
PHYSICAL REVIEW C 73, 034607 (2006)

Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering
at deep sub-barrier energies
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We perform a systematic study on the surface property of nucleus-nucleus potential in heavy-ion reactions
using large-angle quasielastic scattering at energies well below the Coulomb barrier. At these energies, the
quasielastic scattering can be well described by a single-channel potential model. Exploiting this fact, we point
out that systems which involve spherical nuclei require the diffuseness parameter of around 0.60 fm in order to
fit the experimental data, while systems with a deformed target between 0.8 and 1.1 fm.
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I. INTRODUCTION

The Woods-Saxon form, which is characterized by the
depth, radius and diffuseness parameters, has often been used
for the internuclear potential for heavy-ion reactions. Conven-
tionally, the diffuseness parameter of around 0.63 fm has been
employed for calculations of elastic and inelastic scattering,
which are sensitive only to the surface region of the nuclear
potential [1,2]. This value of surface diffuseness parameter
has been well accepted, partly because it is consistent with a
double folding potential [3]. In contrast, a recent systematic
study has shown that experimental data for heavy-ion fusion
reactions at energies close to the Coulomb barrier require a
larger value of the diffuseness parameter, ranging between
0.75 and 1.5 fm, as long as the Woods-Saxon parametrization
is used as a nuclear potential [4]. The origin of the discrepancy
in the surface diffuseness parameter between the scattering
and fusion processes has not yet been understood.

Large-angle quasielastic scattering at deep sub-barrier
energies provides an alternative way to look at this problem.
Quasielastic scattering and fusion are both inclusive processes
and are complimentary to each other. The former is related
to the reflection probability at the Coulomb barrier, while the
latter to the penetration probability. In heavy-ion reactions
at energies near the Coulomb barrier, it is well known that
the channel coupling effects caused by the collective inelastic
excitations of the colliding nuclei strongly affect the reaction
dynamics [5,6]. At deep sub-barrier energies, however, the
channel coupling effects on quasielastic scattering can be
disregarded, since the reflection probability is almost unity
at these energies irrespective of the presence of channel
couplings, even though inelastic channels themselves may be
strongly populated [7]. This is similar to fusion at energies well
above the Coulomb barrier, where the penetrability is almost
unity [4].

The above concept was recently applied to the experimen-
tally measured quasielastic scattering cross sections for the
16O + 154Sm system at deep sub-barrier energies [7]. It was
found that the larger surface diffuseness parameter of around
1.0 fm is required for this system in order to fit the data. This
value is consistent with the one required for fusion.

It is apparent that a more systematic study is necessary,
in order to clarify whether the quasielastic scattering around
the Coulomb barrier generally requires a larger value of
surface diffuseness parameter than the conventional value of
around 0.63 fm. The aim of this paper is to carry out such
systematic study on quasielastic scattering at deep sub-barrier
energies. To this end, we calculate the excitation function of the
quasielastic cross sections for systems involving both spherical
and deformed nuclei. The reactions 32,34S + 197Au, 32,34S +
208Pb, 16O + 154Sm, 186W, 208Pb, for which experimental data
exist at deep sub-barrier energies, are studied. We show that
a surface diffuseness parameter of around 0.6 fm is favored
by the data for reactions involving spherical nuclei, whilst
those involving deformed nuclei require a larger value of the
diffuseness parameter.

The paper is organized as follows. In the next section,
we briefly review the large-angle quasielastic scattering at
deep sub-barrier energies. We also explain the procedure of
our analyses which use a one dimensional ion-ion potential,
including our definition of deep sub-barrier energies. In
Sec. III, we present our results for the χ2 fitting and discuss
its sensitivity to the barrier height energy and to the channel
coupling effects. We summarize the paper in Sec. IV.

II. METHOD OF ANALYSES

A. Large-angle quasielastic scattering
at deep sub-barrier energies

Our purpose in this paper is to study the surface property of
ion-ion potential using heavy-ion quasielastic scattering. Be-
fore we explain the method of our analyses, let us first discuss
briefly the advantage of exploiting large-angle quasielastic
scattering at deep sub-barrier energies.

At energies well below the Coulomb barrier, the cross
sections of (quasi)elastic scattering are close to the Rutherford
cross sections, with small deviations caused by the effect
of nuclear interaction. This effect can be taken into account
by the semiclassical perturbation theory. The ratio of elastic
scattering σel to Rutherford cross sections σR at a backward
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angle θ is given by Refs. [8,9]

dσel(Ec.m., θ )

dσR(Ec.m., θ )
∼ 1 + VN (rc)

ka

√
2aπkη

Ec.m.

