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Underlying symmetries of realistic interactions and the nuclear many-body problem
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The present study brings forward important information, within the framework of spectral distribution theory,
about the types of forces that dominate three realistic interactions, CD-Bonn, CD-Bonn+3terms, and GXPF1,
in nuclei and their ability to account for many-particle effects such as the formation of correlated nucleon pairs
and enhanced quadrupole collective modes. Like-particle and proton-neutron isovector pairing correlations are
described microscopically by a model interaction with sp(4) dynamical symmetry, which is extended to include
an additional quadrupole-quadrupole interaction. The analysis of the results for the 1f7/2 level shows that both
CD-Bonn+3terms and GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the latter
appears to build up more (less) rotational isovector T = 1 (isoscalar T = 0) collective features. Furthermore,
the three realistic interactions are in general found to correlate strongly with the pairing+quadrupole model
interaction, especially for the highest possible isospin group of states where the model interaction can be used to
provide a reasonable description of the corresponding energy spectra.
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I. INTRODUCTION

A unified microscopic description of light to heavy nuclei
requires a comprehensive understanding of the strong inter-
action and how it manifests itself in the nuclear medium.
Effective interaction theory attempts to model the essence of
this strong interaction in terms of one-, two-, and sometimes
higher (three- or even four-) body interactions for the purpose
of supporting microscopic shell-model calculations that target
reproducing striking features of nuclei. Such are strong pairing
correlations found near closed shells that yield to collective
rotational motion as one moves away from shell closure as
well as more subtle effects that must be understood at a deeper
level to reproduce, for example, nuclear abundances as realized
through fast or slow decay processes within and between
nuclear species. While good progress is being made toward
understanding the strong force, especially through the recent
work on lattice quantum chromodynamics studies, much work
remains to be done.

Short such a comprehensive understanding of the strong
interactions, one way to gain insight into the principal
characteristics of various microscopic interactions is to per-
form a detailed study of their matrix elements or common
quantities they generate, such as eigenvectors or eigenvalues.
For instance, in the same environment two very similar
interactions are expected to yield similar patterns of their
matrix elements (see, for example, Refs. [1–3]), as well to yield
large overlaps of corresponding eigenstates (e.g., Refs. [4,5])
and close energy spectra (e.g., Refs. [6,7]). On the other hand,
a complementary comparison that is based on the theory of
spectral distributions [8,9] that invokes overall correlations of
two interactions offers a broader view on their global behavior
and universal properties [10–14].

The theory of spectral distributions of French and collab-
orators is an alternative approach for studying effective inter-
actions [8,15,16] and continues to be a powerful concept with
recent applications in quantum chaos and nuclear astrophysics

including studies on nuclear level densities, transition strength
densities, and parity/time-reversal violation (for example, see
Refs. [17–22]). The significance of the method is related to the
fact that low-order energy moments over a certain domain of
single-particle states, such as the energy centroid of an inter-
action (its average expectation value) and the deviation from
that average, yield valuable information about the interaction
that is of fundamental importance [11,16,23–29] without the
need for carrying out large-dimensional matrix diagonalization
and with little to no limitations due to the dimensionality of
the vector space. Within this general framework, a simple
and elegant global comparison of pairs of interactions can be
carried in a unified way regardless of how the interactions
are built or of the models that adopt them. It is based on
their correlation, which is a measure that is independent of
the centroids of the interactions. This correlation measure
turns on a comparison of the one- and two-body parts of the
interactions, and in so doing probes beyond the mean-field
potential.

In addition, the group-theoretical foundation of the spectral
distribution methods naturally establishes a propagation of
information from nuclear systems of two particles to many-
fermion nuclei [8,10] and makes the approach especially
suitable for studies of the goodness/breaking of symmetries in
complex many-particle systems [10,11,26]. Such studies can
likewise help reduce the dimensionality of a model space to a
tractable size by detecting the optimal subspace domain for a
particular many-body problem where microscopic calculations
become feasible [9,28,30].

In this paper we employ the theory of spectral distri-
butions to compare three realistic interactions, namely CD-
Bonn [31], CD-Bonn+3terms [32], and GXPF1 [2] and two
pairing+quadrupole model interactions [33,34]. Such a study
is important for understanding the types of forces that dominate
a realistic interaction and its ability to describe correlated
and collective phenomena. Most significant are the formation
of nucleon pairs and quadrupole collective excitations that
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possess a clear symplectic algebraic structure, sp(4) and
sp(3, R), respectively.

The Sp(4) dynamical symmetry of like-particle and proton-
neutron pairing correlations [33,35,36] between nucleons
occupying the same major shell has been found to provide for
a reasonable microscopic description of the pairing-governed
isobaric analog 0+ states in light and medium mass nuclei
[34,37]. Currently, these nuclei have a significant impact in
astrophysical studies [38,39] and have been extensively ex-
plored after the advent of radioactive beams. The comparison
with realistic interactions can determine the extend to which
the significantly simpler Sp(4) model Hamiltonian can readily
be used to obtain an approximate, yet very good description
of low-lying nuclear structure and in turn, one can apply the
model to larger model spaces that are otherwise prohibitive
in size. Furthermore, we introduce a possible Sp(4) symmetry
breaking by an additional quadrupole-quadrupole interaction
and examine the capacity of the extended model interaction to
imitate realistic interactions. This, in turn, provides a further
step towards gaining a better understanding of the underlying
foundation of the microscopic interactions.

II. SYMPLECTIC sp(4) PAIRING MODEL INTERACTION

The close interplay of like-particle and proton-neutron
isovector (isospin = 1) pairing correlations have long been
recognized as a major driver that shapes nuclear systems with
valence protons and neutrons occupying the same major shell.
While like-particle pairing interactions are known to dominate
far from the N = Z line, closer to it strong proton-neutron pair
correlations are also very important. Hence, isovector pairing
plays a crucial role in understanding the microscopic structure
of light and medium mass nuclei around as well as far off the
valley of stability. A group-theoretical microscopic description
of isovector pairing, based on the fermion realization of the
so(5) algebra [35] [isomorphic to sp(4)], was successfully
applied to the structure of fp-shell N = Z nuclei [36]. These
algebraic results have since been confirmed through pairing-
plus-quadrupole shell model work [40]. Indeed, some recent
results show that the symplectic Sp(4) dynamical symmetry
is fundamental to the nuclear interaction that governs fully-
paired isobaric analog 0+ states of light and medium mass
even-A nuclei with valence protons and neutrons occupying
the same shell [34].

