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Semi-microscopic calculations of the fusion barrier distributions
for reactions involving deformed target nuclei
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The double-folding model with an M3Y effective nucleon-nucleon (NN) interaction was applied to obtain the
angle-dependent bare nucleus-nucleus potential for heavy-ion fusion reactions involving deformed target nuclei.
The angular dependence with a zero-range exchange NN interaction is almost identical to that with a finite-range
interaction, allowing quick calculations of the fusion cross sections and corresponding barrier distributions
D(Ec.m.). Since in the literature the experimental D(Ec.m.) have been analyzed usually using a Woods-Saxon
shape for the nuclear part of the nucleus-nucleus potential, we fitted the spherical double-folding potentials at
the barrier radii with a Woods-Saxon (WS) form. The calculated D(Ec.m.) with this fitted WS potential, but
now accounting for the deformation of the target nuclei, are significantly different from the D(Ec.m.) calculated
directly using the double-folding potential. This indicates that the finite size effects are substantial and should
not be ignored in the analysis of experimental fusion cross sections and barrier distributions for reactions with
statically deformed nuclei.
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I. INTRODUCTION

In heavy-ion fusion reactions involving heavy, statically
deformed nuclei, it has long been recognized [1] that a
distribution of fusion barrier energies arises from random
orientations of the target nuclei. In 1991, it was shown [2]
that the actual distribution of probabilities for finding a fusion
barrier at a given center-of-mass energy Ec.m. [called the
experimental fusion barrier distribution D(Ec.m.)] could be
directly extracted from precise experimental fusion cross
sections σ by double differentiation of Eσ with respect to
energy:

D(Ec.m.) = d2(Ec.m.σ )

dE2
c.m.

. (1)

Calculations show that different nuclear shapes result
in different barrier distributions. Although differentiating
experimental data twice demanded a new level of exper-
imental precision, soon experimental barrier distributions
were measured [3] for reactions involving heavy, statically
deformed nuclei. These demonstrated that measurements of
D(Ec.m.) can give information on the magnitude and sign of
the static nuclear deformation parameters [4], at least up to
β4. In principle, a heavy-ion projectile should be a sensitive
probe of static deformation, because of the short wavelength.
Thus, the possibility of measuring static deformations from
experimental heavy-ion fusion barrier distributions was a
topic of discussion, and investigations of the sensitivity of
barrier distributions even to β6 were carried out [5]. However,
as measurements of D(Ec.m.) for reactions with statically
deformed nuclei increased in number, it was found that
calculations of D(Ec.m.) using deformation parameters from
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the literature generally did not result in completely satisfactory
reproduction of the measurements [6,7].

In these analyses, the calculated D(Ec.m.) were obtained
from a geometrical model, generally using the computer code
CCDEF and its daughter CCMOD, which include an angle-
dependent Woods-Saxon form for the nuclear contribution to
the nucleus-nucleus potential:

UnWS = − VWS

1 + exp
{[

R − rWS
(
A

1/3
P + A

1/3
T f (θ )

)]/
aWS

} . (2)

Here VWS, rWS, and aWS are the depth, radius, and diffuseness
parameters of the potential, and θ is the angle between the
symmetry axis of the target nucleus and the beam direction.
R denotes the distance between the centers of mass of the
projectile nucleus of mass number AP and the target nucleus
of mass number AT . In the function f (θ ) defining the target
deformation, multipoles up to sixth order have been included:

f (θ ) = λ−1[1 + β2Y20(θ ) + β4Y40(θ ) + β6Y60(θ )]. (3)

Here λ guarantees volume conservation [8].
However, this approach neglected at least two physical

effects that may be important. Firstly, UnWS was determined
along the line joining the centers of the two nuclei (which
we call the center-line potential), whereas for deformed nuclei
interacting with a finite size projectile, this does not usually
correspond to the minimum distance between the nuclear
surfaces. Secondly, the expectation of a dependence of the
nuclear potential on the surface curvature was disregarded. It
was shown geometrically in Ref. [9] that these two effects can
significantly change the calculated near-barrier fusion cross
sections and, thus, the corresponding D(Ec.m.).

If the nuclear part of the nucleus-nucleus potential were
calculated by means of a semi-microscopic double-folding
model (DFM), all such finite size and curvature effects should
be automatically accounted for. The DFM was applied in
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Ref. [10] to calculate the fusion barrier energies for reactions
where both projectile and target nuclei are spherical. This paper
describes the extension of the DFM approach to reactions
where the heavy nucleus possesses a static deformation.

The present study has two aims. The first and principal
objective of our study is to see how the finite size effects
calculated with the DFM compare with those determined
geometrically, and how the calculated D(Ec.m.) differ from
those using the simple center-line Woods-Saxon potential
that is widely used. These questions, to our knowledge, are
investigated here for the first time. Secondly, it is interesting
to see to what extent the DFM can describe the measured
D(Ec.m.). This question was already addressed in Ref. [11]
where, however, calculations had been made for only one
reaction (16O + 154Sm) accounting for quadrupole and hexade-
capole deformations of 154Sm. There, the calculated D(Ec.m.)
exhibited a double-humped structure (see Fig. 6 of Ref. [11])
that is not observed in experiment and was not explained in
that work. We will compare our results with those of Ref. [11]
and with a number of experimental barrier distributions.

The basic equations of the DFM can be found in many
papers; see e.g., Refs. [12] and [13]. Recently a new computer
code was developed, as described in Ref. [10], to calculate
the DFM nucleus-nucleus potential for the interaction of two
spherical nuclei. All the basic equations of the DFM are
presented in that paper.

Aspects of the DFM as applied to deformed target nuclei
are described in Refs. [14] and [11]. However, in order to
make this paper self-contained, we describe in Sec. II the
extensions made to the code of Ref. [10] to allow modeling
of collisions of deformed nuclei, including the choice of the
input parameters for the DFM calculations that are compared
to experimental data. We also make a comparison between
the fusion barrier energies calculated using the zero- and
finite-range exchange term of the M3Y NN interaction and
show that the time-consuming finite-range calculations can
be well reproduced by much faster zero-range calculations.
Section III is devoted to the comparison of the calculations
with experimental fusion barrier distributions, and with other
calculations not using the DFM.

II. DOUBLE-FOLDING MODEL FOR FUSION WITH
STATICALLY DEFORMED NUCLEI

A. Formalism

The geometry of the collision of a spherical projectile
nucleus P with a deformed but axially symmetric target nucleus
T is illustrated in Fig. 1. The interaction potential between the
two nuclei reads

UPT (R) = UC(R) + Un(R) + h̄2L(L + 1)

2µR2
. (4)

Here the electrostatic (Coulomb) interaction energy UC(R) and
the nuclear interaction energy Un(R) are defined by Eqs. (5)–
(7) of Ref. [10] in which, however, R must be replaced by R.
An important point is that the nucleus-nucleus potential and
its Coulomb and nuclear components depend not only on the
center-to-center distance R but also on the angle θ between the
center-to-center line and the symmetry axis of the deformed

FIG. 1. Coordinate system used in the double-folding model.
Vector between the centers of the projectile P and target T nuclei is
denoted by R, while rP , rT are the radius vectors of points separated
by s in the nucleon distributions of the projectile and target nuclei.
To calculate the nucleus-nucleus potential as a function of R and θ ,
integration with respect to angle ξ must be performed.

nucleus. The last (centrifugal) term is written as normal in
the point-particle approximation. By absorbing the centrifugal
kinetic energy into the potential, it is implicitly assumed that
the two nuclei approach on radial trajectories for all angular
momenta. This assumption may lead to geometrical errors
for large angular momenta; however, this aspect of fusion
with deformed nuclei is beyond the scope of this paper, where
we concentrate on the barrier distribution, involving only low
angular momenta.

