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Global study of quadrupole correlation effects
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We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square
charge radii for all even-even nuclei, from 16O up to the superheavies, for which data are available. To that
aim we calculate their correlated J = 0 ground state by means of the angular-momentum and particle-number
projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and
self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is
performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme
interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix
them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few
100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry.
(ii) Projection on angular momentum J = 0 provides the major part of the energy gain of up to about 4 MeV;
all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected
states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy.
(iv) Typically nuclei below mass A� 60 have a larger correlation energy than static deformation energy whereas
the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the
quadrupole correlation energy improves the description of mass systematics, particularly around shell closures,
and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation
energy provides an explanation of “mutually enhanced magicity.” (vi) The correlation energy tends to decrease
the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large
enough to explain the relative overbinding at N = 82 and N = 126 neutron-shell closures in mean-field models.
(vii) Charge radii are also found to be sensitive to the quadrupole correlations. Static quadrupole deformations
lead to a significant improvement of the overall systematics of charge radii. The dynamical correlations improve
the local systematics of radii, in particular around shell closures. Although the dynamical correlations might
reduce the charge radii for specific nuclei, they lead to an overall increase of radii when included, in particular in
light nuclei.
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I. INTRODUCTION

The past few years have witnessed a tremendous progress
toward the construction of microscopic models for nuclear
masses. Most promising for such an endeavor is self-consistent
mean-field (SCMF) theory, also called density functional
theory. See Ref. [1] for a recent review. Since the work of
Tondeur et al. [2], fits of SCMF models to all experimentally
known masses have become available. However, the fits
are competitive only with the de facto standard of mass
formulas, the finite-range liquid-drop model (FRDM) [3],
when phenomenological corrections are added for specific
correlation effects. As in the FRDM, a Wigner term is added to
account for the stronger neutron-proton correlation in nuclei
having nearly equal numbers of neutrons and protons [4,5]. A
rotational-energy correction is also added when the mean-field
state breaks spherical symmetry, although the importance of
this term has never been fully tested. The quality of the fits,
either FRDM or mean-field + corrections, is in the range of
0.6–0.7 MeV rms.

Some time ago, Bohigas and Leboeuf [6] opened a discus-
sion on the limits of accuracy of theories of the nuclear masses

by arguing that chaotic contributions to the nuclear wave
function will ultimately limit the accuracy of any mean-field
approach. Their rough estimate for this limit is a rms deviation
of σrms ≈ 500 keV [see Eq. (26) for its definition], which is
only slightly below the values achieved in the FRDM and the
mean-field + corrections. On the other hand, applying noise
analysis to available mass theories of various types, Barea
et al. argue in Ref. [7] that the upper limit of mass predictability
should be well below 100 keV. They find that global mass
theories such as the FRDM or the SCMF show correlated
errors. Only the much better performing local-mass models,
for example the Garvey-Kelson mass formulas [8–10] with a
σrms as low as 86 keV, have residual errors which are consistent
with white noise. Another interesting recent analysis was made
by Molinari and Weidenmüller [11], who computed the effect
on the ground-state energy of the fluctuations associated with
the coupling to states at tens of MeV of excitation. The estimate
in their Fig. 1 is about 100 keV, again much smaller than
the accuracy achieved by the global-mass fits. To summarize
the current status of the discussion about the limits of mass
theories, it is likely that the current limit of about 600 keV is
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“not a physical phenomenon, but rather a characteristic arising
from the mean-field approximation,” to quote the conclusion
of Ref. [12].

Even the limit of 600 keV may be optimistic. Indeed,
stripping away all phenomenological corrections, it was
found in Ref. [13] that SCMF theories based on Skyrme
parametrizations achieve only a factor of 2 improvement over
the liquid-drop model, yielding rms residuals in the range
1.5–1.7 MeV. The need for an explicit treatment of correlations
should not be surprising. A remarkable fact about nuclear
structure physics is that the mean-field approach works as
well as it does, given the strong short-range character of
the nucleon-nucleon interaction. In this respect, the nuclear
problem is much more difficult than the problem of structure
and binding of electronic systems. There, the interaction is
smooth, and the self-consistent field is a very good starting
point. What saves the theory for nuclear systems is the fact
that the correlations induced by the interaction largely have
a short range themselves. This makes it plausible that they
can be subsumed in an effective interaction. However, not all
correlation effects can be included by a renormalization of a
short-range interaction. The electronic problem provides a nice
example of this. In the usual Kohn-Sham theory, the energy
functional is local or nearly local except for the kinetic-energy
and electrostatic interactions. This is quite inadequate for
describing the long-range van der Waals interaction, which
is absent in the mean-field wave function and thus is a pure
correlation effect.

Another way that long-range correlations come about is
when a symmetry is broken in the mean field and in the
corresponding density matrix. In the nuclear many-body prob-
lem, translational symmetry is always broken and rotational
symmetry may or may not be broken, depending on the
nucleus. The true ground state of course has the symmetry
restored, and the additions to the wave function that bring
about the symmetry restoration are correlation effects that are
necessarily long range when the symmetry is a global one.
From the point of view of providing a theory of the masses,
there are two important questions. The first is, how large are
the correlation energies associated with broken symmetries?
Unless their size is greater than the target accuracy of theory,
they can be ignored. In fact, both the center-of-mass energy
and the rotational energy are large compared with the 600-keV
present-day standard. The second question is, how much does
the energy fluctuate from nucleus to nucleus? If the correlation
energy varies very smoothly, it could remain unnoticed in a
theory based on a fitted energy functional. This seems to be
the case for the center-of-mass energy. While its size can be of
the order of 10 MeV for the lighter nuclei, its fluctuations are
much less important than those of the quadrupolar degrees of
freedom (see Ref. [14]).

The situation is more precarious for the rotational energy.
It fluctuates considerably from nucleus to nucleus, vanishing
for spherical nuclei and having a magnitude of the order of
several MeV for deformed nuclei. This provides a motivation
for calculating this correlation energy explicitly rather than
keeping it buried as part of the mean-field energy functional.
However, it is dubious to treat it as a discrete quantity, present
in some nuclei but not in others. The shape can fluctuate, and

the binary classification of spherical or deformed nuclei should
be replaced with a continuum starting from rigid spherical,
through soft transitional, to statically deformed nuclei. Thus
one is led to seek a theory of the correlation energy that
would include the energy associated with zero-point shape
fluctuations as well as static deformations.

There are two leading candidates for a systematic and
practical theory of long-range correlations effects, taking
mean-field theory as the starting point. These are the random-
phase approximation (RPA), generalized to the quasiparticle
RPA (QRPA) in the presence of pairing, and the generator
coordinate method (GCM). The RPA has an impeccable
pedigree in quantum many-body theory, solving a long-range
divergence problem in the calculation of the correlation energy
for Coulomb interactions. However, balancing this are a
number of drawbacks, which we list:

(i) The RPA does not converge well when the interactions
are short ranged [15]. This becomes obvious when one
notes that second-order perturbation theory for a contact
interaction diverges and that the usual formula for the
RPA correlation energy incorporates the second-order
perturbation.

(ii) As a small-amplitude approximation, the QRPA cannot
be expected to give a good description of the correlated
ground-state wave function in soft transitional nuclei and
nuclei with coexisting minima, where the ground-state is
spread over a wide range of deformations.

None of these problems of the RPA are necessarily insur-
mountable. Concerning the convergence, one might explicitly
exclude the second-order perturbation term to eliminate the
divergence. Alternatively, one could regularize the interaction
in some way. Along these lines, Baroni et al. [16] calculated
RPA correlation energies in the Sn isotopic chain by using
nuclear field theory, a theory that replaces the microscopic
particle-hole interaction with a surface-peaked multipole
interaction. The criticism of the RPA, that it is limited to small
amplitudes, is not entirely justified in practice: It can treat
the correlation energy associated with symmetry restorations
that are large-amplitude effects [17], although the quality of
this approximate symmetry restoration is not always very
good [18].

The other leading contender for a theory of correlation
effects is the GCM, which we favor and apply in this work. The
essential idea is that one considers a manifold of mean-field
states in an external field, with different strengths of the
external field generating different states. The important point
is that the space is essentially determined by the functional
form of the external field. Once the field or the set of fields is
specified, the theory is completely systematic and applicable to
all nuclei for which the mean field is a reasonable starting point.
The GCM is a “horizontal” extended theory in that the parts
added to the wave function are low-energy configurations,
because they were obtained by the mean-field minimization
procedure. This contrasts to the RPA approach, which invokes
a “vertical” extension of the wave function to arbitrary high
energy, but only to states that can be obtained by a one-body
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operator. Since we mentioned a number of drawbacks of
(Q)RPA, we also make a similar list for the GCM:

(i) Convergence can be an issue on a numerical level. The
theory is usually couched in terms of a continuum of
mean-field states, but in practice computations are carried
out with finite sets of states. If there are too many states in
the basis of nonorthogonal states, they will be redundant
and the matrix techniques to find the lowest-energy state
become unstable.

(ii) For numerical reasons, we are limited at present to a
single external field. We take it to be the isoscalar axial
quadrupole field,

Q2 = 2z2 − x2 − y2, (1)

leaving out higher multipoles and nonaxial quadrupolar
deformations.

(iii) Already for J = 2 excitations, it may be insufficient
to take only the single generating field from Eq. (1).
This suspicion is raised by systematic overestimations of
quadrupole excitations in rigid spherical nuclei [19,20].

In this paper we aim at a systematic study of the quadrupole
correlation energy for all even-even nuclei for which the mass
is known. The quadrupole correlation can be expected to
be the dominant correlation mode for all but doubly magic
nuclei, so this is at least a reasonable first step to a complete
theory. Starting from a SCMF model based on Skyrme’s in-
teraction, we restore particle-number and rotational symmetry
and perform a configuration mixing of states with different
quadrupole moments. Our approach does not aim at a nuclear
mass formula, but has the long-range goal of a universal
nuclear model that allows for the simultaneous consistent and
systematic description of many observables, including excited
states, for all nuclei. Such a strategy has obvious advantages for
the most prominent application of nuclear mass formula: The
description of nucleosynthesis in astrophysics. For example,
the dynamics of the r process of explosive nucleosynthesis is
determined by many nuclear properties [21,22], with masses
being just the simplest.

The paper is organized as follows: In Sec. II, we present
the equations to be solved and discuss some technical aspects.
In Sec. III, the physics of quadrupole correlations is discussed
from a few typical examples. A systematic calculation of the
correlation energies of 605 even-even nuclei is presented in
Sec. IV, and in Sec. V we analyze the effect of correlation
energies on mass residuals. In Sec. VI we discuss the role
of quadrupole correlation energies from the point of view of
mass models. In Sec. VII, we examine the role of quadrupole
correlations for charge radii. A summary and our conclusions
are presented in Sec. VIII. Some of the key results for
quadrupole correlation energies have been presented earlier
in a letter [23].

II. CALCULATIONAL PROCEDURE

A. Mean field

We start with a set of self-consistent solutions of the
HF+BCS equations generated with the code EV8 [24,25]. The

single-particle wave functions are discretized on a three-
dimensional Lagrange mesh [26] corresponding to a cubic
box. The only restriction of the wave function is that the Slater
determinant of the orbits is invariant with respect to parity,
time reversal, and axial rotations. As in earlier studies, we
use a fixed mesh spacing of 0.8 fm. The length of the box
side ranges from 25.6 to 28.8 fm, with the nucleus at the
center. To avoid the breakdown of pairing correlations for
small level densities around the Fermi surface, we perform an
approximate projection-before-variation on particle number
within the Lipkin-Nogami (LN) scheme, as outlined in [27].
States with different mass quadrupole moments are generated
by the addition of a constraint to the mean-field equations to
force the quadrupole moment, Eq. (1), to have some value

q = 〈Q2〉. (2)

Higher even axial multipole moments are automatically
optimized for a given mass quadrupole moment. For numerical
stability of the constrained mean-field equations in light nuclei,
the constraint is damped at large distances from the nuclear
surface with the method proposed by Rutz et al. in Ref. [28].