The general model Hamiltonian with Sp(4) dynamical
symmetry for a system of n valence nucleons in a 4�-
dimensional space consists of one- and two-body terms and
can be expressed through the Sp(4) group generators,

Hsp(4) = −G

1∑
i=−1

Â
†
i Âi − FÂ

†
0Â0 − E

2�

(
T̂ 2 − 3N̂

4

)

−D

(
T̂ 2

0 − N̂

4

)
− C

N̂ (N̂ − 1)

2
− εN̂, (1)

where N̂ counts the total number of valence particles, T̂ 2 =
�{T̂+, T̂−} + T̂ 2

0 is the isospin operator, Â
†
0,+1,−1 creates a

proton-neutron (pn) pair, a proton-proton (pp) pair or a
neutron-neutron (nn) pair of total angular momentum Jπ =

0+ and isospin T = 1,G, F,E,D, and C are interaction
strength parameters and ε > 0 is the Fermi level energy. This
Hamiltonian, which is rotationally invariant, conserves the
number of particles and the third projection (T0) of the isospin,
while it includes scattering of a pp pair and a nn pair into two
pn pairs and vice versa, along with a J-independent isoscalar
(T = 0) pn force. The significant interplay between isovector
and isoscalar interactions is evident in the low-lying structure
of N = Z odd-odd nuclei with valence protons and neutrons
filling the same major shell.

Estimates for the interaction strength parameters in
Eq. (1) were found [33,34] as a result from an optimal
reproduction of the Coulomb corrected [41] experimental
energies [42,43] of the lowest isobaric analog 0+ states of
even-A nuclei with valence nucleons occupying the 1f7/2

orbit or the 1f5/22p1/22p3/21g9/2 major shell.1 For the 1f7/2

level with a 40Ca core the interaction strengths were esti-
mated to be, G/� = 0.453, F/� = 0.072, C = 0.473,D =
0.149, E/(2�) = −1.120, ε = 9.359. The analysis revealed
that the model interaction with Sp(4) dynamical symmetry
accounts quite well for the available experimental energies of
isobaric analog 0+ states for a total of 149 nuclei [34] and in
addition for the observed detailed structure beyond mean-field
effects such as the N = Z anomalies, isovector pairing gaps
and staggering effects [37]. This in turn allowed us to interpret
the main driving force that defines the properties of the states
under consideration and to provide a reasonable description of
these states, while retaining the physical validity and the proper
limits of the strengths of interactions available in literature.

An important feature of our algebraic Hamiltonian (1)
is that it arises naturally within a microscopic picture.
Because of this, the Sp(4) interaction can be compared to
realistic interactions and, as well, the physical nature of the
model interaction and its strength can be realized. From a
microscopic perspective, the pair-creation operators, Â(†), and
their annihilation counter parts, Â, are realized in terms of
creation c

†
jmσ and annihilation cjmσ single-fermion operators

with the standard anticommutation relations {cjmσ , c
†
j ′m′σ ′ } =

δj,j ′δm,m′δσ,σ ′ , where these operators create (annihilate) a
particle of type σ = ±1/2 (proton/neutron) in a state of
total angular momentum j (half integer) with projection m
in a finite space 2� = �j (2j + 1). There are ten independent
scalar products (zero total angular momentum) of the fermion
operators:

Â†
µ = 1√

2�(1 + δσσ ′)

∑
jm

(−1)j−mc
†
jmσ c

†
j,−m,σ ′ ,

Âµ = (Â†
µ)†, (µ = σ + σ ′),

(2)
T̂± = 1√

2�

∑
jm

c
†
jm,±1/2cjm,∓1/2,

N̂ =
∑
σjm

c
†
jmσ cjmσ , T̂0 =

∑
σ

σ
∑
jm

c
†
jmσ cjmσ ,

1The lowest isobaric analog 0+ states of odd-odd nuclei have the
isospin of the ground state of the even-even same-mass neighbor with
a larger difference in proton and neutron numbers. These states are
ground states for even-even nuclei and only some [N ≈ Z] odd-odd
nuclei.
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which form a fermion realization of the symplectic sp(4) Lie
algebra. Such an algebraic structure is exactly the one needed
to describe isovector (like-particle plus pn) pairing correlations
and isospin symmetry in nuclear isobaric analog 0+ states.

Using relations (2), the one- and two-body interaction (1)
can be rewritten in standard second quantized form in terms
of fermion creation a

†
jm(1/2)σ = c

†
jm(1/2)σ and annihilation

ajm(1/2)σ = (−1)j+m+1/2+σ cj−m(1/2)−σ tensor operators,

H = −
∑
r � s{r=(jr ,

1
2 )}

√
[r]εrs{a†

r ⊗ as}(00)

−
∑
r � s
t � u

�=(J,T )

√
[�]√

(1 + δrs)(1 + δtu)

×W�
rstu{{a†

r ⊗ a†
s }� ⊗ {at ⊗ au}�}(00)

= −
∑
r � s

√
[r]εrs{a†

r ⊗ as}(00)

− 1

4

∑
rstu
�

√
(1 + δrs)(1 + δtu)[�]

×W�
rstu{{a†

r ⊗ a†
s }� ⊗ {at ⊗ au}�}(00), (3)

with [r] = 2(2jr + 1) and [�] = (2J + 1)(2T + 1), where
εrs is the single-particle energy and WJT

rstu is the two-body
antisymmetric matrix element in the JT-coupled
scheme [W�

rstu = −(−)r+s−�W�
srtu = −(−)t+u−�W�

rsut =
(−)r+s−t−uW�

srut = W�
turs]. For an isospin nonconserving two-

body interaction of isospin rank T , the coupling of fermion
operators is as follows, {{a†

r ⊗ a
†
s }JT ⊗ {at ⊗ au}JT }(0T ), with

W
(T )JT
rstu matrix elements. The latter are expressed through the

parameters of the model interaction for isospin rank 0 and 2
of Hsp(4) and {r � (s, t); t � u} orbits as follows:

W
(0)JT
rstu ≡ WJT

rstu = 〈rsJT MT0|H (0)|tuJT MT0〉

= −
(

G + F

3

) √
�r�t

�
δ(JT ),(01)δrsδtu

−
{
−

(
E

2�
+ D

3

)[
(−)T + 1

2

]
+ C

}
δrt δsu (4)

W
(2)JT
rstu = 〈rsJT MT0|H (2)|tuJT MT0〉

=
√

2

3

(
F

√
�r�t

�
δJ0δrsδtu − Dδrt δsu

)
δT 1. (5)

The isotensor part (5) of the model interaction introduces
isospin dynamical symmetry through the D-term (retaining T
as a good quantum number and splitting the energy degeneracy
along the third projection of the isospin) and as well a plausible,
but very weak, isospin mixing (F-term) [44].

