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Continuous phase transition and negative specific heat in finite nuclei
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The liquid-gas phase transition in finite nuclei is studied in a heated liquid-drop model where the nuclear drop
is assumed to be in thermodynamic equilibrium with its own evaporated nucleonic vapor, conserving the total
baryon number and isospin of the system. It is found that in the liquid-vapor coexistence region the pressure
is not a constant on an isotherm, indicating that the transition is continuous. At constant pressure, the caloric
curve shows some anomalies; namely, the systems studied exhibit negative heat capacity in a small temperature
domain. The dependence of this specific feature on the mass and isospin of the nucleus, Coulomb interaction,
and the chosen pressure is studied. The effects of the presence of clusters in the vapor phase on specific heat have
also been explored.
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I. INTRODUCTION

The possible occurrence of a liquid-gas phase transition
in atomic nuclei has aroused intense interest in recent times.
For macroscopic extensive systems, phase transitions are well
defined. For microscopic systems, nuclei for example, the
presence of the surface and the long-range Coulomb interac-
tion adds complexities in defining the liquid-gas-type phase
transition normally reserved for extensive infinite systems.
However, over the years, there has been a large buildup
of theoretical data in different models, including statistical
multifragmentation [1–3], percolation [4], lattice-gas [5,6],
and microscopic finite-temperature Thomas-Fermi [7] models
that are largely in consonance with the occurrence of a
liquid-gas-type phase transition in finite nuclei. Experiments
[8,9] on nucleus-nucleus collisions also give signatures like the
critical-like behavior of the observed fragment partitions—
the nearly flat caloric curve, leading to a peaked structure
in the specific heat—that are compatible with the occurrence
of such a transition in finite nuclei. A coherent characterization
of its properties such as the phase diagram or the order of the
phase transition has not, however, clearly emerged yet.

In a microcanonical statistical multifragmentation model,
with canonical input for fragment formation probability,
Bondorf et al. [1] noted some anomalous behavior in the
caloric curve in the excitation energy range from 3 to
5 MeV/nucleon, where the slope of the curve is negative. In
a microcanonical sampling of statistical multifragmentation,
Gross [3] noted an anomalous behavior in the caloric curve
leading to negative specific heat. Such a behavior was also seen
in a microcanonical ensemble of a symmetric A = 36 nuclear
system prepared with antisymmetrized molecular dynamics
at constant pressure [10]. Negative heat capacity in nuclear
multifragmentation has also been observed in a canonical
model [11]. In a microcanonical framework, Chomaz et al. [6]
and D’Agostino et al. [12] obtained negative specific heat
from fluctuation analysis, which has been widely claimed as
indicating a first-order phase transition in nuclei. Exploiting
the standard Clausius-Clapeyron equation for an evaporating
liquid drop, Moretto et al. [13] find evidence of negative

specific heat at constant pressure only when the binding energy
per nucleon of the drop increases with mass number. In the
nuclear context, from the binding energy curve, the mass
number A of the drop is then less than ∼60. This maximum can,
however, be controlled by inhibiting the Coulomb contribution,
confining the evaporated nucleus in a box [14]. The analyses in
Refs. [13,14] and the conclusions thereof have been achieved at
the cost of some simplifying assumptions; namely, the system
has been assumed to have only one component, the vapor
phase is assumed to consist of monomers, and the transition is
taken implicitly to be first order. For a one-component finite
system, it is straightforward to find that the Clausius-Clapeyron
equation may be written as

dP

dT
(vg − vl) = (sg − sl) + dAl

dT

(
∂µl

∂Al

+ ∂µg

∂Ag

)
, (1)

where v, s, A, and µ refer to the specific volume, specific
entropy, mass, and chemical potential for the liquid (l) and
gas (g) phases, respectively, with Al + Ag = A0, the number
of particles in the system. The last term is nonzero owing
to the presence of the surface and is proportional to A

−1/3
l

(assuming the surface energy of the gas is negligible); it has
been neglected in the analyses of [13,14]. In addition, for a
simplistic analysis, the temperature of the system is taken to
be much smaller compared to the binding energy per particle;
this may not be typically the case here.

Mean-field models have often been employed to explore
liquid-gas phase transition in infinite and finite nuclear
systems. In this model, the phase transition is found to be
continuous, both for asymmetric nuclear matter [15,16] and
also for finite nuclei [17,18]. Though approximate, the model
serves the purpose of giving an orientation for understanding
some important features of the liquid-gas phase transition. It
may therefore be worthwhile to undertake a full numerical
calculation to explore whether the anomalous features in
the caloric curve or in the specific heat persist, relaxing the
constraints imposed in Refs. [13,14]. We make such an attempt
in this paper. Moreover, the vapor phase may not consist of
only monomers, but may contain various clusters along with
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the nucleons; the influence of clusters on the caloric curve has
also been explored.