The Skyrme interaction SLy4 [29] is used for the energy-
density functional in the particle-hole channel. Pairing effects
are treated in the BCS approximation by use of a density-
dependent zero-range force, truncated above and below the
Fermi surface as described in Ref. [30]. As in earlier studies,
the pairing strength is taken to be −1000 MeV fm3 for both
protons and neutrons.

While the wave functions are constructed with the code
EV8, all energies and matrix elements are calculated with
another code, PROMESSE [31], which uses a more accurate
algorithm for the kinetic energy. For SCMF energies, this code
has an accuracy for a mesh size of 0.8 fm given roughly by
0.007A MeV, where A is the mass number. This error varies
quite smoothly with A. For even better accuracy, the mesh
spacing should be decreased. Highly accurate SCMF calcula-
tions are also achieved with a deformed harmonic-oscillator
basis; see Ref. [32] for code details.

B. Beyond the Mean Field

The application of the GCM that we do here goes beyond
the mean field in three respects: Projections on good particle
numbers, projection on angular momentum J = 0, and mixing
of deformations. Projection is a special case of the GCM,
in which the collective path and the weight functions are
determined by the restored symmetry. Angular-momentum
projection mixes states with all the possible orientations
of the quadrupole tensor and therefore generates part of
the quadrupole correlations. For this reason, to introduce
consistently quadrupole correlations, the mixing of states with
respect to the quadrupole moment by the GCM should be
performed together with an angular-momentum projection.

Eigenstates of the particle-number operator N̂ with an even
eigenvalue N0 are obtained by application of the particle-
number projection operator,

P̂N (N0) = 1

π

∫ π

0
dφN eiφN (N̂−N0), (3)
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separately for protons and neutrons. All the results presented in
this paper include particle-number projection, and we drop the
indices N0 and Z0 to simplify the notation. We avoid the use of
the LN correction of mean-field energies, which is known to be
often inaccurate. The mean-field equations have been solved
with the LN term in the equations of motion to ensure that
pairing correlations are present in all mean-field states, but
the total binding energy has been recalculated by projecton
of the SCMF states on good particle number. Thus, in the
following discussion, what we call SCMF energy is in fact the
energy corresponding to a particle-number projected SCMF
state. This projection is always performed on mean-field states
that have N0 and Z0 as average particle numbers.

Formally, eigenstates |JMq〉 of the angular momentum
operators Ĵ 2 and Ĵz with eigenvalues J (J + 1) and M are
obtained by application of the operator

P̂ J
MK = 2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dθ sin(θ )

∫ 2π

0
dγ D∗J

MK R̂, (4)

on the states |q〉. The rotation operator R̂ and the Wigner
function DJ

MK both depend on the Euler angles α, θ , and γ . In
practice, we simplify the three-dimensional integral over Euler
angles to a one-dimensional integral [see Eqs. (8) and (9)].

The second step in treating quadrupole correlations is to mix
configurations of different deformations. The mixed projected
many-body state is set up as a coherent superposition of
normalized projected mean-field states |JMq〉 with different
intrinsic deformations q,

|JMk〉 =
∑

q

fJk(q)|JMq〉. (5)

The weight function fJ,k(q) is determined to minimize the
energy expression

Ek = 〈JMk|Ĥ |JMk〉
〈JMk|JMk〉 , (6)

where we have omitted the angular momentum indices on Ek

since we are interested in the following in only the J = 0 states.
The solution is given by a matrix eigenvalue equation that
corresponds to the discretized Hill-Wheeler-Griffin (HWG)
equation [33,34]:∑

q ′
[HJ (q, q ′) − EkIJ (q, q ′)] fJ,k(q ′) = 0. (7)

For each J value, the HWG equation gives a full spectrum
of correlated states corresponding to the collective variable q.
This spectrum can be used to study collective excitations, see,
e.g. Refs. [35,36] and references given therein. Here, we are
interested in only the J = 0 ground state. Note that the exact
number projection avoids some problems that may arise in
calculating HWG matrix elements with BCS wave functions
[35].

The angular-momentum projection simplifies to a one-
dimensional integral when the mean-field states are axial and
time-reversal invariant. We take the z axis as a symmetry axis
and the mean-field states as eigenstates of the z projection of
the angular momentum in the intrinsic frame, with eigenvalue
K = 0. The study of only even-even nuclei permits us to use

a reduced interval for the angular integration. The angular-
momentum projected norm and Hamiltonian kernels entering
Eq. (7) are then given by

IJ (q, q ′) = 〈JMq|JMq ′〉

= 1

NJ (q)NJ (q ′)

∫ π/2

0
dθ sin(θ )dJ

00(θ ) 〈q|R̂(θ )|q ′〉,
(8)

HJ (q, q ′) = 〈JMq|Ĥ |JMq ′〉

= 1

NJ (q)NJ (q ′)

×
∫ π/2

0
dθ sin(θ )dJ

00(θ )〈q|R̂(θ )Ĥ |q ′〉, (9)

with

NJ (q) =
√∫ π/2

0
dθ sin(θ )dJ

00(θ ) 〈q|R̂(θ )|q ′〉. (10)

The description of odd and odd-odd nuclei would require
breaking time reversal and axial symmetries [37], increasing
the complexity of the calculation by several orders of magni-
tude.

Note that the weight functions fJ,k(q) in Eq. (5) are not
orthogonal. A set of orthonormal collective wave functions
gJk(q) in the basis of the intrinsic states is obtained by a
transformation involving the square root of the norm kernel
[1,17].

The preceding expressions are written for a many-body
Hamiltonian, Ĥ . In practice, however, we use an energy
density functional for the effective interaction, replacing all
densities in the functional with their corresponding transition
densities.

In terms of the computational algorithms, an important
technical challenge of a configuration-mixing calculation is
the computation of the nondiagonal matrix elements between
mean-field states. These are evaluated with the help of a
generalized Wick theorem [38]. The single-particle states are
discretized on a three-dimensional mesh in coordinate space
by use of a Lagrange mesh technique [26]. Thanks to the
imaginary time-step method [39], only a small fraction of the
single-particle states that could be constructed on the mesh
needs to be computed. As a result, the two sets of single-
particle states corresponding to two mean-field solutions are
not equivalent, and this has to be carefully taken into account
[40,41]. The overlaps are calculated with the Onishi formula
[38,42]. It contains a square-root evaluation, which has a sign
ambiguity that requires some additional care [41].

Another technical problem that appears at the level of
solving HWG equation (7) is the possible overcompleteness
of the basis states |q〉. This can lead to problems of numerical
stability; see Subsec. II F.

C. Definition of correlation energies

The energy of an angular-momentum projected mean-field
state of deformation q is given by the diagonal matrix elements
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of the Hamiltonian kernel of Eq. (9):

E0(q) = H0(q, q). (11)

We denote the energy of a SCMF state |q〉 as E(q). The energy
gained by the projection of a state |q〉 is its rotational energy,

Erot(q) = E(q) − E0(q). (12)

This energy can be computed in approximate ways without
getting into the details of a full projection [35].

Starting from the SCMF energy landscape E(q), we can de-
fine several correlation energies. The static deformation energy
is the energy difference between a mean-field configuration q
and the spherical one:

Edef(q) = E(Q2 = 0) − E(q). (13)

The minimum of E(q) is the SCMF energy, Emf, and
corresponds to a deformation qmf.

After angular-momentum projection, the minimum of
E0(q) may correspond to a different configuration q that
we label q0. It is more useful to define correlation energies
that can be simply added to the SCMF binding energy. For
angular-momentum projection, we introduce the rotational-
energy correction:

EJ=0 = E(qmf) − E0(q0)

= [E(qmf) − E(q0)] + Erot(q0), (14)

in which the first term represents a loss of energy that is due to
mean-field deformation and the second (larger) term represents
the gain that is due to angular-momentum projection.

The correlation energy gained by configuration mixing is
then defined with respect to EJ=0:

EGCM = E0(q0) − Ek=0. (15)

Both EJ=0 and EGCM are nonnegative since they are de-
termined by a variational calculation. As a consequence,
the nucleus is always more bound by correlations. EJ=0 is
also nonnegative in other more approximate treatments of
projection. However, when configuration mixing is treated
through a Bohr Hamiltonian or a collective Schrödinger
equation, the potential-energy surface has a different meaning.
It contains a (local) vibrational term (strangely named “zero-
point energy correction”) that has the same sign as EGCM. It is
also used as a collective potential in which vibrational states
are calculated, adding a second contribution to EGCM of the
opposite (negative) sign.

The total dynamical correlation energy is given by the
energy difference between the mean-field ground state and
the projected GCM ground state:

Ecorr = E(qmf) − Ek=0

= EJ=0 + EGCM. (16)

Our separation of the dynamical quadrupole correlation energy
Ecorr into a rotational part and a vibrational part is somewhat
arbitrary. An alternative choice would be to define the
rotational correlation energy as the rotational energy of the
mean-field ground state Erot(qmf), and take as vibrational
energy the energy gained by the GCM with respect to Erot(qmf).
Such a choice would lead to smaller rotational, but larger

vibrational energies, but would leave Ecorr of course invariant.
We prefer the separation we have chosen through Eqs. (14)
and (15), which we find easier to interpret.

D. Two-point topological Gaussian overlap approximation
for angular-momentum projection

The elementary operations of our calculation are the
computation of the overlap 〈q|R̂(θ )|q ′〉 and the Hamiltonian
〈q|R̂(θ )Ĥ |q ′〉 matrix elements between two mean-field wave
functions corresponding to different quadrupole moments and
to different orientations in space. For a large-scale calculation,
as performed here, it is compulsory to devise an efficient
algorithm to reduce the number of these elementary steps. This
can be done in two places. First, the number of discrete angles
θ necessary to evaluate the kernels in Eqs. (8) and (9) can be
reduced by use of a topological Gaussian overlap approxima-
tion (topGOA) [43,44] for the θ dependence of 〈q|R̂(θ )|q ′〉
and 〈q|R̂(θ )Ĥ |q ′〉. Next, the number of matrix elements to be
calculated as functions of q can be reduced by a second GOA,
this time for nondiagonal angular-momentum projected matrix
elements between states with different quadrupole moments.

It has to be stressed that the GOA method, as we use
it, is only a numerical tool and is quite different from the
formal approximations based on the GOA that are often used
in the literature [40,45–50]. In the framework of this approach,
the GOA constitutes the first step to derive a collective
Schrödinger equation or a microscopic Bohr-Hamiltonian.
When the overlap and energy kernels are expanded around
the diagonal matrix elements and a Gaussian shape in an
appropriate set of coordinates is assumed, local collective mass
parameters and potentials are derived and used to construct a
collective equation. By contrast, we solve the projected HWG
equation, Eq. (7), in our method. Selected matrix elements are
computed to high precision, allowing us to construct a reliable
approximation of the full GCM kernels.

A first study of the feasibility of this approach was presented
in Ref. [44]. In the course of the large-scale calculations
subsequently reported, we found that the GOA scheme has
to be slightly modified to ensure convergence of the method in
specific nuclei, mostly light ones and some transitional heavy
ones near magic numbers.

With the exception of the cases subsequently specified, an
adequate approximation to the norm and Hamiltonian kernels
as a function of θ is given by a two-point approximation

〈q|R̂(θ )|q ′〉 = 〈q|q ′〉e−c2(q,q ′) sin2(θ) (17)

〈q|R̂(θ )Ĥ |q ′〉 = 〈q|q ′〉e−c2(q,q ′) sin2(θ)

× [h0(q, q ′) − h2(q, q ′) sin2(θ )], (18)

where 〈q|q ′〉 is the overlap between unrotated states and
h0(q, q ′) is the Hamiltonian kernel between unrotated states.
The widths of the Gaussian and the expansion coefficient in the
Hamiltonian kernel are determined from the matrix element in
which the left state is rotated by the angle θ2:

c2(q, q ′) = 〈q|R̂(θ2)|q ′〉, (19)

h2(q, q ′) = 〈q|R̂(θ2)Ĥ |q ′〉. (20)
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FIG. 1. Overlap 〈q|R̂(θ )|q〉 as a function of cos(θ ) for a state
close to the projected minimum in 24Mg, 202Ra, and 240Pu.