For the purposes of this paper, we will use only the isoscalar
part of our model Hamiltonian (4) and set all the orbits equal
to j = 7/2 (r = s = t = u) because we choose to focus on
a study of nuclei in the single 1f7/2 level. In addition, these
matrix elements correspond to the pure nuclear interaction
and do not include Coulomb repulsion because its effect is
corrected in the experimental energies themselves by applying

an empirical formula deduced in [41]. This may result in
slightly more bound states predicted by our model when
compared to estimates of realistic interactions.

Within the isospin-invariant picture, the two-body matrix
elements of the model Hamiltonian WJT

rstu (4) depend only
on three parameters, G0 = G + F

3 , E0 = ( E
2�

+ D
3 ) and C,

WJT
7
2

7
2

7
2

7
2

= −G0δ(JT ),(01)−
{−E0

[
(−)T + 1

2

] + C
}
. (6)

The two-body matrix elements reflect the microscopic aspect
of the model interaction, which is J-independent for all but
J = 0. Hence Hsp(4) describes the average behavior of higher-J
states, while it distinguishes between T = 0 and T = 1 groups
of states. The smaller the magnitude of E0 (< 0), the smaller
the separation of these groups. As expected, the pairing
correlations contribute only to the (J = 0, T = 1) state and
they are absent for higher-J states where both particles are
uncoupled. Relative to the 0+ T = 1 state, the bigger the G0

pairing strength, the larger the energy gap to the higher-J states.
The role of the Sp(4) dynamical symmetry in generating the

energy spectrum of the 1f7/2 nuclei can be further understood
by comparing the Sp(4) interaction to the CD-Bonn [31],
CD-Bonn+3terms [32], and GXPF1 [2] realistic interactions.
CD-Bonn is a charge-dependent one-boson-exchange nucleon-
nucleon (NN) potential that is one of the most accurate
in reproducing the world proton-proton and neutron-proton
scattering data. In addition, the CD-Bonn+3terms interaction
introduces phenomenological isospin-dependent central terms
plus a tensor force with strengths and ranges determined in
no-core 0h̄ω shell model calculations to achieve an improved
description of the A = 48 Ca, Sc and Ti isobars. The GXPF1
effective interaction is obtained from a realistic G-matrix
interaction based on the Bonn-C potential [50] by adding
empirical corrections determined through systematic fitting
to experimental energy data in the fp shell.

III. THEORY OF SPECTRAL DISTRIBUTIONS

Group theory underpins spectral distribution theory [8–10,
12,45]. The model space is partitioned according to particular
group symmetries and each subsequent subgroup partitioning
yields finer and more detailed spectral estimates. For n particles
distributed over N single-particle states, a scalar distribution
(denoted by “n” in the formulae) is called the spectral
distribution averaged over all n-particle states associated
with the U(N = 4�) group structure and an isospin-scalar
distribution (denoted by “n, T ”) is averaged over the ensemble
of all n-particle states of isospin T associated with U(N =
2�) ⊗ U(2)T .

For a spectral distribution α (α is n or n, T ), the correlation
coefficient between two Hamiltonian operators, H and H ′, is
defined as

ζ α
H,H ′ = 〈(H † − 〈H †〉α)(H ′ − 〈H ′〉α)〉α

σHσH ′
(7)

= 〈H †H ′〉α − 〈H †〉α〈H ′〉α
σHσH ′

, (8)
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where the “width” of the distribution is the positive square root
of the variance,(

σα
H

)2 = 〈(H − 〈H 〉α)2〉α = 〈H 2〉α − (〈H 〉α)2. (9)

The average values, related to the trace of an operator divided
by the dimensionality of the space, are given in terms of
the ensemble considered. In the (isospin-)scalar case, the
correlation will be denoted by ζ n (ζ n,T ) or simply ζ (ζ T )
for n = 2.

The steps for computing the ζ α correlation coefficient and
the σα variance2 are given in Refs. [8–10,12,24] (see also
computational codes [12,46]) and take on the simple form for
a single-j level:

〈H †H ′〉α − 〈H †〉α〈H ′〉α =
∑

τ

p2(α, τ )
1∑


[
]

∑
J

[
]

×WJτ
rrrr (2)W ′Jτ

rrrr (2), (10)

2This follows from the decomposition of the one(k = 1)- and
two (k = 2)-body interaction H into definite particle rank terms
[irreducible tensorsHk(ν) of rank ν = 0, 1, 2], that is into a collection
of pure zero-, one- and two-body interactions. For example, in the
scalar single-j case for n particles, the Hamiltonian can be rendered,
H = nH1(0) + ( n

2 )H2(0)+H1(1) + (n − 1)H2(1)+H2(2) = −nε−
( n

2 )Wc− 1
2

∑
�

√
[�]W�

rrrr (2){{a†
r⊗ a†

r }�⊗ {ar ⊗ ar}�}(00), where ε is
the single-particle energy and for a single-j level the pure one-body
part is trivially zero.

WJτ
rrrr (2) = WJτ

rrrr − W (τ )
c , (11)

W (τ )
c = 1∑


[
]

∑



[
]WJτ
rrrr , (12)

where τ = {0 or 1} is the isospin label of the two-body matrix
elements, WJτ

rrrr (2) is the traceless pure two-body interaction
and W (τ )

c is the monopole moment or centroid in the (isospin-)
scalar case, that is the average expectation value of (the isospin-
τ part of) the two-body interaction for a two-particle system
n = 2. In the scalar (α = n) case the following holds, 
 =
� = (J, τ ),

∑
�[�] = (N2 ),N = 4� = 2(2jr + 1), and the τ -

independent propagator is

p2(n, τ ) = n(n − 1)(N − n)(N − n − 1)

2(N − 2)(N − 3)
. (13)

In the isospin-scalar (α = n, T ) case: 
 = J,
∑

J [J ] =
N (N+(−1)τ )

2 ,N = 2�, and the propagator functions are [10,47]

p2(n, T , τ = 0) = [n(n + 2) − 4T (T + 1)]
[(
N − n

2

) (
N − n

2 + 1
) − T (T + 1)

]
8N (N − 1)

(14)

p2(n, T , τ = 1) = 1

N (N + 1)(N − 2)(N − 3)

×
{

1

2
T 2(T + 1)2(3N 2 − 7N + 6)

+ 3

8
n(n − 2)

(
N − n

2

) (
N − n

2
+ 1

)

× (N + 1)(N + 2) + 1

2
T (T + 1)

× [(5N − 3)(N + 2)n
(n

2
− N

)

+ N (N − 1)(N + 1)(N + 6)]

}
. (15)

In terms of a geometrical picture, the correlation coefficient
ζ defines the angle between two vectors (H and H ′) of length
σH (′) (9) and hence its square gives a normalized measure
(percentage) of one of the vectors, e.g., the Sp(4) interaction,
that is contained in the other, such as a realistic interaction.
The correlation coefficient is a measure that is independent
of the averages of the interactions. Clearly these averages,

though an interesting measure, are irrelevant when the focus
is on detailed property-defining two-body interaction beyond
strong mean-field effects.

