one is practically compelled to give up
making sense out of any particular choice; we will present
some other arguments to this effect in Sec. VI.

The classical evolution is, on the other hand, a well-
defined problem. Actually, for “perturbative” conditions where

〈E〉 	 h̄ω, what we are plotting in Fig. 5 is just proportional to
the average excitation energy of the mode, and it makes perfect
sense that this quantity achieves its asymptotic constant value
right after the intrinsic and relative components of the motion
get effectively decoupled.

We should now mention that although we called the
reference curves “no gauge” they do correspond to a specific
choice. In fact, the potentials of Ref. [15] given in (2.2) and
(2.3) are no other than the pure Liènard-Wiechert expressions,
belonging to the Lorentz gauge. Given the results shown in
Fig. 5, one wonders if some special gauge transformations
could be found to bring the coupled-channel probabilities as
close as possible to the compact, classical predictions.

Let us finish this section with one last elaboration. We
are accustomed to classifying as “relativistic collisions”
those in which the energy per nucleon becomes comparable
with the rest energy of either neutrons or protons. Thus,
reaction formalisms are not normally adapted to conform to
a relativistic regime until bombarding energies reach to about
≈400 MeV/nucleon.

The aspects of the semiclassical picture that we have
brought into focus in this contribution, however, become
relevant whenever magnetic effects are not negligible. But the
usual criterion to ignore effects related to the vector potential
�A is that v 	 c. Notice that this condition is not fulfilled even

in what we call low-energy nuclear reactions. For instance,
in the reaction Ca + Pb at 50 MeV per nucleon, one can
estimate v/c ≈ 0.3. Thus, before even checking with an actual
calculation, one would expect that the differences in range and
the rapid oscillations in the time evolution predicted by the
semiclassical approximation will be present also at traditional
low-bombarding energies, i.e., outside of a strictly relativistic
reaction regime.

The calculation shown in Fig. 6 confirms this anticipation.
Of course, the uniform, rectilinear assumption concerning the
trajectory of relative motion would be questionable in this
limit, but it would not invalidate the lesson we draw. One
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FIG. 6. (Color online) Analogous to Fig. 5, but at a relatively
low bombarding energy of 50 MeV/nucleon and impact parameter
b = 25 fm. The classical and coupled-channel results are in better
overall agreement, but the persistence of long-range oscillations in
the quantal probability remains in full evidence.
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can entertain the idea of a hypothetical problem in which, by
some combination of forces, the relative motion may indeed
be constrained to stay on a straight line.

VI. SUMMARY AND CONCLUSIONS

A nuclear collision is easily visualized as a time-dependent
process in which a projectile approaches a standing target and
undergoes the particular sequence of steps which characterizes
or defines the reaction in question. It was obvious from the very
beginning, however, that enforceable initial conditions cannot
conform to this intuitive idea. In fact, it is not feasible to send
a single projectile to the awaiting target. The experimental
situation corresponds rather to that generated by an accelerator
beam whose section across is of human scale (i.e., infinite
insofar as nuclei are concerned) and which carries an electrical
current usually in the order of, say, microamperes. This
amounts to an enormous number of impinging particles per
unit time and per unit area.

These circumstances may appear at first inconvenient in
terms of the original, simple, time-dependent visualization.
But they actually made possible an extraordinary simplifica-
tion in the formal treatment of the scattering problem. It is
easy to realize that the boundary conditions we mentioned
above are best embodied in an “incident” plane wave (whose
normalization is tied to the incoming flux of particles) that
represents the continuous, uniform, and uninterrupted arrival
of projectiles over a very wide front perpendicular to the beam
direction. The situation thus becomes, for all practical matters,
stationary, and one searches for the scattering amplitudes
fn(θ, ϕ) by solving the Schroedinger equation independent
of time. Notice, then, that in such a formulation, which
the semiclassical treatment aims to approximate, nowhere is
there a variable “time” to be considered. Neither ate there
“impact parameters” to be concerned with, since the incident
plane wave results from a coherent combination of all partial
waves 
.

Why is it, then, that expressing the solution to our problem
in terms of the time evolution of some set of equations for
a given impact parameter does not make us uneasy? Let us
just say that we are by now so accustomed to approaching
the scattering problem with the concept of “test” particles that
we no longer pause to reflect that neither of those physical
quantities, time t or impact parameter b, are true observables
from a quantal point of view. Yet, and as a consequence, no
meaningful or unique answers should necessarily be expected
from the calculational framework whenever questions involv-
ing these variables are posed.