A thorough discussion of this particular choice for the GOA
and examples of the quality of this approximation can be found
in Ref. [44].

The angle θ2 has to be chosen large enough to be sensitive
to the variation of the overlap, but small enough to fit the
integrand in the region to which it brings a large contribution.
Figure 1 shows typical overlap functions for different nuclei.
For magic nuclei and small deformations, the overlaps do not
decrease strongly with θ whereas for well-deformed 240Pu, at
the ground-state deformation, it falls by 2 orders of magnitude
at a rotation angle of 15◦. Obviously, the appropriate choice of
θ2 depends on the nucleus. We determine it from the properties
of the mean-field solution, making use of the approximate
overlap function derived by Baye and Heenen in Ref. [51]. It
reduces, in our case of axial nuclei, to

〈q|R̂(θ )|q〉 ≈ exp{−[1 − cos(θ )]〈Ĵ 2
⊥〉}, (21)

where 〈Ĵ 2
⊥〉 is the dispersion of the angular momentum

perpendicular to the symmetry axis of the mean-field state
|q〉. We choose θ2 to give an overlap of 1/2 according to
approximation (21). However, if the equation has no solution,
we set cos(θ2) = 1/

√
2. The estimate in approximation (21)

requires that the left and the right states be the same. For matrix
elements between different states—and therefore different
〈Ĵ 2

⊥〉—we use the 〈Ĵ 2
⊥〉 that is larger.

Matrix elements between oblate and prolate deformations
require special treatment [44] because their overlaps peak
at θ = π/2 rather than at θ = 0. These matrix elements
are calculated with a three-point approximation subsequently
described.

E. Three-point topGOA for angular-momentum projection

For about 10% of the nuclei included in this study, often
when the overlap varies slowly with the rotation angle, a two-
point topGOA approximation is not sufficiently accurate, and a
higher-order approximation has to be used. We found a three-
point approximation to be sufficient in these cases. In the
three-point topGOA, the overlap and Hamiltonian kernels are

FIG. 2. Comparison between two-point (dotted curve) and three-
point GOAs (dashed curve) and an exact projection (solid curve)
for the diagonal overlap (left-hand panel) and energy (right-hand
panel) matrix elements for 104Te at a deformation Q2 = 200 fm2.
A normalization factor 1/〈q|R̂(θ )|q〉 is included in the energy that
does not enter the calculation of the Hamiltonian kernel. All matrix
elements are projected on particle number N = Z = 52.

approximated by

〈q|R̂(θ )|q ′〉 = 〈q|q ′〉e−c2(q,q ′) sin2(θ)−c4(q,q ′) sin4(θ), (22)

〈q|R̂(θ )Ĥ |q ′〉 = 〈q|q ′〉e−c2(q,q ′) sin2(θ)−c4(q,q ′) sin4(θ)

× [h0(q, q ′) − h2(q, q ′) sin2(θ )

−h4(q, q ′) sin4(θ )]. (23)

We obtain the additional parameters c4 and h4 by demanding
exact values for the angles θ = 0, θ2, and θ3 = π/2.

In Fig. 2, the overlap and energy functions calculated
with the two-point and three-point topGOAs are compared
with the exact ones. The example chosen is a case for
which the two-point approximation is inadequate, the diagonal
matrix element at Q2 = 200 fm2 in the nucleus 104Te. The
rotation angles used for the topGOA are shown as filled
circles. The two-point approximation clearly underestimates
the overlap at large angles, which leads to too small a
projected overlap. The three-point topGOA, on the other hand,
cannot be distinguished from the exact calculation within the
resolution of the plot. The Hamiltonian matrix element is also
underestimated at large angles, by an even greater amount.
This is shown in the right-hand panel of Fig. 2. One also sees
that the three-point approximation has only a small difference
from the exact function.

The values obtained for the projection on J = 0 of the
overlap and the energy are given in Table I. As expected, the
overlap and the energy obtained with a two-point top GOA

TABLE I. Comparison between different levels of approximation
for the J = 0 norm and energy of the Q2 = 200 fm2 mean-field state
of 104Te.

Method 〈q|P̂ 0
00|q〉 〈q|P̂ 0

00Ĥ |q〉/〈q|P̂ 0
00|q〉

Two-point topGOA 0.0618 −850.753
Three-point topGOA 0.0705 −850.487
Full projection 0.0706 −850.488
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approximation are significantly too small, whereas the three-
point approximation agrees perfectly with the exact result.

The three-point GOA has been used for nuclei with less than
22 neutrons or protons and for configurations with very small
prolate or oblate deformation. The most critical heavy nuclei
differ from magic numbers by two nucleons or by an α particle.
All other matrix elements were calculated as described in
Ref. [44].

F. Mixing deformations

The next step in treating correlations by the GCM is to
select a set of deformed configurations, compute the required
matrix elements in Eq. (7), and diagonalize the corresponding
eigenvalue problem.

Given a set of nc configurations, the number of overlap
or Hamiltonian computations needed to generate a matrix for
Eq. (7) is nc(nc + 1)/2. As explained in Ref. [44], the effort
can be drastically reduced, to linear order in nc, by use of a
topGOA in the deformation coordinate. In the simple case, this
requires calculation of only diagonal and nearest-neighbor off-
diagonal matrix elements, i.e., 2nc − 1 elements per matrix.
A subtlety that arises is that Q2 = 0 is a singular point for
the GOA. This does not cause any difficulty if the nucleus
is well deformed, either prolate or oblate, but must be dealt
with if the ground-state wave function has significant mixing
between prolate and oblate deformations. We drop the Q2 = 0
configuration that is nearly redundant with our configuration
spaces. The comparison between results obtained with the
topGOA approximation and converged GCM results shows
that the errors on correlation energies that are due to the
topGOA are lower than 200 keV.

Some typical configuration sets for heavy nuclei are shown
in Table II. The table enumerates the configurations used for
the GCM in those nuclei. The points are not equidistant, but are
selected in such a manner that they resolve the structures in the
J = 0 potential-energy curve, asking that the overlaps between
neighboring configurations be above 0.5 and, if possible, below
0.7. According to Ref. [40], this range is sufficient to produce
final energies having errors of less than 200 keV. In some cases,
however, we have to add points with larger overlap to ensure
that we represent all structures in the potential landscape. For
spherical nuclei, the selection of points requires some search
by trial and error. A set of deformations that can be used for a
nucleus with a given structure, however, works in most cases

TABLE II. Configuration spaces for typical heavy nuclei. Mass
quadrupole moments q are given in barns. Oblate and prolate
configurations are listed on separate lines.

Nucleus nc q values

208Pb 12 −20 −15 −10 −7.5 −5 −2.5
+2.5 +5 +7.5 +10 +15 +20

180Hg 17 −24 −20 −16 −14 −10 −6 −4
+4 +6 +8 +12 +16 +20 +24 +28 +32 +36

170Hf 14 −24 −20 −16 −13.75 −10 −5
+5 +10 +15 +19.25 +22 +25 +30 +35

also for adjacent ones of the same type. We usually include a
few more points than necessary to obtain convergence of the
GCM ground-state energy.

Numerical stability of the eigenvalue problem is also an
issue in these computations. For a given set of deformations,
we always diagonalize the overlap matrix first and then remove
by trial and error the states with the lowest norm eigenvalues
until we obtain a stable solution of the HWG equation that
is not contaminated by spurious states. In some cases the
selection of deformations has to be modified to remove
spurious states.

G. Assessment of the numerics

Thanks to the use of the numerical approximations listed
in the previous subsection, a huge factor in computing time
is gained without significant loss in accuracy. Projection on
angular momentum requires nj Euler angles (5–15) and the
GCM mixing in quadrupole moment nc deformed states (7–
25). This gives altogether nj nc(nc + 1)/2 ≈ 150–5000 matrix
element evaluations. Our numerical GOA saves a factor of 2 to
3 on nj as well as a much larger factor on completing the GCM
matrices. We end up having about nj [nc + (nc − 1)] ≈ 26–
100 matrix elements only to calculate exactly. The GOA, as we
have done it, is designed to describe accurately the correlations
in the 0+ ground state and most information for spectroscopy
is lost. Note that particle-number projection is still performed
exactly. Our numerical procedure is tuned to achieve a total
accuracy of better than 300 keV. This is sufficient for a study
of the systematics of quadrupole correlation energies, which
are an order of magnitude larger.

III. SELECTED EXAMPLES

Figure 3 shows the energy curves (top) and the collective
wave functions (bottom) obtained for cases representative
of the topographies that one encounters in heavy nuclei:
Spherical, soft, and well deformed. The curves are plotted
as functions of a dimensionless axial mass quadrupole defor-
mation β2 defined by

β2 =
√

5

16π

4π

3R2A
〈Q̂2〉, (24)

with R = 1.2A1/3. After angular-momentum projection, we
still use the β2 value of the (unprojected) mean-field state to
label the projected J = 0 states, although all J = 0 states have
a zero quadrupole moment within the laboratory framework.
The energy curves projected on J = 0 are also shown in
Fig. 3. Finally, a filled circle in the middle of a bar indicates
the mean deformation of the GCM states, defined as:

β̄2 =
∫

dβ2 β2 g2
J,k(β2). (25)

The doubly magic 208Pb exhibits a very stiff potential-energy
curve. Angular-momentum projection on J = 0 does not
change that overall behavior, but shifts the minimum of the
potential-energy curve to a small, but finite, deformation, a
common feature for all angular-momentum projected energy
surfaces of spherical nuclei [35,44]. A spherical mean-field
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. . . .

FIG. 3. Upper panel: Topography of unprojected/projected en-
ergy landscapes for typical heavy nuclei. The dotted curve denotes
the energy after projection on the particle number only; the solid
curve denotes the energy after projection on both particle number
and angular momentum J = 0. The filled circle denotes the energy
of the J = 0 projected GCM ground state. Lower panel: Collective
J = 0 ground-state wave function. All curves and markers are drawn
versus the average axial quadrupole deformation of the mean-field
states they are constructed from.

state is already a J = 0 state and therefore not at all affected
by projection. Projecting the J = 0 component from a slightly
deformed state, usually with |β2| values below 0.1, often
leads to a substantial energy gain, 1.7 MeV in the case of
208Pb. Imposing axial symmetry, as done here, the projection
generates two minima that are nearly degenerate and have
similar deformation. The overlaps 〈Jq|J − q〉 between these
minima are very close to 1; 0.91 in the case of 208Pb. These
large overlaps show the limits of labeling projected states by
β2: The J = 0 states obtained by projecting slightly oblate and
prolate configurations are nearly identical. They have the same
weight in the GCM ground state of a spherical nucleus. One
of them is, in principle, redundant, a familiar feature when
one is working in a basis of nonorthogonal states. The energy
gain from the mixing of different deformations is very small,
around 100 keV.

180Hg is an example of a transitional nucleus showing
shape coexistence. The mean-field curve presents two minima,
prolate and oblate, the corresponding wave functions having
a very small overlap, of the order of 10−5. The energy gain
by angular-momentum projection is somewhat larger than in
208Pb, but the overall shape of the potential landscape is not
altered by angular-momentum projection. There is also a large
spreading of the collective ground-state wave function that, in
particular, mixes prolate and oblate shapes. The energy gain
from the configuration mixing is relatively small, 0.5 MeV
only. Note that this Hg isotope is also an example of a soft
nucleus for which the mean deformation that we predict does
not agree with the experimental data. 170Hf is a well-deformed
nucleus from the upper end of the rare-earth region. The
mean-field energy curve presents a deep prolate minimum,
the static deformation of the nucleus bringing an energy gain

. . .