II. THE MODEL

The model employed in the present calculation is in the
framework of mean-field theory. The excited nucleus is viewed
as a charged liquid drop composed of N0 neutrons and Z0

protons with mass number A0 = N0 + Z0. In its journey from
the liquid to the gas phase, the depleted nucleus is taken to be in
complete thermodynamic equilibrium with its own emanated
vapor so that the total number of neutrons and protons are
conserved. To keep the description on a simpler pedestal,
we first consider nucleonic vapor only. Besides nucleons, the
vapor may contain clusters that would alter the equilibrium
conditions, which will be reflected on the caloric curve and the
resulting heat capacity. In this section we present some details
of the methodology followed under these two conditions.

A. Nucleonic vapor

The framework for studying the liquid-gas phase transition
for a heated nuclear liquid drop in equilibrium with the
nucleonic vapor has been described in some detail in Ref. [17].
For simplicity, the mutual Coulomb interaction between liquid
and gas was ignored there; in the present calculations this is
taken into account. For the sake of completeness, we present
here the relevant features of the model. The phase coexistence
is governed by the Gibb’s conditions:

Pl = Pg,

µl
n = µg

n, (2)

µl
p = µg

p,

that is, the pressure and the chemical potentials of neutrons and
protons are the same in both the liquid (l) and the gas (g) phase.
This model has some resemblance to the one used by Lee
and Mekjian [18], who studied the phase surface associated
with a liquid-gas phase transition by incorporating the role
of Coulomb and surface effects. However, they considered
a fixed spherical volume at a chosen pressure and mapped
the liquid-gas coexistence region by varying the density and
proton concentration. Their results therefore do not pertain to a
particular finite nuclear system and may not correctly describe
the subtle nuances of a phase transition in a given finite system
in a mean-field theory.

The total free energy of the nuclear system (in a single
phase) at temperature T is taken as

F = A0fnm(ρ,X0, T ) + Fc + Fsurf, (3)

where fnm(ρ,X0, T ) is the free energy per particle of infinite
nuclear matter at the same density ρ and neutron-proton
asymmetry X0[= (N0 − Z0)/A0] of the total system, Fc is
the Coulomb free energy, and Fsurf is the temperature- and
asymmetry-dependent surface free energy. The free energy of
infinite nuclear matter is evaluated with the SkM∗ interaction in
the finite-temperature Thomas-Fermi framework. The detailed
expressions for the free energies are given in the appendix.

In the liquid-gas coexistence region, the free energy Fco is

Fco = F l + Fg + Fc, (4)

where F l and Fg are the respective free energies of the liquid
and the gas phase in the absence of the Coulomb interaction
and Fc here represents the total Coulomb free energy of the
system in the mixed phase. The free energy F l is

F l = Alfnm(ρl,Xl, T ) + F l
surf, (5)

with Al, ρ
l , and Xl as the nucleon number, density, and

neutron-proton asymmetry in the liquid phase, respectively.
The expression for Fg has the same form as given in Eq. (5)
but here the surface free energy is neglected because of the
very low density of the gas.

Because of its thermal motion, the liquid drop may be
located anywhere within the spherical freeze-out volume. The
Coulomb free energy Fc then depends on the distance d of
the center of the liquid drop from the center of the freeze-out
volume; this dependence is, however, very weak, as will be
discussed in Sec. II B. The Coulomb free energy of the liquid
part is taken to be that of a uniformly charged sphere of radius
Rl = rlA

1/3
l ; the radius parameter rl is related to the liquid

density ρl as rl = 1/( 4
3πρl)1/3. The gas is taken to be uniformly

distributed in the whole spherical freeze-out volume excluding
the volume occupied by the liquid drop. The total Coulomb
free energy is then given by

Fc = 3

5
e2

[
Z2

l

Rl

+ Z2
g

R

(
Vl + Vg

Vg

)2

− Z2
g

Rl

(
Vl

Vg

)2
]

+ 3

2

Zge

R3 − R3
l

(
Zle − Zge

Vl

Vg

) (
R2 − R2

l − 1

3
d2

)
,

(6)

with Zl, Zg as the proton numbers and Vl, Vg as the volumes
in the liquid and gas phase, respectively. The radius R of
the freeze-out volume Vf (= Vl + Vg) can be obtained from
the densities and particle numbers in the two phases as
obtained from the thermodynamic equilibrium conditions and
conservation of neutron and proton numbers and is given by

4

3
πR3 = Al

ρl
+ Ag

ρg
. (7)

It may be pointed out that Eq. (6) with d = 0 reduces to the
same as that used in Ref. [19] for the two-step uniform density
profile.