The nuclear part of the potential Un consists of two terms,
the direct UnD term and the exchange UnE term. The direct
part of the interaction between two colliding nuclei and the
equation describing the Coulomb interaction have similar
forms [see Eqs. (5) and (6) of Ref. [10]] involving only
diagonal elements of the density matrix. The exchange part
involves nondiagonal elements of the density matrix and the
wave number krel(R) associated with the relative motion of
the colliding nuclei. Here again it is significant that the krel

depends on both the center-to-center distance and the mutual
orientation of the target and projectile nuclei.

Two parametrizations of the effective nucleon-nucleon
interaction in the literature are those of the Reid [15] and
Paris [16] interactions. Since they are not significantly different
[16] and result in very similar barrier energies in the case of
spherical reactants [10], we consider in this work only the Paris
M3Y effective interaction. Both the direct vD and the exchange
vEf parts of the NN interactions comprise a sum of Yukawa-
type terms [see Eqs. (9) and (10) of Ref. [10]]. Here, subscript
D refers to the direct part of the NN interaction, while the
subscript Ef refers to the finite-range exchange part of the NN
interaction. Instead of a finite-range exchange NN interaction,
one of zero range was used in early work [17]: vEδ(s) =
GEδδ(s). The values of all the coefficients of the NN interaction
are collected in Table I of Ref. [10]. Unless specified otherwise,
these values are used throughout this paper.

In Ref. [18], it was shown that the original density-
independent M3Y interaction failed to saturate cold nuclear
matter. In order to obtain the correct value of the central
nucleon density and binding energy, several versions of a
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density-dependent M3Y interaction have been proposed (see,
e.g., Refs. [18] and [19]). The density dependence enters as a
multiplier F (ρFA) of the density-independent NN interaction.
The function F is given by Eq. (12) of Ref. [10] where
the nucleon density ρFA is specified as well. The density-
dependent Paris NN interaction results in the correct saturation
binding energy of about 16 MeV/nucleon and a nuclear
density of 0.17 fm−3, for several sets of coefficients that are
presented in Table I of Ref. [19] and Table II of Ref. [10].
The use of a density-dependent NN interaction means that the
bare M3Y direct and exchange NN interactions, vD(s) and
vEf (s), in the folding integrals should be replaced by products
F (ρFA)vD(Ef )(s).

B. Evaluating the double-folding integrals

If a zero-range exchange interaction is used, the nondi-
agonal elements of the density matrix in the folding integral
are reduced to diagonal elements. The resulting integral can
be easily evaluated. However, when a finite-range exchange
interaction is applied, three factors cause major difficulties in
calculating the exchange part of the nuclear potential.

First, krel, which should be known to find the nucleus-
nucleus interaction potential UPT (R), depends on the inter-
action potential, resulting in a self-consistency problem. It is
overcome by applying an iterative procedure [10].

Second, krel depends on the initial energy of relative
motion Ec.m.. It is technically impractical to calculate the
double-folding integrals for each individual value of Ec.m..
Fortunately, UPT (R, θ ) depends rather weakly upon Ec.m. via
krel. Therefore, we calculate the UPT (R, θ ) for Ec.m. = BZ =
ZP ZT /(A1/3

P + A
1/3
T ) and use this potential for any value of

Ec.m. around BZ .
The third obstacle is much more complicated. In order to

compute the integral for the exchange part of the nuclear
potential, one has to calculate the nondiagonal elements of
the density matrix which depend on two spatial points. The
calculation is performed using the density matrix expansion
method of Refs. [20] and [21], which makes the following
approximation:

ρA(r; r + s) � ρA(r + s/2)̂1[keff(r + s/2) · s]. (5)

Here ρA stands for the matter density distribution of either
projectile (ρPA) or target (ρT A) nucleus. The modified Bessel
function ̂1 is presented by Eq. (15) of Ref. [10]. The
effective Fermi momentum keff is calculated using the extended
Thomas-Fermi approach [21]; see Eq. (16) of Ref. [10]. For
the strength of the Weizsäcker correction term Cs , the value
1/36 is used according to Ref. [22].

In practice, when evaluating the double-folding integrals,
the momentum-space representation is used. Where only
diagonal matrix elements are involved, i.e., for the Coulomb,
nuclear direct, and nuclear zero-range exchange energies, the
actual formulas used for the computation (closely following
Ref. [14]) read

U (R, θ ) =
lmax∑

l=0,2,...

Ul(R)Yl0(θ ). (6)

In this equation, U (R, θ ) stands for either UC(R, θ ),
UnD(R, θ ), or UnE(R, θ ), and

Ul(R) = 2

π

∫ kmax

0
dkk2jl(kR)v(k)BlT (k)B0P(k). (7)

Here v(k) denotes the Fourier transform of either Coulomb,
nuclear direct, or nuclear exchange nucleon-nucleon interac-
tions (see Ref. [14] for the relevant equations), jl are spherical
Bessel functions, and the coefficients Bl read

Bl(k) =
∫ rmax

0
drr2ρl(r)jl(kr). (8)

The multipole components of the projectile or target density
ρl are defined as

ρl(r) = 2π

∫ π

0
dξ sin(ξ )ρ(r, ξ )Yl0(ξ ). (9)

From these equations, the sixfold integrals are reduced to
threefold integrals. Furthermore, the coefficients Bl(k) need
to be prepared only once for a given reaction, thus reducing
the computation to the single integration in Eq. (7) for each
value of R. This dramatically reduces computer time.

In the case of a finite-range exchange term in the NN
interaction, computation of the double-folding integral is more
involved (here we follow Refs. [12] and [11]). The actual
formulas used for the computation read

UnE(R, θ ) = 4π

∫ smax

0
dss2j0 (krel · s)

× v(s)G(R, s, θ ). (10)

G(R, s, θ ) =
∫ π

0
dξ

∫ qmax

0
dqq2 sin(ξ )

×hP (R, s, q, ξ, θ )hT (R, s, q, ξ ). (11)

hT (s, q, ξ ) = ρT (q, ξ )j1 (kT eff(q, ξ ) · s) . (12)

hP (R, s, q, ξ, θ ) =
∫ 2π

0
dϕρP (p)j1 (kP eff(p) · s) . (13)

p(R, q, ξ, ϕ, θ ) = |q − R|
= [q2 + R2 + 2Rq(sin θ sin ξ cos ϕ

− cos θ cos ξ )]1/2. (14)

For simplicity, we denoted rP + s/2 = p and rT − s/2 = q
(see Fig. 1).