FIG. 4. The same as Fig. 3, but for light nuclei.

of 12.2 MeV. Projection of the mean-field energy curve on
J = 0 does not modify the deformation of the minimum but
leads to a gain in binding energy of 2.9 MeV and the GCM
mixing of shapes an additional 0.5 MeV.

The topography of the surface for 202Rn is intermediate
between 170Hf and 180Hg, with two well-defined mean-field
oblate and prolate minima of moderate deformations that are
still present after projection. The configuration mixing gives
nearly equal weights to the oblate and prolate deformations,
as can be seen on the collective wave function, the value of β̄2

being close to zero.
The situation is different in light nuclei, as can be seen

in Fig. 4. Although magic nuclei like 48Ca remain stiff and
gain only small amounts of dynamical correlation energy, the
ground state of all light open-shell nuclei is dominated by
dynamical correlations. As fewer single-particle states cross
the Fermi level when deforming light nuclei, the likelihood
of creating significantly different mean-field configurations
and coexisting minima is much lower. With our choice of
mean-field and pairing interactions, there are only very few
light nuclei with a deformed mean-field ground state (see
below). The energy gain from projection is larger than the
static deformation energy, so all nondoubly magic nuclei have
very similar potential-energy landscapes, in most cases with
nearly degenerate prolate and oblate minima, that are strongly
mixed by the GCM. Table III summarizes the energy gain at
each step when one is going from a spherical mean-field state
to the J = 0 projected GCM state.

Some words of caution are necessary here about the
vocabulary that we use to describe our results. Deformation
is a well-defined concept for a mean-field state, and it can
be quantified either by an intrinsic quadrupole moment or
by the parameter β2 defined by Eq. (24). After projection on
angular momentum, a 0+ state has of course a zero quadrupole
moment in the laboratory frame. We can still relate each
projected state to a specific mean-field configuration, and
we use it to characterize the projected state. However, this
relation has some limits. First, as is very well illustrated by
the case of 208Pb, the states obtained by projection of mean-
field states with different deformations may have very large
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TABLE III. Quadrupolar deformation and correlation energies in
MeV of the nuclei in Figs. 3 and 4 (see text).

Nucleus Edef EJ=0 EGCM Ecorr

208Pb 0.0 1.7 0.0 1.7
180Hg 3.0 2.6 0.5 3.1
170Hf 12.2 2.9 0.5 3.4
202Rn 2.6 2.7 1.4 4.0

48Ca 0.0 1.4 0.7 2.0
32S 0.0 3.8 0.9 4.7
28Si 0.7 4.2 0.6 4.9

overlap, in particular when they are nearly spherical. Also,
there is no implication that a weakly deformed configuration
has a rotational band. For 208Pb, for example, the angular-
momentum projected 2+ state would correspond to a very
different expansion of projected mean-field states and have a
very different mean deformation β̄2. It is only for cases like the
well-deformed nucleus 170Hf that one can expect very similar
collective wave functions for different values of J. In particular,
this is the only case for which it makes sense to associate β̄2

with the B(E2) values of the ground-state band as, e.g., in the
collective rotor model.

IV. OVERVIEW OF CORRELATION ENERGIES

A. Angular-momentum projection energies

The angular-momentum projection energies Erot(q0) are
plotted in Fig. 5 as functions of the mass number for the
605 nuclei that we have calculated. One sees that they vary
rather smoothly, decreasing from about 6 MeV in light nuclei
to 2.5 MeV for heavy ones. For a few nuclei around the doubly
magic 132Sn and 208Pb, Erot(q0) is much larger and deviates
from the general trend. In particular, the value of Erot(q0) for
208Pb is about 7 MeV, but it is largely compensated for by
the loss of energy that is due to deformation. Taking this loss
into account, one obtains the much smaller rotational-energy
correction EJ=0 given in Table III.

These projection energies can be compared with values
available in the literature. Rodriguez-Guzman, Egido and
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FIG. 5. Rotational energy Erot(q0) at the minimum of the J = 0
projected energy curve.

TABLE IV. Angular-momentum projection energies Erot for
selected cases compared with other calculations (see text).

Nucleus β2 This work Other works

32Mg −0.25 4.7 6.3 [52]; 4.0 [35]
44S −0.29 4.0 6 [52]
98Zr −0.11 3.3 3.8 [52]
164Er 0.36 3.0 3 [35]
198Hg −0.15 3.3 3.1 [47]
240Pu 0.30 2.7 3 [54]

Robledo [19,35] also perform an exact projection on the
angular momentum of mean-field wave functions with an
axial symmetry, but with another effective interaction, the
Gogny force [1] and without projection on particle number.
Libert and co-workers [47] also use the Gogny force and have
developed an approximation scheme for triaxial quadrupole
deformations based on the GCM and leading to a collective
Schrödinger equation. Their rotational correction is obtained
from the Inglis-Belyaev moment of inertia [17], but also
includes an ad hoc renormalization factor to take into ac-
count the Thouless-Valatin rearrangement contribution. Both
Reinhard et al. [52] and Goriely et al. [53] use a Skyrme
effective interaction. The approximation used by Reinhard
et al. is similar to the one of Libert et al. and is derived from a
local GOA approximation of projection. In the work of Goriely
et al., the rotational correction is determined with a moment of
inertia calculated by a cranking formula, modified either by a
rigid-body term or, as in the most recent applications, rescaled
at small deformations to behave in a realistic way.

A sample of results obtained with these different methods
is shown in Table IV. The minima of the potential-energy
landscapes determined in the five works quoted in Table IV
might correspond to significantly different deformations since
the effective interactions are not the same. We have therefore
compared the values of the angular-momentum projection
energies for the deformation of the minimum that we have
obtained here. One can indeed expect that this energy is not too
sensitive to the details of the interaction and depends mainly on
the geometry of the mean-field wave function that is projected.
The values of the energies obtained by Egido and Robledo [35]
with an exact projection are rather close to our values. They
also obtain very similar results for 208Pb, with a huge energy
gain for a small deformation partly compensated for by the loss
of energy that is due to deformation. The projection energies
obtained by Reinhard et al. [52] are somewhat larger than
ours; the values of Libert et al. [47] that are determined from a
very similar method are more similar, but they include an
ad hoc renormalization factor of 1.32 without which they
would be closer to the values of Reinhard et al. The inclusion
of a component correcting the cranking term in the calculations
by Goriely et al. [53] also seems important for obtaining values
close to those of an exact projection.

There are unfortunately not many values in the literature
explicitly given for the correlation energies associated with
configuration mixing. Reinhard et al. [52] give vibrational
energies for a sample of nuclei that should be an approximation
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FIG. 6. Mean deformation of the GCM ground state for J = 0
(top) and deformation of the mean-field configuration corresponding
to the minimum of the J = 0 energy curve (bottom). Both are plotted
as functions of the deformation of the mean-field ground state. Left-
hand and right-hand panels show light and heavy nuclei, respectively,
divided at A = 60.

of our correlation energies EGCM. Both have indeed the
same order of magnitude and also have the same effect
of reducing the increase of deformation that is due to the
rotational correction. Libert et al. [47] treat these correla-
tions as vibrations in a collective nuclear potential. This
enables them to consider triaxial deformations at a low cost.
However, the variational nature of the GCM is lost in such
approximation; the corrections are zero-point energies that
lower the energy of the (approximately) projected ground
state.

B. Induced deformations

Without any exception, the mean-field configuration lead-
ing to the minimum of the projected energy curve is deformed.
This is not surprising; the angular-momentum projection of
deformed intrinsic configurations permits the inclusion of
small components in the wave function that might otherwise be
treated as perturbative two-particle two-hole amplitudes [43].
In the bottom of Fig. 6 the deformation of the minimum
of the J = 0 energy curve is plotted as a function of the
deformation of the mean-field ground state. Nuclei are divided
into light (left-hand panel) and heavy (right-hand panel) ones.
For heavy nuclei, both deformations are equal as soon as the
deformation is of the order of 0.1, with a few exceptions
corresponding to nuclei with a very soft energy surface or
a deformed secondary minimum at low energy. For nuclei
with masses lower than 60, both deformations are much more
different, with the general tendency that projection increases
the deformation. In the top panel of the same figure, we present
the dependence of the mean deformation of the GCM state,
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FIG. 7. Correlation energy EJ=0 as a function of the deformation
β2(q0) of the angular-momentum projected ground state. Left-hand
and right-hand panels show light and heavy nuclei, respectively,
divided at A = 60.

as given by Eq. (25), on the deformation of the mean-field
ground state. Both quantities are quite close for heavy nuclei,
even when the mean-field ground state is spherical. For light
nuclei, the mean deformation of the projected GCM states is
also closer to the deformation of the mean-field ground state
than the deformation of the J = 0 projected ground state, with,
however, still large differences.

C. Systematics of EJ=0 and EGCM

Systematics of the correlation energies EJ=0 and EGCM

are shown in Fig. 7 as functions of the deformation of the
minimum of the angular-momentum projected energy curve.

Oblate and prolate configurations lead to correlation ener-
gies EJ=0 of the same magnitude, with a large spreading as
a function of β2, smaller for heavy nuclei than for light ones.
For deformations larger than β2 = 0.2, these energies vary for
heavy nuclei between 2.5 and 3.5 MeV and for light ones
between 1.0 and 4.2 MeV.

The correlation energy associated with configuration mix-
ing, EGCM, is plotted in the lower panels of Fig. 7. It is smaller
than EJ=0, with a similar behavior for heavy and light nuclei.
Although EGCM could be close to zero for some nuclei, it can
be as large as 1.5 MeV for others. There is no clear dependence
of EGCM on the magnitude or on the sign of β2. Nuclei with a
small deformation β2 of the mean-field ground state may have
correlation energies EGCM as large as very deformed nuclei.
It therefore does not seem possible to ascribe a dependence
of EGCM on the static β2 value. In collective models, the
correlation energy comes from fluctuations in β2. These can
be calculated only by determination of the curvature of the
energy surface and the inertial parameter associated with that
coordinate.
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FIG. 8. Deviations between theoretical and experimental energies
as functions of neutron number. The solid curves connect nuclei in
isotopic chains. The liquid-drop model (LDM), shown in the top
panel, visibly underbinds magic nuclei near N = 50, 82, and 126. The
bottom panel shows the SCMF for the SLy4 interaction, allowing axial
deformations and including particle-number projection. Markers
denote the nuclei used in the fit of the SLy4 interaction. The numerical
precision of the calculations is about 1 MeV in heavy nuclei, with the
error mostly proportional to A.

V. MASS TABLE SYSTEMATICS

A. SCMF energies

Before discussing the binding-energy systematics we
briefly describe the systematics of the residuals of binding en-
ergies at the SCMF level. Experimental masses are taken from
Ref. [55]. In the lower panel of Fig. 8 are shown the difference
between SCMF and experimental energies, using the SLy4
functional and pairing defined in Subsec. II A. The theoretical
energies used for the figure include particle-number projection
as well. Positive deviations denote underbound nuclei. The
plot of the corresponding residuals for the liquid-drop model is
given in the upper panel. The residuals are obviously correlated
in both approaches. One clearly sees the magic-number effects,
with the liquid-drop model underbinding such nuclei, but the
SCMF underbinds the nuclei in between. The residuals for
the SCMF might appear large, but 5-MeV overbinding in
light nuclei corresponds to a 3% error on total energies, and
13-MeV underbinding out of nearly 2-GeV binding energy of a
superheavy nucleus is an error of only 0.5%. Still, applications
of mass formulas to unknown nuclei require a higher precision.