The surface free energy of the liquid part is taken as

F l
surf = σ (Xl, T )A2/3

l , (8)

where the temperature- and asymmetry-dependent surface
energy coefficient σ (X, T ) is

σ (X, T ) = [σ (0, 0) − asX
2]

(
1 + 3

2

T

Tc

) (
1 − T

Tc

)3/2

, (9)

which is obtained by considering semi-infinite nuclear matter
in equilibrium with the nucleonic vapor at the relevant
temperature and asymmetry [20]. The values of the surface
energy coefficient of semi-infinite symmetric nuclear matter in
its ground state, σ (0, 0), the surface asymmetry coefficient as ,
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and the critical temperature Tc for the SkM∗ interaction are
taken to be 17.51, 38.6, and 14.61 MeV, respectively [21].
In our model, at a given temperature or pressure, the number
conservation and the thermodynamic equilibrium constraints
provide a natural confining volume for the vapor phase in the
coexistence region.

The unknown quantities for a given liquid-drop size Al

are the number of nucleons in the gas, Ag , the neutron-proton
asymmetries Xl and Xg for the liquid and gas phases, and their
respective densities ρl and ρg . The quantities Ag and Xg are
determined from conservation of baryon number and of total
isospin, respectively. The three remaining unknown quantities
are determined by using the conditions given by Eq. (2) and
employing the Newton-Raphson method. With the knowledge
of these quantities the free energy and hence all the relevant
observables can be evaluated.

B. Clusterized vapor

For a given Al and with the guess values for Xl, ρl , and
ρg [to be refined through iteration to satisfy Eq. (2)], the
volume of the gas, Vg , and the number of neutrons and
protons in that gas are known. With the knowledge of the
freeze-out volume Vg and the neutron and proton number, the
statistical multifragmentation model can be employed to find
the multiplicities of the various fragments created out of the
vapor phase at the chosen temperature. We take recourse to
the grand-canonical model; in this model, the multiplicity ni

for the ith species of the generated fragments is given by

ni = Vg

mAi

2πh̄2β
φi(β) exp

[ − β
(
V i

c − Bi − µnNi − µpZi

)]
,

(10)

where β is the inverse of temperature T; m is the nucleon mass;
Ai,Ni , and Zi are the mass, neutron, and charge numbers of
the fragmenting species i; the Bi’s are the binding energies
of the generated species; and µ’s are the nucleonic chemical
potentials. The internal partition function φi(β) for species i
with Ai > 4 is taken as

φi(β) =
∫ εi

2

εi
1

dε∗ρi(ε
∗)e−βε∗

. (11)

Here εi
1 is the lowest excited state and εi

2 is the lowest particle-
decay threshold of the ith species. In our calculations, these
energy limits are taken to be the same for all the species with
ε1 = 2 MeV and ε2 = 8 MeV. For the density of states, ρi(ε∗),
the Bethe level density expression,

ρi(ε
∗) = 61/4

12

g0

(g0ε∗)5/4
exp

(
2

√
Aiε∗

10

)
, (12)

is used with g0 = 3Ai/4π2. For Ai � 4, φi(β) is taken to be
unity. The single-particle Coulomb potential V i

c is evaluated
in the complementary fragment approximation [22,23] with
the appropriate liquid and vapor charge distributions. The
chemical potentials so generated may not be the same as those
of the liquid phase. The chemical and mechanical equilibrium
between the liquid and the clusterized vapor phase are obtained

through an iterative procedure (Newton-Raphson method) by
varying Xl, ρl , and ρg .

For simplicity the nuclear interaction among the fragments
are neglected. This is insignificant owing to the large freeze-out
volume. The pressure of the vapor phase is taken to be that of
a perfect gas corrected for the Coulomb interaction given by

Pg = MT/Vg + �Pg, (13)

where M is the total fragment multiplicity in the gas phase and
�Pg is the correction to the perfect gas pressure because of
the Coulomb interaction. It is given by

�Pg = − ∂Vc

∂Vg

, (14)

where Vc is the Coulomb interaction energy of the system
excluding the Coulomb self-energies of the clusters in the
vapor phase; these self-energies are included in the Bi’s. For
the evaluation of the mutual interaction part (between liquid
and vapor) in Vc, the charge distribution in the vapor phase
is taken to be uniformly distributed in the volume Vg . This
corresponds to an ensemble-averaged value if the clusters are
randomly distributed within Vg in an event. The treatment of
the liquid phase is the same as that described in Sec. II A.