For the finite-range exchange interaction, the sixfold inte-
gral is reduced formally to a fourfold integral described by
Eqs. (10), (11), and (13). However, this should be calculated
for each pair (R, θ ), while the function hP (R, s, q, ξ, θ ) can
be prepared in advance, but depends on five variables. The
computer time needed for the finite-range calculations is
roughly 3 orders of magnitude larger than required for the
zero-range calculations.

For best performance, the upper limits of the integrals
should be optimally set, kmax [Eq. (7)], rmax [Eq. (8)], smax

[Eq. (10)], qmax [Eq. (11)] and the maximum value of the
summation index lmax [Eq. (6)]. The physical results should
not depend upon the actual values of these parameters, but
the computations should be reasonably fast. We found that
for the reactions under consideration, these conditions are
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fulfilled with rmax = smax = qmax = 3RT , kmax = 5 fm−1, and
lmax = 10. Inclusion of too few multipoles may result in
oscillations in the results.

C. Calculating fusion cross sections and barrier distributions

To calculate the fusion cross sections quantum
mechanically, the coupling of the relative motion of the
reactants to the rotational states of the deformed target
nucleus should be modeled. However, in this work we must
apply the commonly used semi-classical approach, which for
well-deformed heavy nuclei gives results very close to those of
full quantum mechanical calculations (see, e.g., Refs. [5,23]).

The transmission coefficients TL(θ ) were calculated using
the parabolic barrier approximation, for each value of θ in
the interval 0◦ to 90◦ with a step of 5◦. Then the fusion cross
sections were found according to the formulas of Refs. [4,23]

σ (L, θ ) = πh̄2

2µEc.m.

(
2L + 1

1 + exp {2π [VB − Ec.m.)]/h̄ωB}
)

,

(15)

where VB and ωB are both L- and θ -dependent as detailed in
Appendix A, and

σ =
∑

L

∑
i

σ (L, θi) sin(θi)�θ. (16)

We found that changing the �θ from 5◦ to 2◦ or 1◦ typically
changes the cross sections and barrier distributions by less then
2%, indicating that a step of 5◦ is small enough.

D. Input parameters for the calculations

The DFM calculations require the following input param-
eters: the nucleon density distribution for colliding nuclei and
the values of the deformation parameters β2, β4, and β6 of
the target nucleus. In these calculations, for simplicity we
take ρP (T )A = ρP (T )ZA/Z. For the proton density distributions
ρP (T )Z , two-parameter Fermi (2pF) profiles were used for both

projectile and target nuclei:

ρPZ(r) = ρ0P {1 + exp[(r − RP )/aP ]}−1, (17)

ρT Z(r, θ ) = ρ0T {1 + exp[(r − RT f (θ ))/aT ]}−1. (18)

The parameters RP (T ) and aP (T ) were defined using the data
on the charge density obtained experimentally from electron
elastic scattering. The values of these parameters as well
as their sources are presented in Table I. For those nuclei
where the data were not available in the literature, the radius
parameters were obtained by scaling those of the closest
nuclei. The diffuseness of the charge density was taken to
be equal to that of the closest nucleus for which it was
available. The influence of the diffuseness of the nucleon
(proton) density distribution on the barrier energy has been
discussed in Ref. [10].

For four of the five target nuclei in Table I, information
on RT and aT was taken from the electron scattering analysis
of Ref. [24]. That study has several advantages. Firstly, the
data were fitted with a target charge density profile as given
in Eq. (18). Secondly, not only the values of RT and aT

were found, but also the deformation parameters β2,4,6, were
obtained at the same time. The sets of parameters from this
work are used throughout the paper, if not specified otherwise.

The electron scattering data give information on the charge
density distribution of the scattering nucleus, whereas in the
DFM the point proton and nucleon density distributions are
needed. Therefore, the radius parameters for the proton density
were taken to be equal to those for the charge density, whereas
the diffuseness parameters were corrected for the finite width
of the charge distribution of a single proton. In order to make
this correction, we used the relation between the average
square radii of the proton and charge distributions. The actual
formula relating the diffuseness of the charge distribution aC

to that of the point proton density distribution aZ reads

aZ =
√

a2
C − 5π2

7

(
0.76 − 0.11

N

Z

)
, (19)

TABLE I. Seven reactions for which calculations of the D(Ec.m.) were performed and for which experimental data on the D(Ec.m.) are
available. Values of the target nucleus deformation parameters β2,4,6 and of the matter density distribution parameters of the projectile (RP and
aP ) and target (RT and aT ) were taken from Ref. [24] unless another source is indicated.

Reaction β2 β4 β6 RP (fm) aP (fm) RT (fm) aT (fm) Source of experimental D(Ec.m.)

16O + 154Sm 0.311 0.087 −0.018 2.608a 0.465a 5.939 0.479 Ref. [4]
16O + 186W 0.310b −0.030b 0.000c 2.608a 0.465a 6.580b 0.433b Ref. [4]
16O + 238U 0.261 0.087 0.000 2.608a 0.465a 6.805 0.569 Ref. [6]
34S + 168Er 0.338d 0.000d 0.025d 3.443e 0.559e 6.161f 0.441f Ref. [5]
19F + 232Th 0.238 0.101 0.000 2.580g 0.525g 6.592 0.533 Ref. [27]
12C + 238U 0.261 0.087 0.000 2.441c 0.456c 6.805 0.569 Ref. [27]
12C + 232Th 0.238 0.101 0.000 2.441c 0.456c 6.592 0.533 Ref. [7]

aTaken from 3pF Ref. [25].
bRef. [26].
cRP was scaled from 3pF 14N; aP was taken to be the same as for 3pF 14N, Ref. [25].
dRef. [5].
eRef. [4].
fTaken to be the same as in 2pF for 166Er, Ref. [25].
gTaken from 2pF Ref. [25].
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as obtained from Eq. (17) of Ref. [17] and the equations
relating the average square radius of a 2pF-profile with its
radius and diffuseness parameters in Ref. [8].

In the analysis of the electron scattering experiments, the
charge diffuseness parameter aT was assumed to be angle
independent. However, it was pointed out in Ref. [28] that
the diffuseness parameter must be angle dependent. This
results from the condition that the density gradient normal
to a constant density contour should be constant, independent
of the deformation. We estimated the effect of the aT angular
dependence on the barrier distribution and found it to be less
than 10% (see Sec. III B for details). To be consistent with
previous work [10,11], we took aT to be angle independent in
all the calculations below unless specifically mentioned.

Having specified the input parameters, we can start to
compare the calculated potentials and barrier distributions with
other calculations and with experiment. First we compared the
fusion barrier energies for reactions of spherical nuclei, as
calculated with the new deformed DFM computer code, with
the energies obtained using the spherical DFM code developed
in Ref. [10]. The barrier energies and radii agreed within
0.05% and 0.2%, respectively. Detailed comparisons with the
deformed DFM calculations of Ref. [11] for the reaction of
16O + 154Sm are made in Appendix B.