The evolution time it takes for the classical formalism
to yield the asymptotic values appears reasonable because it
conforms to the collision time associated with the actual range
of the Coulomb interaction. The semiclassical approximation,
on the other hand, may generate a remarkable transfer of
probability between the reaction channels that continues to
take place over a much longer interval of time. It seems difficult
to associate such rapidly oscillating behavior with a physically
significant effect, and thus it may be judged an artifact of the
approximation. (But, of course, ordinary intuition tends to be
more classical than quantal.) One way to accept the fact that

curves with a different time dependence can be generated at
will is by accepting the absence of a concrete meaning attached
to any them.

It is reassuring to see that our examples provide no evidence
that questions the ability of the semiclassical approximation
to predict the final values of definite observables, such as the
excitation probability of the different reaction channels for a
given impact parameter. This shores up our confidence in the
calculation of total cross sections through the semiclassical
approximation. In the case of angular distributions, however,
the adopted practice of making use of the relationship ϑ ↔ b

should be more carefully examined. In fact, the correspon-
dence between impact parameter and scattering angle is
loosely satisfied even by the heaviest systems in nature (see,
for instance, Fig. 5 of Ref. [19]), and a given ϑ is fed by a
substantial range of impact parameters. A combination of the
different partial waves may, for instance, effectively reduce the
long time it takes to stabilize the excitation probabilities.

To summarize, it follows from our present analysis that
the answer to the two questions posed earlier, just below
Eq. (1.4), are both negative. As a consequence, the identifi-
cation |an(t)|2 ↔ Pn(t) as a meaningful quantity providing
information about the state of excitation of the system at
the time t [or at a relative motion distance R(t)] is not
always appropriate. This, in turn, raises fundamental questions
about the indiscriminate use of time-dependent semiclassical
coupled-channel amplitudes in the formulation of theories
where a detailed knowledge of the intrinsic state of excitation
at all times is deemed necessary.

We do not claim to have a complete understanding of the
aspects of the semiclassical formalism put in evidence by the
theoretical considerations and model calculations performed
in the course of this investigation. On the other hand, some of
their characteristics and possible implications seem important
enough to share with our colleagues, and we urge them to
explore further these issues.
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APPENDIX

Let us consider the Hamiltonian (2.1). Expanding to leading
order in the coordinates and the momenta, we have

H ≈ H0 + Ax + By + Cpy, (A1)

where

A = q

(
∂�

∂x

)
0

+ q2v2

Dc4
�0

(
∂�

∂x

)
0

+ i
qh̄v

2Dc2

(
∂2�

∂y∂x

)
0

,

B = q

(
∂�

∂y

)
0

+ q2v2

Dc4
�0

(
∂�

∂y

)
0

+ i
qh̄v

2Dc2

(
∂2�

∂y2

)
0

,

C = − qv

Dc2
�0.

(A2)
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Similarly, one can expand the Hamiltonian (2.4) obtained
through the gauge transformation. In this case,

H ′ ≈ H + �H, (A3)

with

�H = (�H )0 + Dx + Epx + Fy + Gpy. (A4)

The coefficients of the linear terms in (A4) are now

D = −q

c

(
∂2�

∂t∂x
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0

+ q2v

mD3
�0
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∂2�

∂y∂x

)
0

+ q2 ( �∇�)0
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(
∂ �∇�

∂x

)
0

+ q2v

Dc3

(
∂�

∂x

)
0

(
∂�

∂y

)
0

+ i
qh̄

2Dc

(
∂ �∇2�

∂x

)
0

,

E = − q

Mc

(
∂�

∂x

)
0

,

F = −q

c

(
∂2�

∂t∂y

)
0

+ q2v

Dc3
�0

(
∂2�

∂y2

)
0

+ q2 ( �∇�)0

Dc2

(
∂ �∇�

∂y

)
0

+ q2v

Dc3

(
∂�

∂x

)
0

(
∂�

∂y

)
0

+ i
qh̄

2Dc

(
∂ �∇2�

∂y

)
0

,

G = − q

Mc

(
∂�

∂y

)
0

.

(A5)

Notice that the expansion includes higher derivatives of the
potential � than in Ref. [15], and therefore the form factors
between channels in the coupling scheme that change the
number nx by ±1 acquire also a small imaginary component.
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