The excitation energy of the system is evaluated from the
energy balance condition

−B + E∗ = 3

2
MT −

∑
niBi +

∑
ni〈E∗

i 〉+ El + Vc. (15)

Here B is the ground-state binding energy of the system,
〈E∗

i 〉 is the average excitation energy of the ith species, and
El is the energy of the liquid drop (excluding the Coulomb
energy). The free energy of the vapor phase is the sum of
the free energies of the fragments generated in this phase,
including the contribution from their thermal motion. The
detailed expressions are given in Ref. [1]. The expression
corresponding to Eq. (15) for the case of monomeric vapor
is obtained by dropping the second and third terms on the
right-hand side and replacing M by Ag , the number of nucleons
in the vapor. The energy of the excited liquid drop, El , is
the sum of the contributions from the volume, Coulomb, and
surface terms. The expression for the volume term is given in
the appendix. The Coulomb energy is the same as the Coulomb
free energy as it has no explicit temperature dependence. The
surface energy El

surf is given by

El
surf = F l

surf − T

(
∂F l

surf

∂T

)
V

. (16)

III. RESULTS AND DISCUSSION

To explore the characteristics of phase transition in finite
nuclei, we have chosen three representative systems, namely,
40Ca, 150Re, and 150Nd. The symmetric systems 40Ca and 150Re
are chosen to study the mass dependence, whereas the isobaric
pairs 150Re and 150Nd offer the means to study the effects of
asymmetry on the properties of the phase transition. To discern
the effect of the long-range Coulomb interaction, calculations
are also done both with and without this interaction.
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FIG. 1. The isotherms for the system 150Re at T = 7.0 MeV with
and without the Coulomb interaction (top panel) and at T = 7.0 and
7.2 MeV with Coulomb off in a narrow density interval (bottom
panel). For the horizontal line a–b, see text.

The distance d of the center of the liquid drop from that
of the freeze-out volume may vary from 0 to some maximum
value dmax. The latter corresponds to the surface of the drop
touching the boundary of the freeze-out volume. The reduction
in Fc as d is increased from 0 to dmax is very small; it is
only a few percent, typically less than 4% of Fc. The results
calculated with these two extreme values of d are practically
indistinguishable, so we report calculations taking d = 0.

In this section we present the results of our calculations,
first for the nucleonic vapor and then for the clusterized vapor.

A. Nucleonic vapor

In Fig. 1 (top panel), the isotherm for the symmetric nucleus
150Re at T = 7 MeV is displayed. The full line refers to the
results with the Coulomb interaction included, the dashed line
corresponds to those without the Coulomb term. The lines
(full or dashed) are obtained by exploiting the thermodynamic
equilibrium conditions with the constraints of baryon number
and isospin conservation and thus correspond to the fully
physical region. The high-density side where the pressure rises
very sharply with density (beyond point C) is the fully liquid

phase. The wing from B to A and to further lower densities
corresponds to the fully gas phase. The region from B to
C is the region of liquid-gas phase coexistence. Symmetric
nuclear matter behaves like a one-component system; the
phase transition there occurs at a constant pressure. Without
the Coulomb interaction even a symmetric finite nucleus (like
150Re) does not behave like a one-component system because
of the presence of the surface; the pressure changes, though
weakly, along the phase transition. At constant pressure the
transition then occurs over a finite temperature interval and
the transition is thus continuous. With the introduction of
the Coulomb interaction this effect is more pronounced. The
isotherms obtained here display a Van der Waals type of loop;
this kind of behavior has been observed earlier in an exact
calculation for finite systems by Katsura [24] and Hill [25]. As
mentioned in Refs. [24,25], the loop results from the interfacial
(surface) effects between the two phases. The isotherms for the
same system (150Re) with the Coulomb interaction switched
off are displayed in the lower panel of the figure in a narrower
(P, ρ) interval at two nearby temperatures. One finds that for
this system the pressure decreases with increasing density in
the coexistence region. At constant pressure this may lead
to a negative heat capacity cp. At a fixed pressure, say,
P ∼ 0.015 MeV fm−3, as the temperature of the system is
increased from 7 to 7.2 MeV, the density changes from that at
point a to a higher density at point b, leading to a negative iso-
baric volume expansion coefficient α = 1

V
(∂V /∂T )P . Since

cp = cv + αV T (∂P/∂T )V and (∂P/∂T )V is positive as seen
in the figure, cp < cv and under suitable conditions (as met in
our calculations), it can be negative.

The isotherms for the asymmetric system 150Nd at T =
7 MeV with and without the inclusion of the Coulomb
interaction are shown in Fig. 2. Unlike the symmetric system
150Re, here with the increase in density, the pressure initially
decreases and then increases in the coexistence region. It
appears that this difference in the behavior of the isotherms
is a reflection of the asymmetry effect. To confirm this, we
have done calculations for two isotopes of Ca, 40Ca and 50Ca,
at T = 7 MeV with the Coulomb interaction. The asymmetry
effect is apparent, as is displayed in Fig. 3. For clarity, the
looping near the onset of the vapor phase is shown magnified
in the inset in Fig. 2. As the temperature is increased, the
phase coexistence region shrinks and points B and C set closer
and at a certain temperature (the critical temperature Tc) they
merge. The magnitudes of the critical parameters, namely, the
temperature, pressure, and density, for the system 150Nd are
13.1, 0.174, and 0.050 (all in MeV-fm units), respectively.