E. Finite-range versus zero-range exchange interaction:
Studying the impact on fusion barrier energies

Our code is able to calculate the nucleus-nucleus potential
with both finite-range (including the density dependence of
the NN interaction for the case of two spherical nuclei)
and zero-range exchange terms in the M3Y NN interaction.
In Fig. 2, we compare the barrier energies VBδ and VBf

calculated with these two options for the 16O + 154Sm reaction,
taking β2,4,6 = 0.311, 0, 0. In Fig. 3, the same comparison
is presented but for β2,4,6 = 0.311, 0.087, −0.018. The latter
set of deformation parameters were taken from Ref. [24],
though the obvious misprinting of β6 was corrected. The
barrier energies were calculated as a function of θ . We see that
changing from zero to finite range practically does not affect
the VB(θ ) dependence, but rather results in an approximately
constant shift downward in energy. Moreover, the shift is very
close to that of the spherical case.

Remembering that the finite-range calculations are
extremely computer time consuming, we decided to simulate
the finite-range calculations by zero-range ones, the latter with
a modified strength of the exchange part of the NN interaction.
The modified value of GEδ was found by setting the zero-range
spherical barrier energy to be equal to that calculated with
the finite-range exchange term, whose original value was
GEδ = −592 MeV fm3. The correction �GEδ resulting in
reproduction of VBf with an accuracy of 0.01 MeV was
found to be �GEδ = −160 MeV fm3 (the zero-range barrier
energy is reduced by 0.03 MeV as the �GEδ changes by
10 MeV fm3). Now we calculate the barrier energy VBδm(θ )
with the modified value of GEδ = −752 MeV fm3. In the
lower panels of Figs. 2 and 3, the differences VBδ(θ ) − VBf (θ )
and VBδ(θ ) − VBδm(θ ) as well as VBδ(sph) − VBf (sph)
are shown. They differ from each other by ∼0.01 MeV,

.

.

.

.

.

FIG. 2. Upper panel: Barrier energies VBδ (lines with triangles)
and VBf (lines with circles) calculated with the zero- and finite-
range exchange interactions, respectively, for 16O + 154Sm reaction.
Horizontal dashed lines correspond to the spherical target. The curves
are for β2,4,6 = 0.311, 0, 0. Barrier energies calculated with the
modified zero-range exchange interaction, VBδm, are included but
are not seen bacause they practically coincide with the VBf . Lower
panel: Differences between the barrier energies. Dashed lines indicate
VBδ − VBf ; solid line is for VBδ − VBδm.

essentially independent of angle. Thus, the approximation
of the finite-range exchange term by a corrected zero-range
exchange term is good enough for our purposes.

FIG. 3. Same as Fig. 2, but for β2,4,6 = 0.311, 0.087, −0.018.
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III. COMPARISON WITH EXPERIMENTAL DATA

The double differentiation to convert the calculated fusion
cross sections into the barrier distributions D(Ec.m.) was
performed according to the same numerical formula used
to determine the experimental D(Ec.m.) (see Ref. [23]).
Moreover, a differentiation step of 2 MeV was used in the
calculations, which is also close to those with which the data
were processed.

A. Reaction 16O + 154Sm

Since many measurements and calculations have focused on
the 16O + 154Sm reaction [1,3,4,9,11,29,30], we first compare
our calculations with the data for this reaction, in Fig. 4. Here
the experimental barrier distribution has been evaluated taking
an energy step of 2.26 MeV. The calculation shown by the
dotted line was made with the unchanged Paris zero-range
exchange NN interaction. The shape of D(Ec.m.) is similar to
that of the experiment (open circles with the error bars), but
the average barrier energy is certainly too high. Figures 2 and
3 show that accounting for the finite range of the exchange
interaction reduces the value of VB . Therefore, we calculated
the D(Ec.m.) with an increased strength of the exchange inter-
action �GEδ = −160 MeV fm3 (shown by the thin solid line in
Fig. 4). This helps, but it is not enough to match the experiment.

An additional reduction in the barrier energy comes from
accounting for the density dependence of the NN interaction
as shown in Fig. 5. For simplicity, calculations were done for
the 16O + 154Sm reaction considering the target nucleus to be
spherical. The open circles in this figure correspond to different
types of DFM calculations, namely the zero-range (δ) and the
finite-range density independent (0) and the density-dependent
(1–8) interactions [the coefficients of the function F (ρFA)
are listed in the Table II of Ref. [10]]. The experimentally

FIG. 4. Barrier distributions defined by Eq. (1) for the
16O + 154Sm reaction. Open circles show experimental data of
Ref. [4]; lines are for DF calculations. Dotted line indicates the calcu-
lation with the original Paris zero-range exchange term; thin solid line,
calculation with GEδm = −752 MeV fm3 (�GEδ = −160 MeV fm3);
thick solid line with dots, GEδm = −942 MeV fm3 (�GEδ =
−350 MeV fm3).

FIG. 5. Calculated fusion barrier energies for the reaction
16O + 154Sm (target nucleus is considered spherical) for all types of
DF calculation, namely zero-range (δ) and finite-range density inde-
pendent (0) and density-dependent (1–8) interactions. Experimentally
determined average barrier energy is indicated by the horizontal line.

determined average barrier energy is indicated by the horizon-
tal line. The DD2 version of the density-dependent NN interac-
tion provides the minimum value of the barrier energy, which
is the closest to the experimental value. Therefore, we made
an additional modification to the strength of the zero-range
exchange interaction with the aim to reproduce this minimum
value of VB . The value of �GEδ =−350 MeV fm3 was found
to be suitable for this purpose in the case under consider-
ation. The barrier distribution calculated with the modified
GEδm = −942 MeV fm3 is presented in Fig. 4 by the solid line
with dots. These calculations agree with the data quite well.

B. Other reactions with statically deformed nuclei

The results of calculations for the other six reactions listed
in Table I are presented here, using the same modification of the
Paris zero-range exchange interaction as above. Comparisons
with experimental barrier distributions for these reactions are
made in Figs. 6 and 7. The average barrier energies of the
experimental distributions are reproduced quite well by these
calculations, which also almost matched the 16O + 154Sm data.
At the lower energies, the calculations generally agree well
with the data. However, in most cases, the higher energy
peak associated with collisions with the equator of the prolate
deformed target nuclei has a significantly larger weight in the
calculations.

This could have three distinct causes: (i) the deformation
parameters are not correct, (ii) the DFM input parameters are
not correct, or (iii) other physics is not included in the model.

For the target nuclei 154Sm, 232Th, and 238U, the de-
formation and DFM input parameters were taken from the
self-consistent electron scattering analysis of Ref. [24]. Thus,
the degree of agreement between the calculated and measured
D(Ec.m.) in Figs. 4, 6, and 7 may reflect the degree of
overlap between the physics of electron scattering and the
more complex situation of heavy-ion interactions.