The usual measure of the quality of a mass model is the rms
residual energy, defined as

σrms =
√√√√ 1

N

N∑
j=1

(
E

exp
j − Ecal

j

)2
. (26)

The rms deviation σrms on masses for nuclei calculated in this
study is 5.33 MeV, a value much larger than what was achieved
by recent HFB mass fits [4,5,53,56–60]. Similar results were
obtained for SLy4 and other Skyrme interactions by Stoitsov
et al. [61] who used a slightly different treatment of pairing
correlations. There are two distinct trends in the deviations:

(i) There is a global trend with N, which tilts the median of the
deviations. This overall wrong trend can be removed by a
slight change in the parameters of SLy4; see Ref. [13] and
Sec. VI. It is probably an artifact of the fit protocol of the
standard Skyrme interactions, which are adjusted solely
to nuclear matter properties and to the binding energies
and radii of a few magic nuclei. Such a global trend is
not present in HFB mass fits [2,4,5,53,56–60] done on
all known nuclear masses. It is also absent in the recent
relativistic SCMF parametrization DD-ME2 by Lalazissis
et al. [62].

(ii) There are several local deviations. Some of them are
obviously correlated to the spherical magic numbers:
The closed-shell nuclei are overbound relative to the
surrounding open-shell nuclei, which gives rise to char-
acteristic “arches” between the shell closures. The same
fluctuations appear in the relativistic SCMF of Ref. [62].
We investigate whether these local deviations are related,
totally or partially, to dynamical quadrupole correlations
beyond the mean field.

The diamonds in Fig. 8 mark the five double-magic nuclei
(40Ca, 48Ca, 56Ni, 132Sn, 208Pb) whose binding energies were
included in the fit of the SLy4 interaction. They all are close
to the Emf − Eexp = 0 line, located either on the bottom of
the ravines or at the top of the peaks (56Ni) in the deviations,
which explains why the large deviations seen in Fig. 8 are not
in contradiction with a least-squares fit to the binding energies
of a few selected nuclei.

Note that SLy4 has been adjusted to magic nuclei for which
there are no pairing correlations present at the BCS level of
approximation. With our LN + projection scheme, pairing
correlations are present even in doubly magic nuclei. This
increases in particular the binding energy of the lightest doubly
magic nuclei in the sample of fit nuclei. 40Ca and 48Ca were
already overbound by 2.18 and 1.88 MeV, respectively, and
pairing adds about 1 MeV for 48Ca and about 1.5 MeV for
40Ca.

In Subsec. VI B, we discuss the effect of a refit of the
parameters of the Skyrme interaction to try to minimize the
rms residual or some other measure of the quality of the theory.
With this linear refit of the SLy4 interaction, the rms residual
is decreased to 1.8 MeV, which is much better than the result
of the liquid-drop model, but still far from the accuracy of the
theories with additional phenomenological terms in the energy
functional.

B. Correlation energies

We calculated the correlation energies for 605 even-even
nuclei, including the 546 nuclei that have been measured (to
a precision of 200 keV or better). They are available from the
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FIG. 9. The upper panel shows that the static deformation energy
is a function of neutron number N. Isotopic chains are connected
by curves. The lower panel gives the correlation energy including
angular-momentum projection and mixing of deformations. Note that
the panels share the same energy scale.

Physical Review archive [63] as well as from our own web
site [64].

Figure 9 illustrates how static and dynamical quadrupole
correlations enter into the total binding energies. In the upper
panel are plotted the static deformation energies. Note that
they automatically include contributions from all multipoles
Q�0 with even �.

Both static and dynamic correlation energies are close to
zero for doubly- magic nuclei and increase rapidly away from
closed shells to be maximum at mid-shell. In light nuclei, the
static correlation energy never exceeds a few MeV, whereas
while it grows up to 18 MeV for A between 150 and 180 and
for actinides. This energy gain is typical for nonrelativistic
interactions, as illustrated by Fig. 16 in Ref. [1], whereas it
is only around 5 MeV for relativistic Lagrangians for 240Pu.
On the other hand, the dynamical correlation energy is close
to 4 MeV for mid-shell nuclei and decreases slightly for
heavy ones. However, static and dynamical correlations behave
differently: The latter are significant as soon as the nucleus is
not a doubly magic one, whereas the former sets in only in
nuclei with a larger number of protons and neutrons in the
open shells. This has some consequences for mass systematics
around closed shells, as subsequently discussed.

FIG. 10. Deviation of spherical mean field (top panel), deformed
mean field (middle panel), and J = 0 projected GCM energies from
experiment. Positive residuals denote underbound nuclei. Note that
all panels share the same energy scale. Isotopic chains are connected
by curves.

The results plotted in Fig. 9 are in agreement with the
usual assumption that the mean-field approximation is better
justified in heavy nuclei. For heavy open-shell nuclei with
large symmetry breaking, a large fraction of quadrupole
correlations are static and already included at the mean-field
level. Dynamical correlations dominate the quadrupole energy
only in light systems or around closed shells.

Figure 10 illustrates how the mass residuals are affected
by quadrupole correlations. The top panel shows the deviation
from experiment when spherical symmetry is imposed on the
mean field. The middle panel, identical to Fig. 8, includes static
correlations by allowing for a deformed mean field. In the bot-
tom panel, dynamical correlations from projection on J = 0
and GCM are included. The difference between the two upper
panels is given by the upper panel in Fig. 9, and the difference
between the two lower panels is given by the lower panel of
Fig. 9. As can be expected from the systematics of deformation
energies, restricting the mean field to spherical shapes causes
huge fluctuations of the mass residuals for heavy open-shell
nuclei. These fluctuations are not removed completely by static
deformations, but their amplitude and their spread decrease,
leaving a plateau for open-shell nuclei. The curves for all
isotopic chains nearly fall on top of each other. The deviation
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FIG. 11. Comparison between calculated (right) and experimen-
tal (left) single-particle spectra of protons (top panel) and neutrons
(bottom panel) for 132Sn and 208Pb. See Ref. [1] for the determination
of experimental values.

between theory and experiment has now a structure in which
medium and heavy mid-shell nuclei fall close to a straight
line, while there remain deep localized ravines around the
heavy neutron-shell closures N = 50, 82, and 126, and more
irregular fluctuations in light systems. Similar results have
been obtained for other effective interactions; see [61] and
references therein.

One can assume that the wrong global trend with A and
the deep ravines around shell closures are correlated to the
procedure used to adjust effective interactions like SLy4. 208Pb
is the only heavy nucleus included in the fit. A slight error on
the volume energy coefficient of this interaction leads to an
underestimation by more than 10 MeV of the masses of heavy
nuclei. Since 208Pb is the only heavy nucleus included in the fit
and since its mass is imposed, the error that is due to the volume
energy is compensated for by a too strong shell effect in 208Pb.

The additional binding in magic and near-magic nuclei has
of course its origin in shell structure. Hence single-particle
spectra might offer a key to the understanding of relative
overbinding of doubly magic nuclei. The single-particle
energies εk for 132Sn and 208Pb are presented in Fig. 11.
While the εk values are not truly physical quantities, there
certainly is an approximate correspondence to single-nucleon
separation energies and the spectra of nuclei that differ
from doubly magic ones by one nucleon. In this spirit the
experimental single-nucleon separation energies are given as
“expt” in the graph. For a comparison between calculated
values and experiment, one has to keep in mind that corrections
to the εk energies usually increase the level density around the
Fermi energy [65,66].

The SLy4 interaction gives in general a reasonable account
of the single-particle levels and their ordering around the magic
gaps, as do most SCMF functionals [1]. There are, however,
inaccuracies in some of the details. For example, the magnitude
of the gap at N = 126 is strongly overestimated, whereas the
gaps at N and Z equal to 82 appear to be more realistic. The
ordering of the levels below the N = 82 gap in 132Sn is difficult
to reproduce by mean-field models. SLy4 puts the 1h11/2−

level above the 2d3/2+ state, whereas experiment gives the
opposite ordering. SLy4 shares this deficiency with virtually
all successful parametrizations of Skyrme as well as Gogny
interactions and the relativistic mean-field Lagrangians; see
Ref. [1]. Its consequences for quadrupole correlations cannot
be easily assessed. Another salient feature of Fig. 11 is that
the calculated level density of neutrons above the N = 82 gap
in 132Sn and the N = 126 gap in 208Pb is much lower than the
experimental one, which might be one of the causes for the
underbinding of nuclei above N = 82 and N = 126.

The arches that we obtain are still present if the effective
interaction is adjusted to all known masses and has a better
volume energy coefficient. However, the amplitude of the
arches is much smaller, as can be seen, for example, in Fig. 3
of Ref. [60]. Dynamical quadrupole correlations reduce the
fluctuations by approximately a factor of 2, suggesting that
their integration in a global fit of the effective interaction might
bring a good agreement with the data.

Plotting mass residuals for isotopic chains as functions
of N is the usual way to proceed (see, e.g., Ref. [61]). The
plot of the same results for isotonic chains as a function
of Z, however, leads to a very different perspective on the
deviations between theory and experiment, as can be seen
in Fig. 12. It demonstrates that some caution is necessary

FIG. 12. Residuals of the (deformed) mean-field energy (top) and
the J = 0 projected GCM energy (bottom) drawn as functions of
proton number. Isotonic chains are connected by solid curves.
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before conclusions are drawn. Although the curves that
connect nuclei with constant N are not perfectly horizontal,
the fluctuations of the residuals around proton-shell closures
are much smaller at the mean-field level around neutron-shell
closures and are further reduced when dynamical correlations
are included. The good description of relative energies for a
given number of protons explains why the curves for isotopic
chains corresponding to different proton numbers plotted in
Fig. 10 nearly fall on top of each other. On the contrary, the
staggering of the curves for isotonic chains in Fig. 12 reflects
the drift of the mass residuals along isotopic chains visible in
Fig. 10.

More surprisingly, there is no large missing proton-shell
effect; hence, the deep ravines seen in Fig. 10 are not
representative for shells in general. It is difficult to imagine
that close to the stability line there are large correlation effects
related to neutron shells, but not to proton shells. We have
seen in Fig. 11 that single-particle energies of protons are
better described than those of neutrons. This suggests that
the remaining large fluctuations of the mass residuals around
magic neutron numbers are due to a deficiency of the Skyrme
energy functional for current parameter sets and not to the
manifestation of large missing correlations. The arches can
still be identified in the mass residuals of Skyrme interactions
fitted to all available masses by use of approximate correlation
energies; see, e.g., Fig. 3 of Ref. [60].

The same data also can be drawn versus mass number as in
Fig. 13. The curves with constant N − Z in Fig. 13 connect
nuclei in α-decay chains. The horizontal curves for the heaviest
nuclei indicate that Qα values are well described, as was first

FIG. 13. Deviation of the (deformed) mean-field energy (top)
and the J = 0 projected GCM energy (bottom) from experiment,
drawn as functions of proton number. Chains with constant N − Z

are connected by solid curves.

FIG. 14. Deviation of the (deformed) mean-field energy (top) and
the J = 0 projected GCM energy (bottom) from experiment, drawn as
functions of N − Z. Only isobaric chains with A = 4n are drawn, i.e.,
those containing an N = Z member. Isobaric chains are connected
by solid curves.

noted in Ref. [67]. Otherwise, the residuals show the same
problems that we found in the plot with respect to neutron
number.

Next, we show a plot of the isobaric chains as a function
of N − Z in Fig. 14. This clearly shows a strong cusp of
the residuals in light nuclei at N = Z, which are underbound
relatively to the other members of isobaric chains. This clearly
points out that a Wigner energy term is missing in our model.
The amplitude of the fluctuation of the residuals around N = Z

suggests a Wigner energy of the order of 5 MeV for the lightest
nuclei, but decreasing rapidly with the mass number. Note
that the amplitude of the peaks is modified when dynamical
correlations are included, as the N = Z line contains many
mid-shell nuclei that have more correlation energy.

Apart from fluctuations correlated to the neutron-shell
closures, the trend with A is mainly linear. The refit of SLy4
presented in Ref. [13] indeed removes the trend with A with
a 0.09-MeV increase of the SLy4 volume energy coefficient
avol. With this increase of avol, one gains about 21.5 MeV when
going from 16O to a nucleus with A ≈ 250, precisely what is
needed to correct the slope of the residuals that one can see in
all the figures.