The variation of the liquid proton fraction Y l (= Zl/Al) at
constant pressure is shown as a function of the mass number
Al of the depleting drop in the coexistence phase in the upper
two panels of Fig. 4 for the systems 150Re and 150Nd. The
calculations are representative and are done with the Coulomb
interaction on at a constant pressure P = 0.0014 MeV fm−3.
In all the panels in this figure, the dashed lines refer to results
with the monomeric vapor phase and the full lines correspond
to those with the clusterized vapor phase. The variation of
Y l with Al in the two systems differs somewhat. The nucleus
150Re being highly proton-rich initially sheds off more protons
to sustain chemical equilibrium with reduction in Y l whereas
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FIG. 2. The isotherms for the system 150Nd with and without the
Coulomb interaction. The inset magnifies the loop in a narrow density
region.
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FIG. 3. The isotherms for the nuclei 40Ca and 50Ca at T = 7 MeV
with the Coulomb interaction.
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FIG. 4. The proton fraction Y l of the liquid drop as a function
of its depleting mass number Al (upper panels). The neutron and
proton chemical potentials in the liquid and gas phase as a function
of the proton fraction in the respective phases (lower panels). The
liquid and gas phase results are well separated and are marked in the
figure. The vertical arrows on the abscissa show the proton fraction
of the total system. The results correspond to constant pressure P =
0.0014 MeV fm−3.

for the more neutron-rich nucleus 150Nd, the proton
fraction in the liquid drop increases monotonically with its
reduction in size. These results are seen to be insensitive to
the particular choice of the vapor phase.

To maintain chemical equilibrium in the two phases, the
neutron and proton chemical potentials along the coexistence
line behave in a relatively complex fashion; they are displayed
in the bottom panels of Fig. 4 as a function of the proton
fraction in the respective phases. The vertical arrows on the
abscissa mark the proton fraction of the total system. The
direction of the arrow along a curve signifies depletion of
the liquid phase, that is, the direction of increasing excitation
energy. The thick lines represent the results for protons
and the thin lines are those for the neutrons. The results
for the liquid and gas phases are well demarcated and are
labeled in the figure. The proton fractions in the two phases
are quite different, indicating isospin distillation [26] in the
coexistence phase. This is more prominent in the asymmetric
system (150Nd). In contrast to the neutron-rich gas phase for
the asymmetric system, the symmetric nucleus 150Re has a
proton-rich gas phase. The results again are seen to be almost
independent of the choice of the constituents of the vapor phase
we have taken.
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FIG. 5. The caloric curve for the system 40Ca at P =
0.0014 MeV fm−3 with (filled circles) and without (open circles)
the Coulomb interaction (top panel). The middle panel displays the
same at P = 0.028 MeV fm−3. The bottom panel is the same as in
the top panel, but for the system 150Re.

The calculated caloric curves at constant pressure for the
symmetric systems 40Ca and 150Re are displayed in Fig. 5
with the Coulomb interaction switched on and off. The upper
panel corresponds to a pressure P = 0.0014 MeV fm−3 and
the middle panel is for a pressure 20 times higher (P =
0.028 MeV fm−3) for the lighter system 40Ca. The caloric
curves show some anomalous features. At excitation energies
lower than the one marked by point A, the system is in the
fully liquid phase; here the rise in excitation with temperature
is like that of a Fermi gas. The region A to B corresponds to the
liquid-vapor coexistence. As the system moves from A to B,
the nucleus increasingly gets depleted in size with emanation
of vapor; beyond B, it is in the fully vaporized state. The
caloric curves for the heavier system 150Re with the Coulomb
interaction switched on and off are shown in the bottom panel
at a pressure P = 0.0014 MeV fm−3. The characteristics of
these caloric curves are very similar to those for the lighter
system 40Ca. For both the lighter and the heavier symmetric
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FIG. 6. The caloric curves for the system 150Nd at P =
0.0014 MeV fm−3. The dashed line is obtained after switching off
the Coulomb (C) and the surface (S) effects in the single phase (sp),
the full line refers to that with the coexistence phase (cp), the open
circles correspond to the one after switching on the surface effect,
and the filled circles refer to caloric curve with both Coulomb and
surface on.

nuclei we consider, it is seen that the temperature decreases
with the excitation energy over the whole coexistence phase;
this would lead to negative heat capacity. It is further noted
that the negative slope of the caloric curve is amplified with
the inclusion of the Coulomb interaction.