The parameters for the other deformed nuclei are less well
defined. For 186W [see Fig. 6(a)], the only parameters of
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(c)

(a)

(b)

FIG. 6. Barrier distributions calculated using the DFM (thick
solid lines with dots) with the zero-range modified exchange term
(�GEδ = −350 MeV fm3) are compared with the experimental data
(open circles) from Refs. [4] (16O + 186W), [6] (16O + 238U), and [5]
(34S + 168Er). Dashed line in (a) represents the DF calculations with
theoretical values for deformation parameters β2,4,6 = 0.230, −0.107,
0 from Ref. [32]. Dash-dotted lines in (b) and (c) represent the
D(Ec.m.) obtained using the angular-dependent matter diffuseness
for the target nuclei. Here and in the figures below VB denotes the
spherical barrier energy calculated with the modified Paris zero range
exchange interaction.

the density distribution which we are aware of come from
Ref. [26]. However, in that work the electron scattering data
were analyzed under the assumption that the target nuclei
density distribution did not possess any deformation, i.e.,
a spherically symmetric 2pF distribution was used. It is
intrinsically inconsistent to use the values of RT and aT

obtained in this way, while simultaneously treating 186W as
a deformed nucleus. Moreover, no experimental information
about the values of β4 and β6 are known to us. The value
of β2 = 0.2238 tabulated in Ref. [31] is very close to the

(a)

(b)

(c)

FIG. 7. Same as in Fig. 6. Experimental data are from Refs. [27]
(19F + 232Th and 12C + 238U) and [7] (12C + 232Th).

theoretically predicted 0.230 from Ref. [32]. The values of
β4 = −0.107 and β6 = 0 have been predicted in that work.
Thus, we used those theoretical values for all deformation
parameters in the calculations presented in Fig. 6(a) by the
dashed line. The agreement with the data is much worse than
for 154Sm. Since no consistent input parameter set is available
for 186W, we feel free to vary the deformation parameters.
The calculation shown in Fig. 6(a) by the thick solid line with
dots was performed with β2,4,6 = 0.31, −0.030, 0 according to
Ref. [4]. It agrees quite well with the data; even the height of the
peak of D(Ec.m.) is reproduced. For the reaction of Fig. 6(c),
34S + 168Er, the values of the input parameters are also not
well defined. The values of RT and aT are not available in the
literature. Therefore, we used the values of these parameters
as presented in Ref. [25] for 166Er. However, the values in
Ref. [25] came from Ref. [24], which stressed that it was not
possible to fit satisfactorily the electron scattering data with
the 2pF profile of Eq. (18). For the deformation parameters, we
took the values β2,4,6 = 0.338, 0.0, 0.025 according to Ref. [5].
In this set, the value of the hexacontatetrapole deformation has
the opposite sign to that theoretically predicted in Ref. [32].
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Turning to the DFM input parameters, it is important to
note that up to now all our calculations have been performed
with a constant (angular-independent) matter diffuseness. In
order to demonstrate the effect of the (theoretically required)
angular dependence discussed previously, we performed such
calculations for the reactions of Figs. 6(b) and 6(c), 16O + 238U
and 34S + 168Er. The resulting D(Ec.m.) are presented there
by dashed-dotted lines. Comparing these with the D(Ec.m.)
calculated using the constant aT , we conclude that the angular
dependence, although not of crucial importance, is significant
in the case of the 16O + 238U reaction for the low-energy
shoulder (the experimental errors in this region are much
smaller than the symbol size). Thus, it would be interesting
to reanalyze the data on electron elastic scattering using an
angular-dependent diffuseness of the matter distribution.

It is noticeable in Figs. 6 and 7 that for the reactions with
uranium and thorium target nuclei, the calculated D(Ec.m.) are
much too high at their maxima in comparison with the data.
At the same time, for the 16O + 154Sm reaction (see Fig. 4),
the agreement between calculated and measured D(Ec.m.)
is much better. Since the shape of the D(Ec.m.) is believed
to be dominated by the deformation of these target nuclei,
one might have expected a similar degree of agreement or
disagreement for these reactions involving 154Sm, 232Th, and
238U (see Table I). Let us focus on the barrier distributions for
the reactions 16O + 154Sm (Fig. 4) and 16O + 238U [Fig. 6(b)].
The ratio of the calculated D(Ec.m.) at the peak DpDF to the
experimental one Dpexp is equal to 1.2 in Fig. 4; whereas
for the second reaction, DpDF/Dpexp is as large as 1.9. The
reason for that is the following. The values of the Dpexp are
approximately 600 mb/MeV for the samarium target nucleus
and only 450 mb/MeV for the uranium. From the values of
the quadrupole deformation, which are 0.311 for the former
case and 0.261 for the latter case, the opposite is expected: the
larger the value of β2, the flatter the barrier distribution.

Another source of difference between these two reactions
is the matter diffuseness, which is different for 154Sm and
238U by some 15% as seen in Table I. Thus, in Fig. 8 we
present the D(Ec.m.) calculated for the 16O + 238U reaction

FIG. 8. Barrier distributions calculated using the DFM for the
16O + 238U reaction with three values of aT : 0.596 fm (solid line),
0.479 fm (dashed line), and 0.343 fm (dashed-dotted line). Deforma-
tion parameters are β2,4,6 = 0.311, 0.087, −0.018.

with β2,4,6 = 0.311, 0.087, −0.018 (which are standard for
samarium), but with different values of the diffuseness aT :
0.569 fm, the standard value for uranium (solid line); 0.479 fm,
the standard value for samarium (dashed line); and 0.343 fm
for illustrative purposes (dashed-dotted line). It is clearly seen
from this figure that the value of DpDF decreased down to
700 mb/MeV in the case of aT = 0.479 fm, which is still much
higher than the experimental value of 450 mb/MeV seen in
Fig. 6 for 238U. The area under the barrier also decreases
as the diffuseness is reduced. This can be explained by the
smaller barrier radius (and thus higher barrier) that results
with a smaller matter diffuseness. Thus, reasonable variation
of the matter diffuseness cannot alone explain the difference
between measurements and calculations for the 16O + 238U
reaction as well as the difference between the D(Ec.m.) for the
16O + 238U and 16 O + 154Sm reactions.