The contour map of the dynamical quadrupole correlation
energy is given in Fig. 15. It presents structures correlated to
shell effects. The smallest correlation energies are obtained
for magic nuclei and the largest for transitional nuclei in the
vicinity of shell closures. The maximum of the correlation
energy decreases slightly with A. The correlation energy is
nearly constant for rare-earth and actinide nuclei, which all
have a static deformation.
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FIG. 15. (Color) Contour map of the dynamical correlation energy.

The N = 28 shell closure is clearly visible only around
48Ca, the dynamical correlation energy increasing very rapidly
when one is going away from Z = 20. This result is consistent
with the disappearance of the N = 28 shell effect below 48Ca.
All the other neutron-magic numbers are predicted to be very
stable with only marginal changes of the correlation energy
for each of them.

The situation is different for proton shells. The correlation
energy is quite small around doubly magic nuclei, but rises
substantially when one is going along the shell to mid-
neutron-shell nuclei, as one can see for the Ni (Z = 28),

Sn (Z = 50), and Pb (Z = 82) chains. One might suspect
that this asymmetry between neutron and proton shells is an
artifact of the too-strong neutron-shell effect that has already
been noted. Because of the too-strong neutron-shell closures,
the potential landscapes are too stiff, preventing any substantial
dynamical correlations. We will come back to this point when
discussing mass differences.

Figure 16 summarizes the influence of static and dynamic
quadrupole correlations on the ground-state wave function and
on its energy. The left-hand panels show the average intrinsic
deformation of the mean field (top) and of the correlated
ground states (bottom); in the right-hand panels the static
deformation energy (top) and the total quadrupole correlation
energy are plotted. With SLy4 and our treatment of pairing
correlations, most light nuclei have spherical mean-field
ground states (gray squares in the upper-right-hand panel). For
nuclei above Z = 50, there are three regions, clearly visible,
of well-deformed prolate nuclei (red squares in the left-hand
panels) centered around nuclei that are mid-shell for protons
and neutrons, i.e., the rare earths between 132Sn and 208Pb, their
cousins with the same Z on the proton-rich side of the N = 82
shell, and the actinides to the northeast of 208Pb. The prolate
deformation of rare earths and actinides is well established
experimentally. The structure of nuclei with large static
deformation energy is not affected by dynamical correlations.
The situation is different for nuclei at the outer limits of
the deformed regions. There, prolate and oblate, or prolate
and spherical, minima coexist and are nearly degenerate.
The GCM ground state is then a mixing of a large number of

FIG. 16. (Color) Left-hand panels: Deformation of the mean-field ground state (top) and average deformation of the J = 0 projected GCM
ground state [see Eq. (25)]. Right-hand panels: Static deformation energy of the mean-field ground state (top) and total (static + dynamic)
correlation energy of the J = 0 projected GCM ground state.
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configurations, with an average intrinsic deformation smaller
than the mean-field ground state.

For light nuclei, the mean-field calculations hint at two
regions of well-deformed oblate nuclei with Z ≈ 34 to the
left and right of the N = 50 shell closure. On the proton-rich
side, this is in contradiction with experiment. The Kr isotopes,
for example, are known to have prolate ground states with
coexisting excited oblate structures down to 74Kr; only 72Kr
has an oblate ground state [68]. In calculations with SLy4, the
oblate minimum is always more bound, which might be related
to a deficiency in the spacing of single-particle states in the
pf shell obtained with this interaction.

Some Sn and Pb isotopes have small ground-state deforma-
tions after projection, but before configuration mixing. This is
the case when the mean-field energy surface is soft, a deformed
configuration leading to a small energy gain of the order of
100 keV. After configuration mixing, however, one obtains a
ground-state wave function that has zero deformation on the
average—as expected. We remind the reader again that β̄2 does
not have a physical significance when the deformation is weak.

C. Mass differences

In many applications, it is not the masses themselves that
are important, but differences between masses, as separation
energies or Q values. We have shown that dynamical correla-
tion energies change abruptly around shell closures, and this
should have a visible effect on mass differences. Let us look
first at two-nucleon separation energies:

S2n(N,Z) = E(N − 2, Z) − E(N,Z),
(27)

S2p(N,Z) = E(N,Z − 2) − E(N,Z).

They represent first-order derivatives of the masses along
isotopic and isotonic chains.

Figure 17 shows the S2n for the chain of tin and lead
isotopes. All tin isotopes have spherical mean-field ground
states, and the average intrinsic deformation of the J = 0
GCM states remains close to zero. Dynamical correlations
always bring some gain of energy, but it varies slowly for the
open-shell isotopes and energy differences are then marginally
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FIG. 17. Two-neutron separation energy S2n for the Sn and Pb
isotopic chains.
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FIG. 18. Two-neutron separation energy S2n for the Dy (Z = 66)
and Th isotopic (Z = 90) chains.

affected. The already good agreement with data at the mean-
field level is slightly improved by correlations, in particular for
the light isotopes and around N = 70, for which the potential
landscapes are rather soft. The only large change is obtained for
closed-shell nuclei 100Sn and 132Sn, for which the quadrupole
correlation energy is smaller than for neighboring nuclei by
about 1 MeV and the “jump” in the S2n values is reduced at
the shell closure. The S2n values in Pb isotopes are also not
much affected by correlations. In particular, the excessive jump
around N = 126 is not sufficiently reduced by correlations.

More complex examples are the chains of Dy and
Th isotopes for which both static and dynamical quadrupole
correlations are large. In both chains, the S2n values shown
in Fig. 18 deviate from experiment by at least 2 MeV when
spherical symmetry is imposed. Allowing for deformations
significantly improves the agreement. To obtain such an effect,
the deformation energy has to change by about 2 MeV from one
isotope to the next, as is seen in the upper panel of Fig. 9. The
deformation energy increases rapidly on both sides of a magic
number, but its derivative has a different sign above and below;
therefore deformation decreases the S2n values below a magic
number and increases it above. Going to N values much larger
than the magic number, the S2n curve obtained when deforma-
tion is allowed will eventually cross the spherical curve, when
the deformation energy will be decreasing again with N. The
dynamical correlations improve the S2n further around the
N = 82 (Dy) and N = 126 (Th) shell closures, in particular
below them. Note that the influence of dynamical correlation
energies on separation energies is necessarily quite localized,
as correlations saturate just a few mass units away from shell
closures. The remaining discrepancy just above the N = 126
shell closure leaves room for octupole correlations, which are
known to be particularly strong in this mass region [69].

To amplify the change of masses around shell closures even
further, one can study the so-called two-nucleon gaps,

δ2n(N,Z) = E(N,Z − 2) − 2E(N,Z) + E(N,Z + 2)
(28)

δ2p(N,Z) = E(N − 2, Z) − 2E(N,Z) + E(N + 2, Z),
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FIG. 19. Two-proton gaps δ2p for the N = 82 and N =
126 isotonic chains.

which are equivalent to second-order partial derivatives of
masses as functions of N or Z. In a mean-field model, δ2p(Z)
can be approximated by twice the difference of the Fermi
energies between two nuclei differing by two neutrons or
two protons, provided that all nuclei entering Eq. (28) have
the same structure. For magic nuclei, this quantity is also
approximated by twice the gap in the single-particle spectrum.
For this reason, the two-nucleon gaps are often used as
signatures for magicity.

Figure 19 shows the two-proton gaps δ2p along the N = 82
and N = 126 isotonic chains. Except for the doubly magic
132Sn (Z = 50) and 208Pb (Z = 82), the description of ex-
periment by mean-field calculations is quite good. Dynamical
quadrupole correlations modify the δ2p values mainly around
the proton-shell closure, where the systematics does not
necessarily improve. The δ2p values at the magic number
Z decreases, as it does at Z + 4, while it increases for Z + 2.
As a result, the mean-field agreement with experiment at the
mean-field level for Z + 2 and Z + 4 is slightly marred by
dynamical correlations.

The two-particle gaps across a magic number are known to
be difficult to describe by mean-field models. Experimentally,
shell effects are enhanced when both neutrons and protons
form closed shells, a phenomenon called “mutually enhanced
magicity” [70,71] that cannot be described satisfactorily in
a mean-field picture. This can be seen in Fig. 20, where the
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FIG. 20. Two-proton gaps δ2p for the Pb and Sn isotopic chains.
Experimental data are represented by filled diamonds.

two-proton gaps for the Z = 50 (Sn) and Z = 82 (Pb) isotopic
chains are plotted as a function of N rather than z. Now δ2p

represents the magicity of the proton shell when N is varied.
The cases of Sn and Pb have gained considerable attention,
as the experimental data clearly show a large reduction of
the δ2p value when going away from the doubly magic 132Sn
with 82 neutrons and doubly magic 208Pb with 126 neutrons.
The reduction is particularly large for the neutron-deficient
Pb isotopes, which led to some speculation about a possible
quenching of the Z = 82 shell far from stability.

The SCMF theory gives quite flat predictions for δ2p in the
spherical approximation, as shown by the dotted curve in the
figure. This reflects the independence of the gap in the single-
particle spectrum of the protons on the neutron number for
spherical nuclei [72]. Allowing for static deformation leads to a
change in the right direction. Of course, the Sn and Pb isotopes
do not gain energy, but nuclei in the Z ± 2 chains do. Adding
dynamical quadrupole correlations brings the calculated curve
very close to the experimental one. Again, this is due to nuclei
in the Z ± 2 chains, which are softer than the magic ones
and therefore gain more dynamic correlation energy. Similar
results for the δ2p values in the Sn chain have been recently
obtained with a microscopic Bohr Hamiltonian based on a
different Skyrme interaction [50].

While the correlation energy gives quite a significant qual-
itative and quantitative improvement of finite-mass-difference
formulas along the direction of changing proton number, the
situation is less satisfactory along changing neutron numbers.
Figure 21 shows, as an analog to Fig. 20, for neutrons the
two-neutron-shell gap δ2n across the N = 50, N = 82, and
N = 126 isotonic chains. As in the case of proton shells in
Sn and Pb, the experimental values for neutron-shell gaps are
reduced when one is going away from the shell closures. In
comparison with the proton case there remain, however, large
deviations from experiment. Values for δ2n calculated from
spherical mean-field states are flat only for N = 126. They
vary rapidly for the other two chains although in the wrong
direction with respect to the data for N = 82. Allowing for
deformation slightly reduces the δ2n values, as some of the
nuclei with N ± 2 are deformed. This effect is, however, much
weaker than for the proton-shell gaps in the Sn and Pb isotopes.
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FIG. 21. Two-neutron gaps δ2n for the N = 50, N = 82, and N =
126 isotonic chains.
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The dynamical correlations reduce the δ2n values for all nuclei
shown by approximately 2 MeV, bringing the theory close to
experiment for N = 50. This change is, however, not sufficient
for the N = 82 and N = 126 chains. The discrepancy remains
the largest for the N = 126 chain.

The failure of the dynamical correlations to describe the
reduction of the δ2n quantitatively reflects, of course, the
ravines that remain in the lower panel of Fig. 8. This suggests
that the neutron shells in heavy nuclei are too strong, while
proton shells are much better described. This interpretation is
supported by the comparison of the calculated single-particle
spectra of heavy nuclei with experimental data that we already
discussed in Fig. 11.

VI. MASS TABLE FITS

In the previous section, we discussed the effects of
quadrupole correlations, looking at trends with N and Z and
at specific chains of nuclei. Here we take a more global
perspective on the correlation energies and assess their effect
on the chart of nuclei as a whole.