, (1)

where Ec.m. is the center-of-mass energy, k = √
2µEc.m./h̄, µ

being the reduced mass, and η is the Sommerfeld parameter.
This formula is obtained by assuming that the nuclear
potential VN (r) has an exponential form, exp (−r/a), around
the classical turning point rc = (η + √

η2 + λ2
c)/k, where

λc = η cot(θ/2) is the classical angular momentum for the
Rutherford scattering. We see from this formula that the
deviation of the elastic cross sections from the Rutherford
ones is sensitive to the surface region of the nuclear potential,
especially to the surface diffuseness parameter a. Notice
that, for small scattering angles, the Fresnel oscillation may
complicate the formula. Also, as mentioned in the previous
section, the channel coupling effects on the quasielastic cross
sections are negligible at deep sub-barrier energies. We can
thus study the effect of the surface diffuseness parameter
in a transparent and unambiguous way using the large-angle
quasielastic scattering at deep sub-barrier energies.

B. Procedure

In order to compare with the experimental data for the
quasielastic cross sections at deep sub-barrier energies, we
use a one-dimensional optical potential with the Woods-Saxon
form. Absorption following transmission through the barrier
is simulated by an imaginary potential with W = 30 MeV,
aw = 0.4 fm, and rw = 1.0 fm. This model calculates the
elastic and fusion cross sections, in which the elastic cross
sections can be considered as quasielastic cross sections to a
good approximation at these deep sub-barrier energies [10].
Note that the results are insensitive to the parameters of the
imaginary part as long as it is well localized inside the Coulomb
barrier.

In order to carry out a systematic study, we calculate the
Coulomb barrier height using the Akyüz-Winther potential
[11]. We examine several potentials with different values of
surface diffuseness parameter, which give the same calculated
barrier height. To this end, we vary the radius parameter r0

while keeping the depth parameter V0 to be 100 MeV. This
is possible because the effect of variation in V0 and r0 on the
Coulomb barrier height compensates with each other at the
surface region.

We define the region of “deep sub-barrier energies” in
the following way. In heavy-ion collisions at energies near
the Coulomb barrier, collective inelastic excitations of the
colliding nuclei and transfer reactions are strongly coupled to
the relative motion. This causes the splitting of the Coulomb
barrier into several distributed barriers [5,12]. We define
the deep sub-barrier energies as around 3 MeV below the
lowest barrier height or smaller. For this purpose, we first
use the computer code CCFULL [13] in order to explicitly
construct the coupling matrix (which includes the excitation
energy for the diagonal components) for the coupled-channels
equations for each system by including known low-lying

collective excitations. We then diagonalize it to obtain the
lowest eigenbarrier.

We find that the deep sub-barrier region defined in this way
corresponds to the region where the experimental value of
the ratio of the quasielastic to the Rutherford cross sections
is larger than around 0.94. We therefore include only those
experimental data which satisfy dσqel/dσR � 0.94 in the χ2

fitting. A few experimental data points with values exceeding
unity were excluded while performing the fits, but are shown
in the figures below.

We apply this procedure to the 32,34S + 208Pb, 32,34S +
197Au [14], and 16O + 208Pb [15] reactions which involve
spherical nuclei, as well as the 16O + 154Sm and 16O +
186W reactions [16] which involve a deformed target. For
the deformed systems the scarcity of data points at deep
sub-barrier energies led us to extend the fitting region to
somewhat higher energies. This meant that the calculations
had to take account of deformation effects as explained in
Sec. III B.

III. RESULTS AND DISCUSSION

A. Spherical systems

We first present the results for systems involving spherical
nuclei. Figure 1 compares the experimental data with the
calculated cross sections obtained with different values of
the surface diffuseness parameter in the Woods-Saxon po-
tential for the 32S + 197Au system (the upper panel) and the
34S + 197Au system (the lower panel). The Coulomb barrier
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FIG. 1. The ratio of the quasielastic to the Rutherford cross
sections at θlab = 159◦ for the 32S + 197Au (the upper panel) reaction
and for the 34S + 197Au (the lower panel) reaction. The experimental
data are taken from Ref. [14]. The solid line results from using a
diffuseness parameter obtained by performing a least-square fit to
the data. The dotted and the dot-dashed lines are obtained with the
diffuseness parameter of a = 0.80 fm and a = 1.00 fm, respectively.
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FIG. 2. The ratio of the quasielastic to the Rutherford cross
sections for the 32S + 208Pb (the upper panel) reaction at θlab = 170◦

and for the 34S + 208Pb (the lower panel) reaction at θlab = 159◦. The
experimental data are taken from Ref. [14]. The meaning of each line
is the same as in Fig. 1.