One more possible source of the difference is purely a size
effect. In order to explore it, we calculated D(Ec.m.) for four
reactions involving 238U, 208Pb, 154Sm, and 90Zr as the target
nuclei. For this comparison, we used in all cases the same
projectile nucleus 16O, the same values of the deformation
parameters β2,4,6 = 0.311, 0.087, −0.018, and the same value
of aT = 0.479 fm. The values of RT were of course different:
for 238U and 154Sm, they are presented in Table I; for 208Pb
and 90Zr, the values of 6.631 and 4.878 fm were taken (see
Table VII of Ref. [10]). The classical, sharply defined barrier
distribution is smoothed by quantum-tunneling through the
barrier. The energy smoothing width due to tunneling is
expected to be similar for each reaction, but the absolute
width of the barrier distribution should scale with ZT , thus
relatively more smoothing should occur for the lighter nucleus.
To illustrate this, the calculations were normalized by dividing
by the average barrier energy and are shown in Fig. 9(a),
where it is clear that as expected, the smoothing of the barrier
distribution evolves monotonically on this scale, becoming
larger as AT decreases. This is why the structure disappears
as the target nucleus becomes lighter. Thus, the systems
with a higher average fusion barrier should give a better
“resolution” for the structure of the barrier distribution, since
the relative contribution of the smoothing due to quantum
tunneling is reduced. The experimental barrier distributions
for the 16O + 238U and 16O + 154Sm reactions, normalized as
above, are shown in Fig. 9(b). In contrast with the theoretical
calculations above, the data for the two reactions show almost
no difference in the shapes of the barrier distributions. Thus,
the different level of agreement between data and calculations
for the 16O + 238U and 16O + 154Sm reactions appears to result
to a large extent from differences in the calculations, rather than
differences in the measurements. This difference may well
be due to couplings to vibrational states (which on average
will scale with the barrier energy) and transfer channels,
which are not within the scope of the present geometrical
calculations.

The deformations of samarium and uranium target nuclei
are only slightly different (see Table I). In order to see the
impact on DpDF of changes in deformation, we present in
Fig. 10 the barrier distributions calculated for the reaction
16O + 238U with several sets of different target nucleus defor-
mations. The solid curve with dots represents the basic set of
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(a)

(b)

FIG. 9. (a) Barrier distributions calculated using the DFM for four
reactions with the same aT = 0.48 fm, β2,4,6 = 0.311, 0.87, −0.018,
and 16O as projectile nucleus. Target nuclei are 90Zr (long dashed
line), 154Sm (solid line), 208Pb (dashed-dotted line), and 238U (short
dashed line). (b) Experimental barrier distributions for two reactions.
For each reaction, the collision energy in the center-of-mass frame
was divided by its barrier energy.

β2,4,6 = 0.261, 0.087, 0. The thin solid curve was obtained
with the deformation parameters of 154Sm: β2,4,6 = 0.311,
0.087, −0.018. The increase of the quadrupole deformation
brings the peak value of DpDF down significantly. The small
hexacontatetrapole deformation is insignificant for the peak
value of the barrier distribution, as seen from the dashed line
obtained with β2,4,6 = 0.311, 0.087, 0 (but it is significant for
the low-energy part of D(Ec.m.) as seen in the figure). The next
calculation was performed without hexadecapole deformation
and with the original value of the quadrupole deformation of
uranium (β2,4,6 = 0.261, 0, 0, thick solid line without dots). The
absence of β4 appears to be very important for the peak value
of the barrier distribution which decreases by 30%. Finally,
we show by the dashed-dotted line the D(Ec.m.) calculated
with extremely large value of β2 = 0.338, which is inherent
to 168Er. In this case, the DpDF decreases down to the value
of 600 mb/MeV but the shape of D(Ec.m.) is significantly
different from the experimental one.

To summarize, it seems impossible to explain in detail
the experimental results within the framework of this DFM
approach. The experimental data themselves in Refs. [4–7]
were obtained by including proper exit channels. For instance,

FIG. 10. Barrier distributions for the 16O + 238U reaction. Open
circles show the experimental data of Ref. [6]; lines represent
results of the DFM calculations. Thick solid line with dots is for
β2,4,6 = 0.261, 0.87, 0; thin solid line, β2,4,6 = 0.311, 0.87, −0.018;
dashed line, β2,4,6 = 0.311, 0.87, 0; thick solid line without symbols,
β2,4,6 = 0.261, 0, 0; and dashed-dotted line, β2,4,6 = 0.338, 0, 0.

in the case of the samarium target nucleus, the evaporation
residue formation represents the fusion cross section whereas
the fission probability is negligible. In the case of the uranium
target nucleus, the situation is opposite: the probability of
compound nucleus survival after emitting several neutrons
is totally negligible in comparison with the fusion-fission
process. Since no reasonable variation of the input parameters
of the DFM results in detail agreement with the data,
physical effects not included in this approach should then be
responsible. One of these may be the effect of ignoring the
different geometry involved in tangential motion, which is not
accounted for when absorbing that motion into a centrifugal
potential. Another may be coupling to vibrational states in the
deformed target nucleus, which will certainly reduce the height
of the peak. A third effect may arise from processes (such as
deep-inelastic scattering) competing with fusion, as discussed
in Ref. [33], although conventional expectations based on
the light projectiles and low energies would not favor this
explanation. It may be that these competing processes depend
on the orientation of the deformed nucleus, adding another
layer of complexity to the situation.

The second objective of this work—to compare the DFM
calculation of barrier distributions with a simpler geometrical
approach—can be achieved independently of these experimen-
tal complications and is carried out below.

C. Approximating the double-folding potential by a
Woods-Saxon potential: Importance of finite size corrections

As already discussed in the introduction, the analysis of
experimental D(Ec.m.) was performed in many papers using
the center-line WS potential of Eq. (2) in which finite size
effects are implicitly ignored. An approximate study of these
effects performed in Ref. [9] showed their significant impact
on the near-barrier fusion cross sections and on the shapes of
the corresponding D(Ec.m.).
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TABLE II. DFM barrier radii RB and energies VB , depths VWS,
radius parameters rWS, and diffusenesses aWS of the WSP that is
the best approximation to the DFM potential. Calculations were
performed assuming spherical target nuclei; in the DFM calculations,
the value GEδm = −942 MeV fm3 was used. In the last column, the
deviation of the WSP from the DFM potential is indicated (see text).

Reaction RB VB VWS rWS aWS χ 2
R

(fm) (MeV) (MeV) (fm) (fm) (10−4)

16O + 154Sm 11.19 60.13 1380 0.93 0.65 1.1
16O + 186W 11.81 69.40 1240 0.97 0.63 1.3
16O + 238U 12.19 81.94 1160 0.96 0.70 0.7
34S + 168Er 12.10 122.00 1440 0.96 0.70 0.7
19F + 232Th 12.27 89.53 1320 0.95 0.71 0.7
12C + 238U 12.08 62.02 1160 0.95 0.70 0.8
12C + 232Th 11.96 61.37 1300 0.95 0.67 1.0

Since all the finite size effects are included automatically
in the DFM calculations, we can now investigate this question
in a more rigorous way. To that end, we fitted a Woods-Saxon
potential to the DF potential in the region of the fusion barrier.
This was done for each reaction considering the target nucleus
as a spherical one with the parameters RT and aT from Table I.
In order to estimate the quality of the fit, we calculated a
relative error

χ2
R = 1

N

N∑
i=1

(
UDF(Ri) − UWS(Ri)

UDF(Ri) + UWS(Ri)

)2

(20)

for distances Ri around the fusion barrier radius RB , over
the range RB − 1 < Ri < RB + 1 fm. The parameters of the
WSP were allowed to vary within the following ranges, with
steps as shown: 1500 < VWS < 1000 MeV, �VWS = 20 MeV;
1.2 < rWS < 0.8 fm, �rWS = 0.01 fm; 0.5 < aWS < 1.2 fm,
�aWS = 0.01 fm. The parameters of the WS potentials provid-
ing the best fits to the DF potentials are presented in Table II
along with the values of χ2

R .
The quality of the fit depends mainly upon the value of

the diffuseness aWS. It is found to be around 0.6–0.7 fm, a

FIG. 11. Barrier distributions for the 16O + 154Sm reaction. Open
circles show the experimental data of Ref. [4]; solid triangles, DF
calculations; dashed line, WSCL calculation; solid line, calculation
using the WSSC potential.