For the Sp(4) interaction, the average two-body interaction
is expressed in terms of the model parameters in the scalar
case as

Wc = −3G0(N
2

) + 3E0

2(N − 1)
− C (16)

and in the isospin-scalar case as

WT
c = − G0(N

2

)δT 1 + E0

[
(−1)T + 1

2

]
− C. (17)

Hence the pure two-body WJT
7
2

7
2

7
2

7
2
(2) matrix elements (6), and

consequently the correlation coefficients involving Hsp(4), are
independent of the C (and E0) parameter(s) in the (isospin-)
scalar case.

IV. UNDERLYING SYMMETRIES OF
REALISTIC INTERACTIONS

We now use statistical concepts to probe the nature of
the CD-Bonn [31], CD-Bonn+3terms [32], and GXPF1 [2]
realistic interactions, hereafter referred as HR . Specifically,
we will compare these interactions to the symplectic pairing
and quadrupole interactions through their mutual correlations.
Clearly, if two interactions have similar matrix elements they
will be strongly correlated and any pattern that is observed in
the behavior of one will be reflected in the other. This can
be made quantitative by evoking measures from statistical
spectroscopy, namely, the closer the correlation coefficient
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between two interactions is to unity the more similar their
spectra with the two coinciding within a rescaling factor when
the correlation coefficient is unity.

In a similar manner, the projection onto a model Hamil-
tonian that describes collective rotational excitations or/and
pairing correlations can be used to probe the rotational
and pairing characteristics of a microscopic interaction
[11,26,48,49]. The dynamical symmetry of the pairing (or
quadrupole-quadrupole) interaction sets a specific relation
between the matrix elements of the Hamiltonian that models
it. If this relation is found in a realistic interaction, that is,
the model and realistic interactions are strongly correlated,
then the latter possesses the underlying symmetry and will
reflect the characteristic properties of the pairing (quadrupole)
Hamiltonian. It should be clear that the complement is also
true, namely, if a model interaction is strongly correlated with
a realistic one, the associated model calculations can be used
to investigate the behavior of physical systems.

A. The sp(4) model and pairing character

An interesting feature of any interaction is its trace-
equivalent part. If the latter is found dominant then only
the underlying group scalars are enough to provide for an
approximate and yet reasonably good solution [9]. The greatest
advantage in this case is the simplicity of the many-body
problem and the tractable size of the model space. In the
isospin-scalar case, the centroid of a Hamiltonian expressed
through the ε single-particle energy and the W 0,1

c monopole
moments (12) is [47]

〈H †〉n,T = −nε −
(

n

2

)
W 0

c + 3W 1
c

4
−

[
T (T + 1) − 3

4
n

]

× W 1
c − W 0

c

2
. (18)

For a Hamiltonian with symplectic dynamical symmetry,
Hsp(4), the trace-equivalent part in the isospin-scalar distribu-
tion includes the E-, C- andε-terms of Eq. (1). When applied to
the lowest isobaric analog 0+ states of the nuclei in the 1f7/2

orbit, it reproduces their energy within 1% of the experimental
value for about a third of the nuclei. While for these states
the centroid is sufficient to achieve a good description, its
difference with experiment goes up to 7% compared to only
0.4% achieved by the whole Sp(4) Hamiltonian. In addition,
a model with a trace-equivalent Sp(4) Hamiltonian will not
be capable of explaining the fine nuclear structure where
Hsp(4) (1) succeeded [37] and will not correlate with any of
the realistic interactions. The latter indicates an inadequate
reproduction of the entire energy spectrum. Indeed, while such
an interaction was found insufficient for a description of ds
shell nuclei when compared to several effective interactions, a
drastic improvement was achieved with the inclusion of pure
two-body residual interactions of the spin-orbit and quadrupole
types [11] as well as pairing correlations [26]. In summary,
the Sp(4) symmetric Hamiltonian (1) provides for a more
accurate description of nuclear structure by adding to an
average interaction suitable for the isobaric analog 0+ states
in 1f7/2 a significant isovector pairing part.

Furthermore, the Sp(4) dynamical symmetry allows the
model Hamiltonian to reflect on the charge dependence of
the nuclear interaction, which is evident from experiments
and present in almost all of the modern realistic interactions
(e.g., CD-Bonn). While the small isospin admixture found
in the 1f7/2 isobaric analog 0+ states has been directly
estimated through the Hsp(4) eigenstates [44], the theory of
spectral distributions provides a further estimate of isospin
symmetry breaking throughout the entire spectrum [47] based
on the Sp(4) isotensor interaction (5). Using Eqs. (4), (15),
and (25) in Ref. [10] the isospin T + 2 admixture into an
average T state is found in 1f7/2 to be, as expected, much
smaller (on average less than 0.0001%) than the one detected
among the 0+ seniority-zero states [44]. As expected, it is
also much smaller than the measure calculated in Ref. [10]
for the two-body Coulomb interaction in the 1f7/2 shell (with
a maximum value of 0.009%), because the latter corresponds
to the stronger 
T = 1 admixture. The quite small isospin
symmetry breaking that the isotensor Sp(4) model interaction
introduces allows us to carry the present study without its
consideration.

The extent to which the Sp(4) dynamical symmetry governs
the HR realistic interactions within a certain domain of states
is represented by the correlation coefficients between Hsp(4)

and HR (Table I).
In the scalar distribution, where the outcome is averaged

over the isospin values, the analysis of the results shows that
all of the realistic interactions correlate between themselves
to a high degree (Table I, upper cell for each pair of
interactions). In comparison, each of them has a correlation
with the Sp(4) symmetric interaction of order of 0.6–0.8,
which is typically regarded as a good one [13]. This implies
that the realistic interactions possess around 40–60% of
the dynamical symplectic symmetry of Hsp(4) [(ζHsp(4),HR

)2]
and hence 0.4–0.6 portion of HR is dynamically symmetric
under Sp(4) transformations. Equivalently, the Hsp(4) model
interaction contains 40–60% of the realistic interactions under
consideration. This is a very interesting result, and definitely
valuable concerning the restrictions the symplectic model is
subject to.

A much more interesting scenario occurs when the isospin-
scalar case is considered. This is because in this case the space
is divided into two regions specified by their isospin values

TABLE I. Correlation coefficients for a two-nucleon system, n =
2, in the scalar (ζ ) and isospin-scalar (ζ T ) distributions.