height is 141.2 MeV for the 32S + 197Au reaction and is
140.2 MeV for the 34S + 197Au reaction. The best fitted values
for the surface diffuseness parameter are a = 0.57 ± 0.04 fm
and a = 0.53 ± 0.03 fm for the 32S and 34S + 197Au reactions,
respectively. The cross sections obtained with these surface
diffuseness parameters are denoted by the solid line in the
figure. The dotted and the dot-dashed lines are calculated with
the diffuseness parameter of a = 0.80 fm and a = 1.00 fm,
respectively. Figure 2 shows the results for the 32S + 208Pb (the
upper panel) and the 34S + 208Pb (the lower panel) reactions.
The Coulomb barrier height is 145.1 and 144.1 MeV for the 32S
and 34S + 208Pb reactions, respectively. The best fitted values
for the surface diffuseness parameter are a = 0.60 ± 0.04 fm
and a = 0.63 ± 0.04 fm for the 32S and 34S + 208Pb reactions,
respectively.

It is evident from Figs. 1 and 2 that these spherical
systems favor the standard value of the surface diffuse-
ness parameter, around a = 0.60 fm. The calculations with
the larger diffuseness parameters, a = 0.80 and 1.00 fm,
underestimate the quasielastic cross sections and are not
consistent with the energy dependence of the experimental
data. We obtain a similar conclusion for the 16O + 208Pb
system, where the best fitted value for the surface diffuseness
parameter is a = 0.59 ± 0.10 fm with the Coulomb barrier
height of 76.1 MeV. The result for this system is shown in
Fig. 3.

The conclusions are not sensitively dependent on the choice
of barrier height energy VB . In order to demonstrate this, we
vary the barrier height by 1%, and repeat the same analyses.
The result for the 32S + 208Pb system is shown in Fig. 4. The
solid line denotes the result obtained with the Akyüz-Winther
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FIG. 3. The ratio of the quasielastic to the Rutherford cross
sections for the 16O + 208Pb reaction at θlab = 170◦. The experimental
data are taken from Ref. [15]. The meaning of each line is the same
as in Fig. 1.

potential, as a reference, which is the same as the solid line
in the upper panel of Fig. 2. The best fits and the resulting a
values using VB = 143.6 MeV and VB = 146.5 MeV are also
shown in Fig. 4. The a value changes by ±0.04 fm for a ±1%
change in the barrier energy. The cross sections obtained with
these potentials are shown in the figure by the dotted and the
dot-dashed lines, respectively. One clearly sees that the effect
of the variation of the Coulomb barrier height on the surface
diffuseness parameter is small. The barrier energy obtained
from the analysis of the above-barrier fusion cross sections
is 144.03 MeV [4], which is within the range of VB used
in the calculations. Thus, the diffuseness parameter extracted
in this work will not change significantly if VB determined
from fusion data, instead of the Akyüz-Winther prescription,
is used. We have confirmed a similar behavior of the surface
diffuseness parameter a for the other systems as well.

B. Deformed systems

Let us next discuss the systems with a deformed target,
that is, 16O + 154Sm, 186W reactions. For these systems, only
a few data points are available at deep sub-barrier energies.
We therefore include the experimental data at energies not
only well below but also around the lowest barrier in the
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FIG. 4. Comparison of quasielastic cross sections obtained for
three different values of the Coulomb barrier height for the 32S +
208Pb reaction. The surface diffuseness parameter is determined for
each barrier energy by fitting the experimental data.
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χ2 fitting procedure. At these energies, the channel coupling
effects start playing an important role in quasielastic reactions,
and we include the effect of deformation of the target nucleus
in our calculations. Therefore, our analyses for the deformed
systems are somewhat more model dependent than those for
the spherical systems presented in the previous subsection.

In order to account for the deformation effect on the
quasielastic scattering, we use the orientation average formula
[8,17], in which we neglect the finite excitation energy of
the ground state rotational band. With this formula, the
quasielastic cross section is given by

σqel(Ec.m., θ ) =
∫ 1

0
d(cos θT ) σel(Ec.m., θ ; θT ), (2)

where θT is the angle between the symmetry axis of the
deformed target and the direction of the projectile from the
target. In the calculation for both the systems, we take six
different orientation angles into account [18]. The results
change only marginally even if we include the larger number
of orientation angles.

The best fitted value for the surface diffuseness parameter
obtained in this way is a = 1.14 ± 0.03 and 0.79 ± 0.04 fm
for the 16O + 154Sm and 16O + 186W reactions, respectively.
The deformation parameters which we use in the calculations
are β2 = 0.306 and β4 = 0.05 for 154Sm and β2 = 0.29 and
β4 = −0.03 for 186W. Figures 5 and 6 compare the calculated
cross sections with the experimental data. The solid line in
each figure is obtained using the best fitted value of the
diffuseness parameter. The dotted line shows the cross section
obtained with the diffuseness parameter of a = 0.60 fm as
a reference. We find that the larger values of the surface
diffuseness parameter, a = 1.14 and 0.79 fm, in the nuclear
potential are favored for these deformed system, in accordance
with our previous conclusion in Ref. [7]. For the 16O + 154Sm
reaction, the calculated cross sections with the standard value
of the surface diffuseness parameter around 0.60 fm are clearly
in disagreement with the experimental data.