(c)

(b)

(a)

FIG. 12. Barrier distributions calculated for three reactions in
Fig. 6. Solid triangles are for DF calculations; thick dashed lines,
WSCL calculations; thick solid lines, calculations using the WSSC
potential.

value significantly lower than the ≈1 fm required by the ex-
perimental data (see a survey of the experimental diffusenesses
in Ref. [33]). The question of the equivalent diffusenesses of
the DF potential was discussed in detail in Ref. [10], which
showed that the WS potential with aWS ≈ 1 fm provided a very
poor approximation of the DF potential. The depth VWS and the
radius parameter rWS of the WS show correlation and influence
the value of χ2

R rather weakly.
Now in Fig. 11, we compare the D(Ec.m.) calculated using

the DF potential (triangles), the center-line Woods-Saxon po-
tential without curvature corrections (WSCL, dashed line), and
the minimum distance Woods-Saxon potential corrected for
the curvature of the target nucleus (WSSC, solid line). These
calculations were performed for the 16O + 154Sm reaction. It
is clearly seen in this figure that accounting for the finite
size corrections definitely improves the quality with which
the WS potential reproduces the D(Ec.m.) obtained using
the DF potential. In particular, in the WSSC calculations, in
comparison with the WSCL calculations, the height of the peak
moves down and the low-energy shoulder shifts up closer to
the D(Ec.m.) obtained using the DFM and to the experimental
points (open circles).

In Figs. 12 and 13, the same comparison between three
types of calculations (using the DFP, WSCL, and WSSC) for
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(c)

(b)

(a)

FIG. 13. Same as Fig. 12, but for reactions in Fig. 7.

the other six reactions under consideration is presented. The
notations for the barrier distributions are as in Fig. 11 except
for clarity we do not show the experimental data points. For all
six reactions, accounting for the finite size effects in the WS
potential elevates the lower energy (Ec.m./VB � 0.97) shoulder
of the D(Ec.m.), thereby in general improving agreement with
the DF calculations. Quantitatively, however, both the WSCL
and the WSSC calculations deviate from the DF results by
much more than 10%, which is a typical experimental error of
the D(Ec.m.) in the region Ec.m./VB � 0.97.

It would be too optimistic, however, to expect the barrier
distributions calculated using the WSSC to coincide perfectly
with those using the DFP. At the moment, we see two reasons
for that. First, the WSSC treats the finite size effects only
approximately whereas the DFP does that exactly. The second
and clearer point is that we fit a WSP to the DFP calculated
assuming a spherical target nucleus. Certainly, the barrier
energies obtained for a deformed target nucleus with this
fitted WSP can deviate from the corresponding values of VB(θ )
obtained using the DFM. This consideration is quantified in
Figs. 14 and 15 for the 16O + 154Sm and 19F + 232Th reactions,
respectively. The barrier energies plotted in the upper panels of
these figures have been calculated for zero angular momentum

(b)

(a)

FIG. 14. Results of the DFM and WS calculations for the
reaction 16O + 154Sm. (a) Barrier energies calculated for zero angular
momentum using the DFM (triangles), WSCL (dashed line), WSSC
(solid line). (b) Differences VBDF − VBWSSC are presented for L = 0
(solid lines), L = 20 (dashed lines), and L = 40 (dashed-dotted lines).

using the DFM (solid triangles), center-line Woods-Saxon
potential (dashed lines), and WSSC (solid lines). Substantial

(b)

(a)

FIG. 15. Same as Fig. 14, but for 19F + 232Th.
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TABLE III. As in Table II, except the WSP was fitted to the DFP
at each individual angle θ for 16O + 154Sm.

θ RB VB VWS rWS aWS χ 2
R

(deg) (fm) (MeV) (MeV) (fm) (fm) (10−5)

0 12.68 55.22 1020 0.98 0.64 5.1
10 12.60 55.45 1180 0.97 0.64 1.8
20 12.38 56.14 1440 0.95 0.65 2.0
30 12.05 57.23 1080 0.98 0.64 4.3
40 11.65 58.59 1140 0.97 0.65 2.0
50 11.26 59.95 1380 0.95 0.65 6.0
60 10.98 60.91 1420 0.94 0.65 5.3
70 10.81 61.30 1400 0.94 0.64 5.1
80 10.77 61.29 1020 0.96 0.64 5.2
90 10.77 61.23 1120 0.95 0.64 4.8

deviations (up to ≈1 MeV) of the VBWS from the VBDF

are clearly seen. The discrepancy between the VBWS and
the VBDF increases with L as the lower panels of Figs. 14
and 15 demonstrate. Here the differences VBDF − VBWSSC are
presented for L = 0 (solid lines), L = 20 (dashed lines), and L =
40 (dashed-dotted lines). Obviously the use of the WSP fitted
to the DFP for the spherical target nucleus is a significant (and
inevitable) source of the quantitative difference between the
D(Ec.m.) calculated using the double-folding model and the
Woods-Saxon potential including the finite size corrections.

This does not mean that the DFP cannot be approximated
by a WSP in the case of a deformed target nucleus. But the
parameters of the WSP providing the best fit for the DFP for a
deformed target nucleus should be angle dependent and deviate
from those fitted to the spherical case. We performed such a
fit at several values of θ for the 16O + 154Sm reaction with the
deformed target and found the results presented in Table III.
The quality of the fit is very good.

Concluding this section, we have to conclude that the DFP
cannot be substituted by a center-line WS potential without
curvature corrections, WSCL, for calculating the D(Ec.m.) for
reactions with deformed target nuclei. Even the minimum
distance Woods-Saxon potential corrected for the curvature
of the target nucleus, WSSC, does not result in D(Ec.m.)
which agree (within typical accuracy of the experimental data)
with those calculated using the DF potential. This proves the
significance of carrying out an accurate treatment of finite size
effects in modeling the fusion process at near-barrier energies.

IV. CONCLUSIONS

This study was devoted to two questions. First, we wanted to
see to what extent the double-folding model could describe the
measured fusion barrier distributions for reactions involving
deformed target nuclei. The second objective was to check
the effect of the finite size of the deformed target nucleus by
means of comparison between the fusion barrier distributions
calculated using the DFM and the center-line Woods-Saxon
potentials.

To find the answers to these questions, we developed a new
computer code that allowed the calculation, using the DFM

with M3Y effective NN interactions, of the fusion barriers,
cross sections, and resulting barrier distributions for reactions
involving deformed target nuclei (quadrupole, hexadecapole,
and hexacontatetrapole deformations were accounted for).