Figure 6 displays the caloric curves for the asymmetric
system 150Nd at P = 0.0014 MeV fm−3 with and without the
inclusion of the Coulomb interaction. The presence of a Van
der Waals type of loop in the isotherms for finite systems for
fully physical results obtained with consideration of complete
thermodynamic equilibrium between the liquid and the gas
phase has been mentioned before. The presence of this loop
is expected to produce a negative sloping caloric curve. To
elaborate this further, calculations have been performed by
switching off both the Coulomb (C) and the surface (S)
effects. This actually corresponds to the case of infinite asym-
metric nuclear matter. The dashed line represents the results
of considering a single phase (sp) over the whole excitation
energy domain considered. Here the temperature passes
through a maximum and a minimum very similar to the
variation of pressure with density at constant temperature,
the slope of the caloric curve being negative in between the
maximum and the minimum. For an infinite system the loop
in the isotherm is absent with appropriate consideration of the
liquid-vapor coexistence phase (cp) and the negative slope in
the caloric curve is then expected to be absent here. This is
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FIG. 7. Heat capacity at constant pressure for the system 40Ca
with (bottom panel) and without (top panel) the Coulomb interaction.
The arrows indicate the points of discontinuity.

really the case, as can be seen from the caloric curve shown
by the full line where the excitation energy domain between
points A and B refer to the liquid-vapor coexistence region.
The caloric curves with successive inclusion of the surface
and the Coulomb effect are shown by the open circles and
the filled circles, respectively. The characteristic features of
these caloric curves are grossly the same as those of the
symmetric systems 40Ca and 150Re discussed before. However,
one distinct difference is noticeable. Unlike the symmetric
systems 40Ca or 150Re, where, whether with Coulomb on
or off, the negative heat capacity extends over the whole
coexistence phase, for the asymmetric system 150Nd, this
occurs for Al < 30 with Coulomb off and at Al ∼ 100 with
Coulumb on.

The caloric curve results presented here show that both
the Coulomb interaction and asymmetry play important roles
in determining its detailed characteristics. The asymmetry
tends to produce a caloric curve with a positive slope. This
is evident from the observation that, for an asymmetric system
like 150Nd, the negative slope occurs only after some nucleons
(predominantly neutrons) are evaporated and the residual
nucleus is closer to a symmetric one, whereas for a symmetric
system like 40Ca or 150Re, the slope is negative throughout
the coexistence phase. The Coulomb interaction, in contrast,
tends to enhance the negative slope, as is clear from the results
presented in Figs.5 and 6. The asymmetry of the evaporated
gas is enhanced with the asymmetry of the nucleus whereas it is
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−100
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100
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P=0.0014

No Coulomb

With Coulomb

FIG. 8. Same as Fig. 7 for the system 150Nd.

reduced by the Coulomb interaction. The delicate dependence
of the temperature and excitation energy on the asymmetry
in the two phases to maintain phase coexistence seems to be
responsible for the features of the caloric curve as seen here.

The specific heat at constant pressure cp[= 1
A

d
dT

(E +
PV )P ] for the systems 40Ca and 150Nd at P =
0.0014 MeV fm−3 are displayed in Figs. 7 and 8 as a function
of excitation energy per particle. The upper panels correspond
to results with Coulomb off; the lower panels show the same
with Coulomb on. There are two discontinuities in the specific
heat, one at lower excitation and the other at higher excitation
(marked by arrows), and the specific heat is negative within this
range. These discontinuities refer to the change in the sign of
the slopes of the caloric curves. The discontinuity at the higher
excitation always occurs at the point of complete vaporization
of the system; the one at the lower excitation depends on the
system (symmetric or asymmetric) and on the choice of the
interaction (Coulomb on or off). Negative specific heat occurs
in a small temperature interval, typically ∼1.0 to 1.5 MeV for
the cases we have considered.

Analysis of fluctuations of kinetic energy of the fragments
[12] and the direct measurement of the caloric curve as
well as the analyses of a number of other observables by
the TAMU group [27] indicate that the heat capacity is
negative only in a small excitation energy domain, around
3–7 MeV/nucleon in Ref. [12] and around 5–6 MeV/nucleon in
Ref. [27]. Our calculated results contradict this finding as the
calculated specific heat at constant pressure remains negative
up to excitation energy as high as 14 MeV/nucleon. This may
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FIG. 9. Entropy per particle, S/A, as a function of temperature
for the system 150Nd at P = 0.0014 MeV fm−3. The notation is the
same as in Fig. 6.

be traced back partly to the inadequacy of the mean-field
model we adopt that masks the fluctuations. Furthermore, in
our model the vapor phase consists of monomers only. In
reality nucleons are emitted along with various fragments. This
would modify the equilibrium conditions such as pressure,
chemical potentials, and temperature for a given excitation
energy of the fragmenting system and in turn the caloric
curve and the associated heat capacity would be affected.
This aspect is dealt with in Sec. III B. The actual conditions
prevailing in a fragmentation scenario may be neither isobaric
nor isochoric. This may also modify the behavior of the
specific heat appreciably, leaving some room for uncertainties
in the comparison of the existing theoretical results with the
experimental findings.