A. Evolution of errors with the inclusion of correlations

The rms residuals obtained when the three components of
quadrupolar correlations are added to the spherical mean-field
values are given in Table V. Let us first discuss the evolution
of residuals for binding energies, also shown as the left-hand
panel of Fig. 22. The first line of Table V corresponds to the
SCMF in the spherical approximation. It has an rms residual
of about 12 MeV. Since the SLy4 interaction is fitted to
doubly magic nuclei, this poor performance in the spherical
approximation is to be expected. When axial deformations
are incorporated into the SCMF, the rms residual improves to
5.3 MeV. The third line shows the results obtained when EJ=0

is added to the mean-field energies. The angular-momentum
projection gives a 20% improvement in the rms residual. This
is not surprising; having only fit magic nuclei, a correlation
effect that is stronger for mid-shell nuclei has a good chance
of improving the overall agreement. The last line shows the
effect of incorporating the full correlation energy. It does not
improve the residuals as compared with the inclusion of EJ=0

only.
This last result may seem disappointing: The “best”

calculation does not give better residuals for binding energies

TABLE V. Root-mean-square residuals of the binding energy and
various binding-energy differences for spherical mean-field states,
mean-field ground states, and the J = 0 projected GCM ground states
as obtained with SLy4. All energies are in MeV.

Theory E S2n S2p δ2n δ2p Qα

Spherical SCMF 11.7 1.6 1.6 1.2 1.1 2.1
Deformed SCMF 5.3 1.1 1.0 1.2 1.1 1.1
+J = 0 4.4 0.9 0.8 0.9 1.0 0.9
+GCM 4.4 0.8 0.8 0.8 0.9 0.8

FIG. 22. Root-mean-square residuals between theory and exper-
iment in different approximations. Left-hand panel: rms residuals
of the masses with the SLy4 interaction when one is going from
spherical SCMF (sph) to the SCMF ground state (def ), the J = 0
projected minimum (J = 0) to the J = 0 projected GCM ground
state (GCM). Filled symbols denote values for all nuclei in our
sample, open symbols heavy nuclei with N, Z > 30 only. The curves
are to guide the eye. Right-hand panels: corresponding two-nucleon
separation energies S2n and S2p (top), two-nucleon gaps δ2n and δ2p

(middle), and Qα values (bottom).

than calculations that do not include the correlations that
are due to configuration mixing. The most obvious factor
accountable for this failure is that the effective interaction that
we use has been adjusted at the mean-field level. Correlation
energies always increase the binding energies. Since with SLy4
light nuclei are already predicted overbound by the mean-field
ground state, correlations only worsen the situation, as can be
seen in Fig. 10. Therefore the correlations cannot improve the
binding energy residuals.

To check this conclusion, we also give the rms deviations for
several energy differences of interest in Table V, also shown in
Fig. 22. The spherical mean-field values for S2n, S2p, and Qα

are substantially improved by static quadrupole correlations,
while the two-nucleon gaps δ2n and δ2p are nearly unaffected.
The deviations at the deformed mean-field level are slightly
larger than 1.0 MeV for the five energy differences. The last
two lines of the table show the effect of including EJ=0

and EGCM. In all cases, one sees a significant improvement
ranging from 15% to 30%. These results are encouraging
to demonstrate a role for correlation effects, but to draw
a firm conclusion on the need for the correlation energies
one should refit the parameters of the SCMF and show that
the improvement remains when the parameters are separately
optimized with and without the correlations. We will come to
this in a later section.

For the two-nucleon gaps δ2n and δ2p, the static deformation
brings no measurable improvement of the rms residuals, while
the dynamical correlations do. This reflects that the two-
nucleon gaps are a filter for discontinuities in the systematics
of masses. The static deformation energy does not exhibit
any noticeable discontinuities; it only moderately smooths the
discontinuity from the spherical mean field. Therefore it has
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TABLE VI. The same as Table V, but for heavy nuclei with N,
Z > 30 only.

Theory E S2n S2p δ2n δ2p Qα

Spherical SCMF 12.6 1.6 1.5 0.9 0.6 2.1
Deformed SCMF 5.5 0.9 0.6 0.9 0.6 0.9
+J = 0 3.9 0.8 0.5 0.7 0.5 0.8
+GCM 3.8 0.7 0.5 0.5 0.4 0.7

no visible effect on the rms residuals of the δ2n or δ2p. In
contrast, the dynamical correlation energy obviously has a
kink at magic numbers, as illustrated by Fig. 9. As the most
prominent discontinuities of the dynamical correlation energy
and the mean field coincide, there is a visible effect of the
dynamical quadrupole correlations on the δ2n and δ2p values.

While the fluctuations of the rms residuals in heavy nuclei
are mainly correlated to magic numbers, they appear to be
much more random in light nuclei, in part because of the
additionally missing Wigner energy; see Fig. 14. The missing
contribution to the energy appears to reach as far as 10 mass
units from the N = Z line. As our model cannot describe the
effect that leads to the Wigner energy, we cannot expect to
obtain a satisfactory description of light nuclei. The peak in
the energy residuals from the missing Wigner energy causes a
slope and a discontinuity in the energy residuals; therefore it
affects particularly separation energies and two-nucleon gaps.
Indeed, when light nuclei with N, Z < 30 are removed from
the calculation of the rms residuals, the overall description of
mass differences appears to be much better; see Table VI.

B. Refits of the SCMF interaction

In this subsection we discuss a refit of the parameters of the
Skyrme interaction to see the quality of the binding energy
fits that can be achieved with SCMF. Table V shows that
correlations bring some improvement to the performance of the
SLy4 energy functional for binding energies. However, SLy4
has not been optimized for this purpose. Thus we should ask
whether the theory does better with the computed correlation
energy if the parameters are optimized by refitting both cases.
As a full fit of a Skyrme interaction to all nuclear masses
is too costly to be performed with the correlation energy
included, we follow here the procedure of Ref. [13] to readjust
the parameters of the SLy4 functional perturbatively. Our
conclusions will have to be tentative because the pairing part of
the functional will not be refitted and because the perturbative
refit will not catch a better fit that is very different from that
of the starting point.

The perturbative refit is performed as follows. The SCMF
energy is decomposed into a sum of integrals, each of which
is proportional to some linear combination of the Skyrme
parameters. Because of the variational property of the SCMF
theory, these integrals and the residuals are all that are needed
to perform a linear refit of the Skyrme parameters to minimize
the rms residual or some other measure of the fit. The only
point causing difficulty is the redundancy of the Skyrme
parameters. Certain linear combinations of these parameters

TABLE VII. Quality of binding-energy fits for various treatments
of effects beyond mean field. The first line show the SCMF
with particle-number projection and below that are the results
including successively particle-number angular-momentum projec-
tion, and mixing of deformations by the GCM. All energies are
in MeV.

Theory rms residual C-norm

Deformed SCMF 1.83 5.40
+J projection 1.70 4.96
+GCM 1.72 5.01

are very poorly determined by nuclear masses and should
not be included in the fit. According to Ref. [13], only
four combinations out of the ten parameters are well fixed
by the binding energies, and a corresponding singular value
decomposition of the fitting matrix is needed. In Ref. [13], the
energies were computed with the code EV8, but, as explained
in Subsec. II A, the code PROMESSE used here is more accurate.

In Table VII, we show the results of the fits optimizing
the rms residuals of the binding energies, starting with the
SCMF allowing static deformations. The refitting of the SLy4
Skyrme parameters gives a very large improvement on the
binding-energy residuals, reducing the rms of the SCMF by a
factor of 3 to 1.8 MeV. The J = 0 projection lowers the rms
residual in a refit by 0.13 MeV, while a refit adding as well
EGCM lowers it by 0.11 MeV. Thus a better fit can be obtained
with the correlation energies than without them, justifying the
program of going beyond the SCMF in this way. The situation
looks better when we examine fits to mass differences,
which are less sensitive to the SCMF. These are shown in
Table VIII. At the level of the SCMF, the effect of a refit is
quite small: A 4% improvement for the separation energies and
4%–11% for the δ2. This confirms the common assumption
that the differences are quite insensitive to fine adjustments
of the parametrization. For the theories including correlation
energies EJ=0 or Ecorr, the refits improved the numbers very
slightly. Thus the results shown in Table V for the effects of
the correlation energies are also valid when the parameters
are readjusted in a perturbative fit. We emphasize that, for the
mass differences, both the angular-momentum projection and
the GCM mixing of configurations with different deformation
give an improvement.

An alternative norm for parameter fitting is the so-called
Chebyshev norm, defined as the largest residual in a fit
performed to minimize that quantity (the “minimax” fit). In
Ref. [13] it was shown that the Chebyshev norm could be
more sensitive to the problems in the data set, and it also

TABLE VIII. Quality of fits to separation energies and two-
nucleon gaps fits for various treatments of effects beyond mean field,
as in Table VII. All energies are in MeV.

Theory S2n S2p δ2n δ2p

Deformed SCMF 1.03 0.90 1.02 1.06
+J projection 0.85 0.77 0.90 0.92
+GCM 0.79 0.72 0.83 0.84
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TABLE IX. Critical nuclei in the perturbative minimax fits
to binding energies starting from SLy4, listed by proton-neutron
numbers (Z, N ).

Theory Critical nuclei

Overbound Underbound

Deformed SCMF (10,18) (82,126) (38,38) (38,64) (94,152)
+J projection Same (38,38) (38,64) (42,64)
+GCM (12,8) (82,126) (38,38) (38,64) (74,108)

focuses on the cases most in need of attention. Fits made by
refitting four well-determined vectors of SLy4 are given in the
last column of Table VII. One sees that the value of the norm
is about three times the rms value and that the relative changes
from one treatment of correlations to another are very similar
with the two norms. It is of interest to examine the critical
nuclei, namely the nuclei that have the largest residuals. For a
fit with four independent vectors, there are five critical nuclei,
given in Table IX.

In the mean-field approximation, two critical nuclei are
overbound; the doubly magic 208Pb and the light neutron-rich
nucleus 28Ne. The underbound nuclei are two Sr isotopes, one
along the N = Z line, the other a neutron-rich one, and a very
heavy neutron-rich nucleus. With the projections and a refit
of the parameters, we expect the overbinding of magic nuclei
to be mitigated, but the change is not large enough to remove
208Pb as an overbound critical nucleus. The underbound nuclei
do not remain the same, however. There is still a nucleus along
the N = Z line, but the others are medium-mass neutron rich.
The presence of N = Z nuclei in all lines confirms that special
binding effects, the so-called Wigner energy, are present, but
not treated by our correlation mechanisms. We note that the
phenomenological treatment of correlations in Ref. [2] made
use of a Wigner energy term with several parameters.

The continued presence of 208Pb on the table reflects in part
the special role that this nucleus plays in the construction of
SLy4. A linear refit can correct the global parameters of the
interaction, but not the single-particle spectra, and it will not
decrease the too large neutron gap. On the other hand, one
can also expect that the inclusion of only quadrupole axial
correlations underestimates the correlation energies and that
other dynamical correlations should play a role [73].

VII. SYSTEMATICS OF CHARGE RADII

Correlations also may have an appreciable effect on
geometrical observables such as the mean-square (ms) radius
of the charge distribution r2

c . Although deformation is not a
meaningful concept for 0+ states within the laboratory frame-
work, the mean weight β̄2 of the ground-state components
can be substantially different from the deformation of the
mean-field ground state. One can therefore expect particularly
large changes of ms radii for light nuclei in general and for
heavy transitional nuclei.

A. Procedure

To calculate the ms radius of the charge distribution, one
starts from the ms radius of the point-proton distribution:

r2
p = 1

Z
〈�|r̂2

p|�〉, (29)

where |�〉 is either a mean-field state, a projected mean-field
state, or a projected GCM state. To calculate the nondiagonal
matrix element of r̂2

p, we use the same method based on the
topological GOA as for the Hamiltonian kernel. A comparison
with radii calculated with the complete projected GCM gives
us confidence that the quality of our GOA is of the order of
0.01 fm, and often much better.

We then obtain the charge ms radius by adding a correction
for the finite size of the proton [1],

r2
c = r2

p + 0.64 fm2, (30)

as is commonly done in SCMF calculations of charge radii. The
actual proton radius is slightly larger, but there are other terms
in the charge operator that we neglect and that would tend to
give contributions of the opposite sign. This correction plays
no role in differences of charge radii, for example, isotopic
shifts. We obtain the rms radius by taking the square root of
Eq. (30).