 0.8

 0.85

 0.9

 0.95

1

 1.05

 35  40  45  50  55

dσ
qe

l/d
σ R

(θ
la

b=
17

0 
de

g)

Ec.m.[MeV]

O+154Sm16

Expt.
a = 0.60 fm
a = 1.14 fm

FIG. 5. The ratio of the quasielastic to the Rutherford cross
sections for the 16O + 154Sm reaction at θlab = 170◦. The solid line is
obtained using the best fitted value of the surface diffuseness param-
eter, a = 1.14 fm. The dotted line denotes the cross sections obtained
with the diffuseness parameter of a = 0.60 fm. The experimental data
are taken from Ref. [16].
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FIG. 6. The ratio of the quasielastic to the Rutherford cross
sections for the 16O + 186W reaction at θlab = 170◦. The meaning
of each line is the same as in Fig. 5. The experimental data are taken
from Ref. [16].

C. Discussion

Figure 7 summarizes the results for our systematic study for
the surface diffuseness parameter. It shows the best fitted value
of diffuseness parameter as a function of the charge product
of the projectile and target nuclei for each system. The results
for the spherical systems are denoted by the filled circles,
while those for the deformed systems the filled triangles. One
clearly sees the trend that the best fitted value of the diffuseness
parameter is around 0.60 fm for the former, while it is much
larger than that for the latter. Also, one sees that the surface
diffuseness is almost constant for the spherical systems.

The value of the surface diffuseness parameter obtained
in this study for the spherical systems agrees well with the
conventionally used value a ∼ 0.63 fm. This suggests that
the double folding potential is valid at least in the surface
region and for systems which do not involve a deformed target.
For these systems, the discrepancy between the values of
the diffuseness parameter determined from fusion data (open
circles and triangles in Fig. 7) and those from quasielastic
data must be related with the dynamics inside the Coulomb
barrier [4].
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FIG. 7. The best fitted values of the surface diffuseness parameter
a as a function of the charge product of the projectile and target nuclei,
ZPZT. The filled circles and triangles are for the spherical and the
deformed systems, respectively. The open circles and triangles are the
surface diffuseness parameters deduced from the analyses of fusion
cross sections [4].
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For the deformed systems studied here, the diffuseness
parameter extracted from the quasielastic scattering is much
larger than the conventional value of a ∼ 0.63 fm. Although
this value is consistent with that extracted from fusion, the
origin of the difference between the spherical and the deformed
systems is not clear. One should bear in mind, however, that
our analyses for the deformed systems are somewhat model
dependent. This is due to the fact that the experimental data
in the deep sub-barrier region are sparse for the deformed
systems, and we need to include the deformation effect in
the calculations in order to reproduce the strong energy
dependence of the quasielastic cross sections at energies
around the lowest barrier where the data exist. We have
checked that the extracted values of the diffuseness parameter
for the spherical systems remained almost the same even if
we considered the data points around the Coulomb barrier,
in addition to those at deep sub-barrier energies, in the fitting
procedure like for the deformed systems. In order to clarify the
difference in the diffuseness parameter between the spherical
and the deformed systems, further precision measurements for
large-angle quasielastic scattering at deep sub-barrier energies
will be necessary, especially for deformed systems.

IV. SUMMARY

Large-angle quasielastic scattering provides a powerful tool
not only for the analysis of the barrier distribution around
the Coulomb barrier but also for the study of the surface
property of the nuclear potential. This is due to the fact that

channel coupling effects play a minor role in quasielastic
scattering at deep sub-barrier energies, that enables a relatively
model independent analysis of ion-ion potential. Using this
fact, we have systematically analyzed experimental data
for quasielastic scattering at deep sub-barrier energies, with
the aim of extracting the surface diffuseness parameter of
internuclear potential. We obtained the diffuseness parameter
that is consistent with the standard value of around a = 0.63 fm
for the systems involving spherical nuclei. In contrast, fits
to the data for systems involving deformed nuclei require
diffuseness parameter to be in the range of 0.8 to 1.1 fm,
similar to that obtained from analyses of the fusion data at
above-barrier energies.

The origin of the difference between the spherical and the
deformed systems is not clear at the moment. In order to
clarify this and confirm the systematics found in this paper,
more experimental investigations on large-angle quasielastic
scattering at deep sub-barrier energies will be certainly helpful,
especially for deformed targets.
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