In Fig. 9, the calculated entropy per particle, S/A, at
constant pressure P = 0.0014 MeV fm−3 is shown as a
function of temperature for the system 150Nd. The notation
used is the same as in Fig. 6. The results for the single-phase
calculation (dashed line) for infinite asymmetric matter having
neutron-proton asymmetry the same as that of 150Nd have
some anomalous behavior. Over a wide range of temperature
it is seen that the entropy increases with a decrease of
temperature. This unphysical character vanishes with the
appropriate inclusion of the liquid-vapor coexistence phase,
as shown by the full line, the region A to B being the region
of coexistence for the two phases. With the inclusion of the
surface and/or the Coulomb effect, the entropy-temperature
curve for 150Nd displays a negative slope even with the
inclusion of the coexistence phase, as shown by the open circles

0 10 20 30

E
*
/A(MeV)
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2

4

6

8

S
/A

No C,S (sp)
No C,S (cp)
No C (cp)
With C,S (cp)

150

Nd

P=0.0014

FIG. 10. Entropy per particle as a function of excitation energy
per particle, E∗/A, for the same case as in Fig. 9. The notation is the
same as in Fig. 6.

and the filled circles. The change in entropy does not show
any discontinuity with temperature though there are marked
changes in slope; the phase transition is then continuous. The
temperature window for the persistence of the negative slope
of the entropy curve is the same as that seen in the caloric
curve. The dependence of entropy on the excitation energy at
constant pressure is shown in Fig. 10 for the different cases
studied, as mentioned in the context of Fig. 9. It is seen that for
all the cases entropy increases monotonically with excitation
energy, as expected.

It may also be worth mentioning that liquid-gas coexistence
may occur with a bubble configuration in which the gas is
enclosed in a shell of liquid. In nuclear matter, the minimum
size for a possible bubble to occur is similar to the size of a
heavy nucleus [28]. For finite systems, our calculation shows
that the drop configuration is favored over the bubble. The free
energy for the bubble configuration is found to be much higher
compared to that of the corresponding drop configuration with
the same Al . This is due to the large surface free energy in
the bubble configuration with two liquid surfaces having large
radii.

B. Clusterized vapor

For the clusterized vapor, the results for the caloric curve
are displayed for the symmetric system 150Re (top panel) and
that for the asymmetric system 150Nd (bottom panel) at P =
0.0014 MeV fm−3 in Fig. 11. To discern the effect of clusters,
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FIG. 11. Caloric curve with monomers (filled circles) and clusters
(filled triangles) in the vapor phase for the systems 150Re (top panel)
and 150Nd (bottom panel).
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FIG. 12. Heat capacity at constant pressure for the system 150Re
(top panel) and 150Nd (bottom panel). The arrows indicate the points
of discontinuity.
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FIG. 13. Entropy as a function of temperature (top panel) and
excitation energy (bottom panel) for the system 150Nd at P =
0.0014 MeV fm−3.

the caloric curves for nucleonic vapor are also presented
(filled circles) along with those for the clusterized vapor
(filled triangles). As in Fig. 5, the region A to B corresponds
to the liquid-vapor coexistence region. The chemical potential
profiles with proton fraction in the coexistence phase do not
differ much for the two choices of the vapor phase, as is seen
in Fig. 4. The basic features of the caloric curve are also not
altered with the inclusion of clusters. Thus all the remarks
for the caloric curve made previously are also valid here.
One important difference, however, lies in the occurrence
of complete vaporization of the system at a relatively lower
excitation energy with consideration of clusters. This is
self-evident because the clusters are bound systems. With
increasing excitation energy, clusters dissolve into nucleons
and the caloric curves tend to merge.

In Fig. 12 the heat capacities at constant pressure (cp)
are displayed corresponding to the caloric curves shown in
Fig. 11. The arrows indicate the positions of excitation energies
corresponding to the change in sign of cp and between the
arrows it is negative. The upper bound of the excitation energy
for cp being negative is reduced significantly (from ∼14 to
10 MeV) with the inclusion of clusters for reasons already
stated in connection with the caloric curve. However, this
reduction is not sufficient to match the experimental findings.

The entropy for 150Nd as a function of temperature is shown
in the top panel of Fig. 13. As in the case of monomeric vapor,
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the back bending (i.e., increase of entropy with reduction in
temperature) persists in a narrow temperature interval even
after inclusion of fragments. The bottom panel shows the
entropy as a function of excitation energy for the same system.
With clusterized vapor, the entropy is a little larger compared to
monomeric vapor, showing that the clusterized configuration
is more favorable.