ζ (ζ T =0, ζ T =1) CD-Bonn CD-Bonn+3terms GXPF1

Hsp(4) 0.66 0.64 0.76
(−, 0.61) (−, 0.85) (−, 0.71)

CD-Bonn 0.95 0.96
(0.99, 0.94) (0.98, 0.99)

CD-Bonn+3terms 0.97
(0.99, 0.97)

H⊥
Q (2) 0.47 0.60 0.53

(0.60, 0.73) (0.68, 0.50) (0.74, 0.65)
HM 0.81 0.87 0.93

(0.60, 0.95) (0.68, 0.98) (0.74, 0.96)
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with a view towards a more detailed examination of the nature
of the interactions under consideration. Indeed the centroids
of both T = 0 and T = 1 regions are considerably separate as
is observed in the realistic and Sp(4) interactions and as well
confirmed by experiment. In addition, the important pairing
correlations that are described in the symplectic model enter in
the T = 1 channel, where the tendency towards pair formation
of realistic interactions can be detected.

As in the scalar case, all of the realistic interactions are quite
strongly correlated in both the T = 0 and T = 1 channels
(Table I, lower cell for each pair of models). The T = 1
correlation coefficients between Hsp(4) and the HR realistic
interactions do not depend on any of the parameters in Hsp(4)

including the pairing strength itself3 and show that Hsp(4)

correlates strongly with the realistic interactions. Among the
three HR , the T = 1 part of the CD-Bonn+3terms interaction
possesses the closest similarity to the pn and like-particle
J = 0 pairing correlations. This is indicated by its large
projection of 72% [(ζ 1

Hsp(4),HR
)2 in Table I] onto the T =

1 Hsp(4) pairing interaction. Hence, the CD-Bonn+3terms
interaction is expected to describe quite well phenomena of
a pairing character.

The individual pairing strength associated with each realis-
tic interaction is typically invoked for purposes of comparison.
Compared to CD-Bonn, the J = 0 isovector pairing strength
estimate turns out to be stronger for both CD-Bonn+3terms
and GXPF1 with a relatively weaker coupling observed in the
latter. Indeed, GXPF1 was shown to tend towards smaller J =
0 pairing strength [2] when compared to two other effective
interactions, namely the G interaction based on the Bonn-C
potential [50] and the KB3G interaction [51]. However, pairing
effects, with strong or weak coupling, may be fully or partially
reflected in HR considerably depending on the strength of the
overall interaction. It is the correlation coefficient between a
realistic (HR) and symmetry-holding (as Hsp(4)) interactions
that manifests what part of HR is ruled by the symmetry.
In this sense, we can identify that pairing features are more
fully developed in CD-Bonn+3terms, then in GXPF1 and the
least in CD-Bonn (ζ 1

Hsp(4),HR
in Table I). In the latter, other

types of interaction compete stronger with pair formation than
in the former two interactions and hence suppress pairing
coherence.

The large J = 0 coherence and its strong coupling observed
in the CD-Bonn+3terms interaction should not be surprising
because it reproduces (by an optimal fit) the energy difference
between the ground state and the first 2+ state of 48Ca. Such an
observable is believed to be directly affected by the formation
of correlated pairs in the ground state of the spherical core of
48Ca and the pairing gap that occurs below the first excited
state of a broken pair. It is interesting to point out that while
the addition of three phenomenological terms to the CD-
Bonn interaction to obtain CD-Bonn+3terms keeps the close
similarity between both interactions [ζ 1 = 0.94 (Table I)],
it causes the correlations with isovector pairing interaction

3For the isospin-scalar distribution, the Sp(4) T = 0 model interac-
tion contains only a trace-equivalent part and hence the correlation
coefficients cannot be determined.

to double in strength [(ζ 1
Hsp(4),HR

)2]. In short, the analysis
shows that the simple Sp(4) model interaction can reproduce
reasonably the T = 1 low-lying energy spectra generated by
the CD-Bonn+3terms realistic interaction for a system of two
nucleons in the 1f7/2 orbit and for this reason can be used as
a good approximation.

Another result in favor of the algebraic sp(4) model follows
from a comparison of the lowest isobaric analog 0+ states in the
A = 42 isobars. These are precisely the (J = 0, T = 1) states,
which are expected to be shaped by strong proton-neutron and
like-particle pairing correlations [52] and are well described
by the sp(4) model [34]. The outcome reveals a very close sim-
ilarity between the estimate of the two-body (J = 0, T = 1)
matrix element for the symplectic interaction (−1.85 MeV)
and both CD-Bonn+3terms (−2.06 MeV) and GXPF1
(−2.44 MeV) realistic interactions. In addition, the energy dif-
ferences between the first 2+ state and the 0+ ground state for
the different effective interactions are also very close, namely,
1.91 MeV (for Hsp(4)), 2.00 MeV (for CD-Bonn+3terms) and
1.50 MeV (for GXPF1). All these estimates are rather different
from CD-Bonn with 0.48 MeV 2+ to 0+ energy difference
but very close to the experimental energy gap for the A =
42 isobars, namely, 1.56 MeV for 42Ti, 1.59 MeV for 42Sc and
1.52 MeV for 42Ca.

B. Pairing+quadrupole model interaction

While the pairing-governed isobaric analog 0+ state ener-
gies are well determined within the framework of the Sp(4)
model, the nuclear spectrum as described by the Sp(4)-
symmetric Hamiltonian contains degenerate higher-J states
averaged for a given isospin value as can be clearly seen from
its microscopic structure (4). Nonetheless, the correlation of
Hsp(4) with realistic interactions for the 1f7/2 level turns out
to be reasonably strong. A question one can pose concerns
the role of other significant interactions in nuclei such as
the quadrupole-quadrupole interaction (Q · Q). As our results
indicate, answers to such questions can be found within the
framework of statistical measures.

The pairing model based on the sp(4) algebra [incorpo-
rating like-particles pairing through an su(2) subalgebra] is
commonly considered to be inappropriate for two reasons.
The first reason is related to the degeneracy of the single-
particle levels, which is not a problem for the 1f7/2 shell
considered as a single orbit well-separated from the ds shell
and the upper fp shell. The second reason is the lack of
the Q · Q interaction. This is because one usually neglects
the fact that the pairing interaction contains in itself a part
of the quadrupole-quadrupole interaction. This part is not
negligible with the correlation being typically between 0.4 to
0.6 depending on the distribution considered: 15% when the
whole space is considered and 35% in the T = 1 region. This
is probably one of the reason why the Sp(4) model interaction
turns out to work rather well despite an explicit appearance of
the quadrupole-quadrupole interaction.