This study showed that the angular dependence of the fusion
barriers calculated with a zero-range exchange term for the
NN interaction is very similar to that obtained using a finite-
range interaction. Thus, the rather time-consuming finite-
range calculations are successfully avoided by applying an
appropriately modified zero-range exchange term. Moreover, a
modification was found that mimicked the density dependence
of the M3Y effective NN interaction.

This code was applied to seven heavy-ion fusion reactions
involving deformed target nuclei. The fusion barrier distribu-
tions were found generally only to give qualitative agreement
with the measurements, being somewhat sharper peaked. A
range of physical effects were suggested that may need to be
incorporated into calculations before heavy-ion fusion barrier
distributions can give information on static deformation.

As existing interpretations of experimental D(Ec.m.) have
been usually carried out using a Woods-Saxon shape for
the nuclear part of the nucleus-nucleus potential, we fitted
the spherical double-folding potentials at the barrier radii
by a Woods-Saxon form. The D(Ec.m.) calculated with this
fitted WS potential, but now accounting for the deformation
of the target nuclei, are significantly different from the
D(Ec.m.) calculated using the double-folding potential. This
indicates that the finite size effects are substantial and should
be accurately incorporated into any meaningful analysis of
experimental fusion cross sections and barrier distributions
for reactions involving statically deformed nuclei.
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APPENDIX A: ANGULAR MOMENTUM DEPENDENCE

The approaches to treating the angular momentum depen-
dence of the fusion barrier parameters taken here, and in Refs.
[11,29] are compared and discussed. In those papers, fusion
cross sections were calculated for the 16O + 154Sm reaction by
performing the summation over L in Eq. (16) analytically, thus
reducing significantly the computer time used. To do that, the
following approximations were used in Ref. [11]:

ωB(L, θ ) ≈ ωB(0, θ ), (A1)

VB(L, θ ) ≈ VB(0, θ ) − h̄2L(L + 1)

2µRB (0, θ )
. (A2)

In Ref. [29], h̄ωB(L, θ ) = 7.3 MeV and Eq. (A2) was used.
We show here the effect of making those approximations and
explain why instead we calculate numerically all barrier radii
RB(L, θ ), energies VB(L, θ ), and frequencies ωB(L, θ ).

In Fig. 16, we show the barrier distributions calculated
using the DFM with three constant (i.e., L and θ independent)
values of the barrier frequency, namely, h̄ωB = 4, 6, and 8 MeV,
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. . .

FIG. 16. Barrier distributions calculated using the DFM with
constant (L and θ independent) values of the barrier frequency ωB .
Values of h̄ωB are indicated in the figure.

representing the typical range of values for different L and θ .
Qualitatively, the D(Ec.m.) remains the same as the value of
the frequency changes. However, the finite size effects we
are aiming to investigate are of order of 20%, as shown in

FIG. 17. Barrier radii RB (upper panel) and the barrier frequencies
h̄ωB (lower panel) vs the angular momentum L (solid symbols) and θ

(open symbols connected by lines). Calculations were performed for
16O + 154Sm using the DFM.

Fig. 4 of Ref. [9]. The quantitative difference of the barrier
distributions calculated with the different values of h̄ωB is
certainly significant on this scale. Thus, the approximation of
a constant frequency should be avoided.

To see to what extent it is convenient for us to use
L-independent RB(θ ) and ωB(θ ), let us inspect Fig. 17. Here
the horizontal axis is used simultaneously for L and θ . The
L-dependent barrier radii RB(L) and barrier frequencies
h̄ωB(L) are shown by solid symbols, whereas the θ -depen-
dencies of these quantities are presented by open symbols.
The L dependencies were calculated at θ = 0◦ and 45◦. The
θ dependencies were calculated at L = 0 and L = 45. These
calculations were performed for the 16O + 154Sm reaction
using the DFM.

The upper panel of Fig. 17 shows that the L dependence
of the barrier radii is indeed significantly weaker than their
θ dependence. However, the situation is certainly opposite
for the barrier frequencies: they change faster with L than
with θ . Thus, if one does not neglect the θ dependence of
the frequency, it is intrinsically inconsistent to neglect its
L dependence.

APPENDIX B: COMPARISON WITH PREVIOUS
DFM CALCULATIONS

To check the consistency of our computer code with a
previous deformed DFM code, we made calculations for the
16O + 154Sm reaction, taking the same input parameters as
in Ref. [11]. In Table I of that work, the values of the ratio
UnEδ/UnEf were presented. We compare the values calculated
using our code to those of Ref. [11] in Fig. 18. The target
deformation (if applied) was taken to be purely quadrupole
with β2 = 0.36. The lines represent our results whereas the
large solid symbols show the values presented in Ref. [11].

The trend of the results can be easily understood in the
following qualitative way. The finite-range exchange part

FIG. 18. The zero-range exchange nucleus-nucleus interaction,
UnEδ , divided by the finite-range interaction, UnEf , for the Paris
interaction calculated for 16O + 154Sm. Lines correspond to the
present calculations; symbols are from Table 1 of Ref. [11]. Solid
line and circles are for the spherical target nucleus. Other calculations
were performed for the deformed target with β2,4,6 = 0.36, 0, 0.
Dashed line and squares are for θ = 0◦; dotted line and diamonds,
θ = 90◦.
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of the Paris NN interaction is attractive for any distances
(see Table I of Ref. [10] or Eq. (19b) of Ref. [11]). The
zero-range exchange interaction appears to be only due to
the density overlap of the colliding nuclei, whereas the finite-
range interaction is due to both the density overlap and the
finite radius of the interaction itself. The larger the distance
between the centers of mass, the smaller is the density overlap.
Thus, for any value of θ , the ratio UnEδ/UnEf should decrease
as R becomes larger. Moreover, it is not the center-of-mass
distance that controls the strength of the nuclear interaction,
but rather the surface-to-surface distance S. For a fixed value
of R, S takes (for the chosen deformation) the largest value
for θ = 90◦ and becomes the smallest at θ = 0◦. In the case of
a spherical target, S is expected to take an intermediate value.
Thus, the ratio UnEδ/UnEf is expected to take the smallest
value at θ = 90◦ and the largest at θ = 0◦. Our numerical
results presented in Fig. 18 agree with these expectations.

Moreover, the deformation of the target nucleus is expected
to influence the ratio UnEδ/UnEf less and less as the distance
between the nuclear surfaces becomes larger. Our results are
in accordance with this expectation except at the largest value
of R at which our calculations lose accuracy to a certain extent.
This does not influence the fusion barrier, since at such large
values of R the nuclear part of the potential itself is negligibly
small in comparison with the Coulomb part. We are unable to
explain the irregular scattering of some points corresponding
to results of Ref. [11]. However, their results rather often agree
well with our calculations.

The D(Ec.m.) for the 16O + 154Sm reaction calculated using
the DFM potential in Ref. [11] revealed a double-peaked
structure at the collision energies below the average barrier
(see Fig. 6 of that work). No such structure has been found
in our calculations, neither for this reaction nor for the others
presented in this work (see Figs. 6 and 7).
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