IV. CONCLUDING REMARKS

Within a mean-field framework, we have studied the liquid-
gas phase transition in finite nuclei with exact conservation
of baryon number and isospin. As in asymmetric nuclear
matter, since at constant pressure the transition occurs over
a finite temperature domain and because the entropy shows
no discontinuity with temperature, we conclude that, in the
model studied, the said transition in finite nuclei is continuous.
However, unlike bulk systems, a Van der Waals type loop in
the isotherm is observed in the coexistence region because of
finite size effects. This loop, arising from the thermodynamic
equilibrium conditions, results in negative specific heat at
constant pressure in a small temperature domain. Moretto
et al. [14] find negative specific heat only for nuclei with
A � 60; we find distinct evidence of negative specific heat for
considerably heavier systems. In Ref. [14], the size of the
system refers to the residual evaporated drop; this may be
identified with the depleted drop of size Al in our calculations
rather than the total mass A0 of the nucleus. Aside from
this fact, the main reason for this discrepancy lies in the
exact computation of the equilibrium configurations in the
liquid and gas phase in our calculations. The presence of
back bending in the caloric curve or a negative heat capacity
in microcanonical or canonical formulations has been taken
as tacit evidence that the liquid-vapor phase transition in
finite nuclei is first order. In fact, there is evidence of a
first-order phase transition in two-component systems [29]
in multifragmentation calculations based on the statistical
model. In the mean-field model, however, the fluctuations
implied in the fragmentation calculations are absent, the
phase transition is seen to be continuous, and a negative
specific heat for finite nuclei is not incompatible with it. The
qualitative features of the results remain the same if, instead of
pure nucleonic vapor, vapor with clusters is considered. The
important change with inclusion of cluster is the significant
reduction in the maximum excitation energy (from around
14 to 10 MeV/nucleon) up to which the heat capacity is
negative. This maximum excitation is still higher compared
to the experimental finding (∼7 MeV/nucleon); aside from
the inadequacy of the mean-field model, a possible reason for
this difference may be the nonisobaric and/or nonisochoric
conditions under which fragmentation occurs.
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APPENDIX: EVALUATION OF FREE ENERGY

The different components occurring in the total free energy
F in the single phase given in Eq. 3 are the volume, Coulomb,
and surface terms. The explicit expressions for them are as
follows.

(i) Volume term: The free energy per particle of infinite
asymmetric nuclear matter, fnm(ρ,X0, T ), is

fnm = enm − T snm, (A1)

where enm and snm are the energy and entropy, respec-
tively, per particle. The energy enm is given by

enm = εnm/ρ, (A2)

where the energy density is

εnm =
∑

q=n,p

h̄2

2mq

τq + εi, (A3)

where mq is the nucleon mass and n or p stand for neutron
or proton. Here εi is the interaction energy density. The
terms under the summation represent the kinetic energy
density expressed as

τq = 2mq

h̄2 AT,qT J3/2(ηq). (A4)

The fugacity ηq is related to the nucleon density as

ρq = AT,qJ1/2(ηq), (A5)

with

AT,q = 1

2π2

(
2mqT

h̄2

)3/2

, (A6)

and J’s are the Fermi integrals given by

Jk(η) =
∫ ∞

0

xk

1 + e(x−η)
dx. (A7)

For the SkM∗ interaction, the interaction energy density
for nuclear matter is [30]

εi = 1
2 t0

[(
1 + 1

2x0
)
ρ2 − (

x0 + 1
2

) (
ρ2

n + ρ2
p

)]
+ 1

12 t3ρ
α
[
ρ2 − 1

2

(
ρ2

n + ρ2
p

)] + 1
4 (t1 + t2)τρ

+ 1
8 (t2 − t1)(τnρn + τpρp), (A8)

with τ = τn + τp and ρ = ρn + ρp. The values of the
parameters in Eq. (A8) are given in Ref. [30]. The entropy
per nucleon is

snm = 1

ρ

∑
q

[
5

3
AT,qJ3/2(ηq) − ηqρq

]
. (A9)
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(ii) Coulomb term: The Coulomb free energy is taken to be
that of a uniformly charged sphere,

Fc = 3
5Z2

0e
2
/
R, (A10)

where Z0e is the total charge of the system with
radius R.

(iii) Surface term: The surface free energy Fsurf is given by

Fsurf = σ (X0, T )A2/3
0 , (A11)

where the expression for the surface energy coefficient
σ (X, T ) is given by Eq. (9).

For the vapor phase, the expressions for volume and
Coulomb energy have the same form; the surface free energy
is taken to be zero because of its very low density.
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