Because of the fact that the Q · Q interaction is already
present in the sp(4) Hamiltonian, its additional influence can
be studied following the construction prescribed in Ref. [11].
In short, we add a Q · Q term to the symplectic Hsp(4)
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Hamiltonian (1) in a way that this term is only the part of
the pure two-body quadrupole-quadrupole interaction that is
not contained in Sp(4), or in the vector algebra terminology
we add only the part that is orthogonal to the pure two-body
Sp(4) Hamiltonian [16],

HM = Hsp(4) + H⊥
Q (2),HQ = −χ

2
Q · Q. (19)

Such a Hamiltonian does not affect the centroid of Hsp(4)

because H⊥
Q (2) is traceless. In this way this collective interac-

tion preserves the shell structure that is built into Hsp(4) and
established by a harmonic oscillator potential and as a result
is favored in many studies [11,26,30,53].

Compared to the pairing Hsp(4) Hamiltonian, the additional
collective interaction, H⊥

Q (2), has a lower correlation with
HR for all the cases except for T = 1 CD-Bonn and where
ζHsp(4),HR

cannot be determined (Table I). The realistic inter-
actions contain the Sp(4) interaction by 5% to 50% more
than they contain H⊥

Q (2), the largest value being for the
T = 1 CD-Bonn+3terms interaction. We should emphasize
that this outcome does not imply that the realistic interactions
correlate better with the pairing interaction than they do with
the quadrupole-quadrupole interaction nor that their pairing
character is dominant. This is because the H⊥

Q (2) interaction
represents only that part of the rotational interaction that is not
included in the Sp(4) interaction and the entire Q · Q collective
mode affects both ζ

(T )
H⊥

Q (2),HR
and ζ

(T )
Hsp(4),HR

correlations. The

outcome only implies that a comparatively larger part of
the overall correlations is already accounted for solely by the
symplectic sp(4) algebraic model interaction.

In our study, we vary only χ , the quadrupole strength
parameter in Eq. (19), to find its optimal value (which is an
exact solution) by maximizing the correlation coefficient ζ

between HM and HR [54]. We do not alter the parameters
of the Sp(4) model, which have already been shown in an
appropriate domain of states to be valid for reproducing various
quantities (such as binding energies and pairing gaps) and are
in agreement with estimates available in literature [34,37].
This implies that the σ “width” of Hsp(4) (9) does not change.
The minimization procedure is performed for HM compared
to each realistic interaction and in the isospin-scalar case, for
each isospin value (Tables I and II).

In both scalar and isospin-scalar cases, the addition of
the quadrupole-quadrupole interaction definitely improves the
ζ

(T )
HM,HR

correlation (Table I), which is associated with the angle

TABLE II. First and second energy moments [the centroid Wc

(12) and the “width” σ (9)] of realistic and model interactions for
a two-nucleon system, n = 2, in the 1f7/2 level. HM is determined
by an estimate for the quadrupole-quadrupole strength χ for each
realistic interaction; its centroid energies coincide with the ones of
Hsp(4) for a given distribution.

CD-Bonn CD-Bonn+3terms GXPF1

Scalar distribution
Wc 0.30 0.19 −0.60
σ 0.59 0.80 0.98
HM, Wc −0.63 −0.63 −0.63
HM, σ 1.23 1.36 1.21
HM, χ 0.096 0.124 0.092

Isospin-scalar distribution, T = 1
W 1

c 0.54 0.46 −0.17

σ 1 0.27 0.57 0.62
HM, W 1

c −0.01 −0.01 −0.01

HM, σ 1 0.55 0.41 0.48
HM, χ 0.071 0.036 0.055

between the two-body effective interaction and its projection
on the plane spanned by two orthogonal vectors, two-body
Hsp(4) and H⊥

Q (2), in an abstract operator space (Fig. 1).
In the same representation, the angles between the realistic
interactions and both axes give the ζ

(T )
H⊥

Q (2),HR
and ζ

(T )
Hsp(4),HR

correlations, and the length of each vector is specified by σ
(T )
H

(9). Therefore, while enhanced quadrupole effects rotate the
projection of an interaction closer to the H⊥

Q (2) axis, greater
influence of additional interactions neglected in HM pushes
HR away from the HM horizontal plane.

The GXPF1 interaction is found to correlate best with
the model HM Hamiltonian for the scalar distribution (86%)
and in the T = 0 case compared to the other interactions
(Table I). More than 50% of the T = 0 GXPF1 interaction
is accounted by the isoscalar model interaction. The T = 0
correlation coefficients between the model HM Hamiltonian
and HR are reasonably good and determined solely by the
Q · Q interaction independent of its strength, χ (19).

In the T = 1 region, all the realistic interactions con-
sidered are reproduced to the 90%–97% level by such
a pairing+quadrupole model interaction. Other interactions
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FIG. 1. (Color online) Geometrical repre-
sentation of the realistic interactions, CD-Bonn
(light blue), CD-Bonn+3terms (red) and GXPF1
(green), in an abstract operator space, where the
horizontal plane is spanned by the orthogonal
linear operators, the pure two-body Hsp(4) and
H⊥

Q (2) model Hamiltonians, both linearly in-
dependent of additional operators represented
by the vertical axis. (a) Scalar distribution.
(b) Isospin-scalar distribution, T = 1. The ori-
entation of the vectors remains the same for any
particle number n � 2 in (a) and for all T = n/2
cases in (b).
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FIG. 2. (Color online) Energy spectra of two-particle states in the 1f7/2 level predicted by the CD-Bonn (light blue), CD-Bonn+3terms
(red), and GXPF1 (green) realistic interactions. Each is compared to the model Hamiltonian HM (black) with χ = 0.096, 0.124 and 0.092,
respectively (Table II). For comparison, the available experimental energy spectra of the A = 42 Ca, Sc, Ti isobars (blue) and A = 54 Co and
Fe isobars (magenta) are also shown.

contribute almost negligibly as is clearly seen from Fig. 1(b)
with their contribution being least for the CD-Bonn+3terms
interaction. In addition, within the T = 1 distribution, the
smallest χ value (Table II) is found for the CD-Bonn+3terms
realistic interaction as expected due to its reasonable correla-
tion with the Sp(4) model interaction. In summary, the results
once again prove that the pairing and quadrupole-quadrupole
interactions are significant in shaping nuclear structure and are
dominant for the T = 1 two-body nuclear interaction for the
1f7/2 orbit.

From the point of view of the model interaction (19)
we adopted, the rotational character of the three realistic
interactions may appear to be obscure because a strong
correlation to the entire HQ quadrupole-quadrupole interaction
(not only to its projection H⊥

Q (2)), ζ (T )
HQ,HR

, is needed. However,
development of rotational features turns out to follow quali-
tatively the ζ

(T )
H⊥

Q (2),HR
correlation coefficients (Table I). This is

because HQ is already present in the HM model Hamiltonian
and one can visualize HQ in the scalar (isospin-scalar, T = 1)
case in Fig. 1 as an axis that lies in the horizontal plane
around 67◦ (54◦) counterclockwise from the Hsp(4) axis and
hence it lies furthest away from Hsp(4) compared to all three
realistic interactions. Therefore, the comparatively largest
collectivity is attained within CD-Bonn+3terms in the scalar
case, within GXPF1 for the T = 0 domain of states (with
an exact quantitative measure ζ 0

HQ,HR
= ζ 0

H⊥
Q (2),HR

), and within

CD-Bonn in the T = 1 case. In contrast, the T = 1 part of the
CD-Bonn interaction shows the smallest individual quadrupole
strength, which is an illustrative example of a very prominent
rotational behavior (detected via ζ ) but of a weak strength
(depending on σ ). In general, the individual quadrupole
strength associated with the GXPF1 interaction is very similar
to, yet slightly stronger than, the one of CD-Bonn+3terms
with the same trend observed for GXPF1 [2] with respect to
KBG3.

C. Energy spectrum

The scalar and isospin-scalar T = 1 distributions show
strong correlations of the pairing+quadrupole model

interaction with the realistic interactions and hence a similar
pattern of energy states is expected.

While correlation coefficients (8) prove useful in studies
of nuclear properties shaped by the residual pure two-body
interaction, the discrete energies of a quantum-mechanical
system are additionally influenced by the centroid, W (T )

c (12),
and the overall interaction strength related to σ (T ) (9). The
centroid of the HM pairing+quadrupole model interaction,
which coincides with the one for Sp(4) (W (T )

c,HM
= W

(T )
c,Hsp(4)

)
(Table II), is very close to that for GXPF1 and both differ from
the other two realistic interactions. However, this quantity is
irrelevant for the energy spectra relative to the ground state
within a given distribution.

For the scalar distribution, the HM model Hamiltonian
generates energy spectra that are comparatively more spread
out, especially with respect to CD-Bonn (see Fig. 2 and σ in
Table II). A renormalization of HM will push the higher-lying
states down and will establish an energy pattern very much
like the ones observed in GXPF1, CD-Bonn+3terms and
experiment (except for the 1+ state). Such a renormalization,
however, is not done because the scalar distribution itself
introduces averaging over isospin values. Instead we turn to
the more detailed T = 1 spectral distribution.

The T = 1 part of the pure two-body realistic interactions
is reproduced quite well by the model Hamiltonian. This in
turn yields a similar energy spectra (Fig. 3) as predicted by
the model interaction HM and both the CD-Bonn+3terms
and GXPF1 realistic interactions. They also agree well with
the available experimental data for the A = 42 and A =
54 isobars (the latter refer to systems of two holes). Here
again, the agreement between HM and CD-Bonn is not as good
as for the other two interactions, especially in reproducing
the spreading of the states, which is smaller for CD-Bonn
relative to the experimental energy spectra. Compared to the
Sp(4) model interaction, the energy of the first 2+ state is
brought slightly lower by the addition of H⊥

Q (2), to 1.47 MeV
(when χ is determined in comparison to CD-Bonn+3terms)
and 1.22 MeV (to GXPF1). Such values are a bit closer to
the experimental results, namely, 1.52–1.59 MeV for the A =
42 isobars and 1.41–1.44 MeV for the A = 54 isobars in the
1f7/2 level. While the influence of the quadrupole-quadrupole
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FIG. 3. (Color online) Energy spectra of T = 1 states predicted by the CD-Bonn (light blue), CD-Bonn+3terms (red) and GXPF1 (green)
realistic interactions. Each is compared to the model Hamiltonian HM (black) with χ = 0.071, 0.036 and 0.055, respectively (Table II). For
comparison, the experimental T = 1 energy spectra of the A = 42 Ca, Sc, Ti isobars (blue) and A = 54 Co and Fe isobars (magenta) are also
shown.

interaction is significant in the 2+ T = 1 states, it does not
affect the estimate for the Sp(4) parameters because they were
determined with regard to the nuclear isobaric analog 0+ states.

An interesting result is that in the detailed case of isospin-
scalar distribution, the (J = 0, T = 1) two-body matrix ele-
ment is not affected at all by the Q · Q interaction added to
Hsp(4) because H⊥

Q (2) has a zero contribution to this state. In
this way, the addition of a quadrupole-quadrupole interaction
does not alter the 0+ T = 1 ground state of the A = 42 isobars,
which are precisely the lowest isobaric analog 0+ states where
the Sp(4) model has been applied. Moreover, the average effect
of this two-body collective interaction throughout the entire
shell is zero [see Eq. (19)]. Even though this property of H⊥

Q (2)
is imposed by construction, such a form (as already mentioned)
is typically preferred so as to preserve the shell structure. In
short, the domain of states where the Sp(4) model was applied
is not influenced by the inclusion of the quadrupole degree
of freedom to the pairing model. The Sp(4) model interaction
itself actually accounts for all the effects, small or large, due
to the influence of the quadrupole-quadrupole interaction on
these states.

D. Correlations between interactions for nuclear
systems with more than two nucleons

An important feature of spectral distribution theory is that
the correlation coefficient concept can be propagated beyond
the defining two-nucleon system to derivative systems with
larger numbers of nucleons [8] and in the isospin-scalar
case, for higher values of isospin [10]. The propagation
formulas (10) determine how the averages extracted from the
two-nucleon matrix elements in the two-nucleon system get
carried forward into many-nucleon systems. This propagation
of information is model-independent. In this way one can track
the similarity of pairing/rotational characteristics between
different interactions in many-nucleon systems [49].

In the scalar case the correlations between the interactions
retain their values as given in Table I. For the isospin-scalar
distribution, the correlation coefficients between the realistic
interactions and the HM model interaction decrease for n > 2

and higher-T values compared to the n = 2 T = 1 case
and increase when compared to the n = 2 T = 0 estimates
(Fig. 4).

For given n and T, the ζ values can again be found as the
maximum correlation for an optimal value of the quadrupole-
quadrupole strength χ , which is related to the angle between
the geometrically represented HR and its projection onto the
HM plane. When T = n/2 (Fig. 4), which corresponds to the
highest possible isospin states (including n = 2, T = 1) in 41
nuclei with valence nucleons occupying the 1f7/2 orbit, the
realistic interactions continue to be strongly correlated with the
HM model Hamiltonian, namely, ζ (T )

HM,HR
is 0.95, 0.98 and 0.96

for CD-Bonn, CD-Bonn+3terms, and GXPF1, respectively.
For these states, the other types of interactions are negligible
and constitute only 3% of CD-Bonn+3terms, 8% of GXPF1
and 9% of CD-Bonn [Fig. 1(b)].

For all the cases with T �= n/2 throughout the entire shell,
the correlation coefficients are found to retain almost the same
value (Fig. 4), namely, ζ T

HM,HR
is around 0.63 − 0.70, 0.76 −

0.84 and 0.80 − 0.86 for CD-Bonn, CD-Bonn+3terms, and
GXPF1, respectively, with the corresponding optimal strength
χ of the quadrupole-quadrupole interaction in the inter-
vals, 0.087 − 0.096, 0.042 − 0.047, and 0.057 − 0.058. The
smaller χ , the weaker the Sp(4) symmetry breaking resulting
from the additional quadrupole-quadrupole interaction. Again,
the least strength is observed when HM is compared to CD-
Bonn+3terms. In the case of GXPF1, χ remains almost the
same for all the states, with T �= n/2 as well as with T = n/2
(Table II, last row). In addition, the relative contribution of
other types of interaction, which are not accounted for by HM

(19), is somewhat greater for CD-Bonn+3terms and CD-Bonn
compared to GXPF1 because of their comparatively smaller
ζ

T �=n/2
HM,HR

(Fig. 4. In short, among the three realistic interactions,
when T differs from n/2 the Sp(4) dynamical symmetry
continues to be reflected the most in CD-Bonn+3terms, while
the extended pairing+quadrupole model interaction correlates
the best with GXPF1.

An interesting result is that among the T �= n/2 cases
the highest ζ T

HM,HR
correlations for each realistic interaction
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FIG. 4. (Color online) Correlation coefficients, ζ
n,T
HM,HR

, of the pairing+quadrupole model interaction with (a) CD-Bonn, (b) CD-
Bonn+3terms, and (c) GXPF1 as a function of n and T for the 1f7/2 orbit. The representation is symmetric with respect to the sign of
n − 2�.

are observed for the low-T mid-shell nuclear states, where
the χ strength is relatively smaller. This suggests that for
these states the other kinds of interactions not present in HM

grow weaker and the realistic interactions are comparatively
closer in behavior to the symplectic pairing Hsp(4). The lowest
correlation is observed for the mid-shell nuclei with isospin
next to the highest, where χ is the largest. For these cases,
both quadrupole-quadrupole and other types of interactions
accounted for by the realistic interactions increase in relative
importance.

In summary, for all of the (n, T ) distributions the model
pairing+quadrupole interaction accounts on average for about
59%, 77%, and 78% of the CD-Bonn, CD-Bonn+3terms, and
GXPF1 realistic interactions, respectively, and up to 91%,
97%, and 92% of those in the highest possible isospin states
for a given n, where the HM model interaction can be used to
provide a reliable description.

Although, the aforementioned results refer to a single-j orbit
(1f7/2), they represent a first step towards a generalization to
multi-j major shells (such as the fp shell or even a set of several
major shells). Such an extension is certainly feasible and not
space limited from the perspective of spectral distribution
theory. Even though the statistics for the 1f7/2 level are
not large compared to the fp shell, it is a natural choice.
Specifically, the 1f7/2 orbital is comparatively far away from
both the neighboring ds and upper fp shells which means there
is a preponderance of a single-j coherence over configuration
mixing in the low-lying nuclear states for such nuclei. For this
reason it is an interesting example in its simplicity and provides
a quite clear view of the pairing/rotational foundation of the
nuclear interaction that is free of competing configuration
mixing effects. In addition, it does represents a partitioning
of the fp-space and as such it provides for more detailed
spectral measures that may reflect important fine effects that
are otherwise averaged out when the entire fp major shell
is taken into account. It will be also important to augment
this single-j shell study with a follow-on, complementary
multi-shell analysis of similar type. The multi-shell case will
be the topic of a future publication.

In addition to the above, we note for completeness that the
estimates for the parameters of the model Sp(4) interaction are
not really relevant to the primary objective of the present study.
The reason is that the correlation coefficients in the detailed
isospin-scalar case are independent of the interaction strength
parameters, which therefore do not affect the correlation
measures of the model interaction with realistic ones or the
pairing and rotational characteristics of the latter.

V. CONCLUSIONS

With a view towards a broader study within multi-j shells,
we compared three realistic interactions and two model pairing
and quadrupole interactions for the 1f7/2 orbit by means of the
theory of spectral distributions.

In the more detailed case of isospin-scalar distribution, the
CD-Bonn, CD-Bonn+3terms, and GXPF1 realistic interac-
tions were found to contain on average 59%, 77%, and 78%,
respectively, of the pairing+quadrupole interaction. Moreover,
this percentage goes up to 91%, 97%, and 92%, respectively,
for the highest possible isospin group of states for all the
nuclei with valence protons and neutrons occupying the 1f7/2

shell. For these states, the strongest correlation was observed
between the CD-Bonn+3terms and the pairing+quadrupole
model interaction, where other types of interaction accounted
in the realistic interactions represent only 3% of it. They
constitute 8% of the GXPF1 realistic interaction, and 9%
of CD-Bonn. For these cases, the pairing+quadrupole model
interaction has been shown to be a very good approximation
that provides a reasonable description of the energy spectra
of the nuclei in the 1f7/2 level. While both interactions, CD-
Bonn+3terms and GXPF1, exhibit a well-developed pairing
character compared to CD-Bonn, the latter appears to build up
more (less) rotational collective features that are outside of the
scope of the T = 1 (T = 0) Sp(4) interaction.

The major advantage of the sp(4) algebraic model, which
focuses on the isovector pairing correlations and also includes
a certain portion of the quadrupole-quadrupole interaction,
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is that it provides an elegant solution for describing the
pairing-governed isobaric analog 0+ states in light and medium
mass nuclei. In addition, while it correlates to a reasonably
good extent with the realistic interactions, the description of
the low-lying nuclear energy spectrum of higher-J states is
improved with the inclusion of the quadrupole-quadrupole
interaction that being symmetric under SU(3) breaks the
Sp(4) symmetry and removes degeneracies. Nevertheless, we
found that for the isospin-scalar distribution the Sp(4) model
interaction accounts for a large part of the CD-Bonn+3terms
realistic interaction. It also includes between 15% to 35%
of the rotational collective interaction and typically accounts
for a rather large portion of the overall correlation of the
realistic interactions with the pairing+quadrupole interaction.
Moreover, the additional quadrupole degree of freedom incor-

porated in the symplectic model interaction does not affect the
domain of states where the Sp(4) model was applied and hence
introduces no errors in the estimates of the parameters of the
symplectic interaction. These results confirm the conclusion
that the Sp(4) interaction can provide for an approximate
pattern of the nuclear energy spectra and, above all, can be
accepted as a very reasonable approximation to describe the
pairing-governed isobaric analog 0+ states in the nuclei in
the 1f7/2 orbit.
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