For nuclei whose mean-field ground state is spherical,
dynamical correlations always increase the ms radius since
deformed configurations contribute to the collective GCM
ground state. For nuclei with a very shallow deformed mean-
field minimum, as for several heavy transitional nuclei, the
GCM ground state will be spread over a wide range of
mean-field states, a mechanism that could lead to a reduction
of the radii.

The amount of increase of radii in spherical nuclei depends
on the softness of the projected energy landscapes. For light
nuclei, it is particularly large, the GCM ground state being
spread over a large range of deformations, as illustrated by
Fig. 4. The charge radii of light nuclei might increase by more
than 1% for the lightest ones, an effect that should not be
neglected if their values are included in the fit of an effective
interaction.

B. Global trends

Figures 23 and 24 show how static and dynamical corre-
lations influence the deviation of calculated rms charge radii
from experimental data, taken from a recent compilation by
Angeli [74]. The error bars on rms radii are often much larger
than those on masses. The values for Z = 66 isotopes with an
experimental error bar larger than 0.2 fm have been omitted
from the plot. Note that the rms radius of 56Ni, which was used
for the fit of the SLy4 interaction, is not included in [74].

The radii calculated with a mean field restricted to spherical
symmetry underestimate the experimental data for open-shell
nuclei, in particular for the N ≈ 66 region and rare-earth nuclei
N ≈ 100. This is expected, since these nuclei are known to
be deformed. Including deformations improves the agreement
with data, as can be seen in the middle panel of Figs. 23
and 24. In some mass regions, however, the rms radii are then
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FIG. 23. Deviations of the calculated rms charge radii
√

r2
c from

experimental values as functions of neutron number. We also show the
experimental error bars. Positive values denote overestimated radii.
Solid curves connect nuclei in isotopic chains.

overestimated, in particular in the vicinity of the Z = 82 shell
closure. This is again not too surprising, as for transitional
nuclei with a soft deformation energy surface, the ground state
is poorly described by a single mean-field state. Dynamical
correlations take into account the spread of the ground state
over deformations, which often reduces the rms radii of many
transitional nuclei. When these correlations are included, the
agreement with data is rather satisfactory for most nuclei in
the region between 56Ni (N = Z = 28) and 208Pb (N = 126,
Z = 82), as can be seen in the lower panels of Figs. 23 and 24.
A noteworthy exception is the neutron-rich Zr region around
100Zr, where the charge radii are strongly underestimated.

The situation is somewhat different for the lightest and
the heaviest nuclei. The heaviest nuclei in Fig. 23 are
known to be well deformed, but for some isotopic chains the
radii are already overestimated by the spherical mean-field
approximation and cannot be improved by the inclusion of
deformations and correlations. Although our results suggest

FIG. 24. The same as Fig. 23, but plotted for isotonic chains as
functions of proton number.

that SLy4 systematically overestimates the charge radii of
heavy nuclei, a firm statement cannot be made, as, with the
exception of the Z = 96 chain, the experimental error bars are
very large.

For light nuclei, the mean-field ground state is, in most
cases, spherical. The spreading of the GCM ground-state wave
functions over deformation leads then to an increase of the rms
radii. As the radii of 40Ca, 48Ca, and 56Ni are included in the
fit of SLy4 that is done with spherical mean-field states, their
radii are too large when correlations are included.

Residuals for isobaric chains are plotted as functions of
isospin N − Z in Fig. 25. For light nuclei, there is no
significant correlation of the residuals with the N = Z line.
On the other hand, for heavy nuclei, there is a clear trend that
the theoretical radii do not increase fast enough with increasing
asymmetry N − Z.

The rms residuals of the radii are given in the second column
of Table X. There is an overall improvement when one is
going from spherical to deformed mean-field states. Including
dynamical correlations, however, increases the rms residuals

034322-21



M. BENDER, G. F. BERTSCH, AND P. -H. HEENEN PHYSICAL REVIEW C 73, 034322 (2006)

FIG. 25. The same as Fig. 23, but plotted for isobaric chains as
functions of N − Z.

again. The main reason for this result is that the average value
of the residuals, defined by

�r = 1

N

N∑
j=1

(
rexp

rms − rcal
rms

)
(31)

and given in the third column of Table X, increases from 0.016
to 0.031 when dynamical correlations are added to the SCMF
ground state. The overall upward shift when one is going from
the top panel to the bottom panel in Figs. 23 and 24 reflects
the same result. The increase of the radii is the largest for the
lightest nuclei in our sample. As was the case for masses, the
agreement is more satisfactory when the lightest nuclei with
N, Z � 30 are removed from the sample, as illustrated in the
fourth and fifth columns of Table X.

C. Local trends

As dynamical correlations lead to an overall increase of the
rms radii, any assessment on the role of these correlations for
radii cannot be made on the grounds of the rms residuals. As in
the case of masses, the improvements made by correlations are
better seen when one looks at isotopic shifts that are differences

TABLE X. Root-mean-square residuals σrms and average values
�r of the rms charge radii for all nuclei in our sample (second and
third columns) and for heavy nuclei with N, Z > 30 only.

Theory All N, Z > 30

σrms(rrms) �r σrms(rrms) �r

Spherical 0.037 −0.010 0.039 −0.017
Deformed 0.032 0.017 0.031 0.015
+J = 0 0.041 0.028 0.034 0.022
+GCM 0.044 0.031 0.033 0.023

...
..

..
..

...
...

...
.

...
..

..
...

...
...

...

...
...

...
...

...
...

...
.
......

...
...

..

..
..

.....
...

...
..

.

FIG. 26. Systematics of the isotopic shifts of the ms charge radii
along the Sn and Pb isotopic chains. Isotopic shifts of Sn isotopes are
with respect to 124Sn, in Pb isotopes with respect to 208Pb.

of radii:

δr2
c (Z,N) = r2

c (Z,N) − r2
c (Z,N0). (32)

In Fig. 26, the isotopic shifts for the chains of Sn and Pb
isotopes are compared with experimental data. Quadrupole
correlations play a minor role for Sn isotopes. They lead to
a slight increase for mid-shell nuclei only, which improves
the agreement between calculation and experiment. Similar
results have been obtained in a GCM calculation without
projection in Ref. [75]. The situation is somewhat different
for Pb isotopes. Let us first examine the isotopes below 208Pb.
For spherical mean fields, the radii vary nearly linearly with N.
Allowing for deformation, a few neutron-rich isotopes around
N = 108 have an oblate ground state that gives a larger radius
compared with a spherical state. This is seen as a bump in
Fig. 26. When dynamical correlations are included, the mean
deformation of the correlated ground state decreases and their
radii are intermediate between those of purely spherical and
deformed mean-field calculations. Compared with experiment,
there are some deviations from the linearity of the spherical
mean field, but not as much as predicted by the GCM. Note that
the appearance of deformed mean-field ground states around
186Pb is very sensitive to the strength of the pairing interaction.
Increasing it to −1250 MeV fm3, as used in Ref. [76], pushes
the oblate minimum up by a few 100 keV, leading to a spherical
mean-field ground state for all Pb isotopes. Turning to the
isotopes above 208Pb, one sees a change in the slope of the
isotope shifts in the data that is not reproduced by theory.
Some authors explain the data by using an isospin dependence
of the spin-orbit interaction [77,78] that is different from that
in SLy4 and that appears naturally in relativistic Lagrangians.

More drastic changes can be expected for nuclei further
away from shell closures. The isotopic shifts in the Xe
(Z = 54), Ba (Z = 56), Nd (Z = 60), and Sm (Z = 62)
isotopic chains are shown in Figs. 27 and 28 as examples of
transitions from near-spherical to well-deformed ground states
along isotopic chains. In all these cases, spherical mean-field
calculations are obviously unable to describe the trends of the
radii. With the exception of the N = 82 isotopes, all nuclei in
Figs. 27 and 28 are deformed; hence the static quadrupole
correlations in mean-field ground states increase the radii
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FIG. 27. Systematics of the isotopic shifts of the ms charge radii
along the Xe (Z = 54) and Ba (Z = 56) isotopic chains. Isotopic
shifts are with respect to the N = 82 isotopes, 136Xe and 138Ba,
respectively.

on both sides of the N = 82 shell, thereby decreasing the
isotopic shifts below and increasing them above. The up bend
above the N = 82 shell seems to be fairly independent of the
proton number and is always well described. The difference
between the SCMF ground state and the J = 0 projected
GCM ground state is in most cases quite small. Although
dynamical correlations slightly increase them, the isotopic
shifts just above the magic number N = 82 are always slightly
underestimated. The situation is different below the N = 82
shell. Going from Z = 54 (Xe) to Z = 56 (Ba) substantially
increases the radii for mid-shell nuclei.

As a final example, in Fig. 29 we show two isotopic chains
that cross a transition from spherical to strongly deformed
nuclei, Yb (Z = 70) and Ra (Z = 88). These are among the
mid-shell chains for which the largest sets of data are available.
A detailed discussion of the isotopic shifts in the Yb (and also
the Pb) chain at the mean-field level can be found in Ref. [79].
The effect of deformation is clearly visible in the Yb chain.
Static mean-field deformations bring the overall trend of the
radii close to experiment, while dynamical correlations provide
an additional small correction. An interesting feature is that
we find an offset between our calculations and experiment
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FIG. 28. Systematics of the isotopic shifts of the ms charge radii
along the Nd (Z = 60), and Sm (Z = 62) isotopic chains. Isotopic
shifts are with respect to the N = 82 isotopes, 142Nd and 144Sm,
respectively.

....
...

...
...

.

..
..

..
..

....
..

..
..

..
..

.....
.

.....
....

...
...

......
...

..
..

..

......
...

..
..

..

FIG. 29. Systematics of the isotopic shifts of the ms charge radii
along the Yb (Z = 70) and Ra (Z = 88) isotopic chains. Isotopic
shifts of Yb isotopes are with respect to the N = 82 isotope 152Yb, in
Ra with respect to the N = 126 isotope 214Ra.

for most nuclei except the neutron-magic 152Yb. The radius
does not increase fast enough when going from N = 82 to
N = 84. This was already hinted at in the case of the Xe,
Ba, Nd, and Sm isotopic chains, but it appears in a more
pronounced way for Yb. There could be several sources for
this discrepancy. Correlation modes that we do not consider
here should play some role around magic numbers. Our results
on mass systematics have also indicated that the N = 82 gap
is too large. As a consequence, the potential landscapes are too
stiff, preventing the spreading of the collective ground state for
the reference nucleus.

Compared with those of the Yb isotopes, the radii of the Ra
isotopes vary on a smaller scale, as shown in the right-hand
panel of Fig. 29. Static deformation increases the radii on
both sides of the N = 126 shell closure, in agreement with
the available data. Adding dynamical correlations leaves the
isotopic shifts practically unchanged.

VIII. SUMMARY, DISCUSSION, AND OUTLOOK

SCMF methods provide the only microscopic nuclear
model that can be applied to all nuclei up to the heaviest
ones. In spite of their many successes, the SCMF models do
not provide nuclear masses with a satisfactory accuracy if
phenomenological corrections are not added. We have studied
how dynamical quadrupole correlations, calculated consis-
tently from SCMF states, influence masses and charge radii.
When a numerical approximation was used to compute the
matrix elements required for angular-momentum projection
and configuration mixing, it was possible to calculate the
quadrupole correlation energy for 600 even-even nuclei. We
estimate a numerical uncertainty on correlation energies of
at most 200 keV, which is acceptable for the purpose of our
study.

SCMF masses determined with the Skyrme interaction
SLy4 have two main wrong tendencies: a global drift with mass
number and arches between shell closures. Similar results have
also been obtained for other Skyrme interactions. The drift with
mass number is related to a slightly too small (approximately
by 0.5%) volume energy coefficient of the nuclear matter
properties that can be assumed to be an artifact of the common
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practice of fitting the force to a very limited set of nuclei.
The mismatch can be easily removed by a perturbative refit
of the particle-hole part of the effective mean-field interaction
to a larger set of nuclear masses while leaving the pairing
interaction untouched.

The arches are obviously related to shell structure and
cannot be removed at the mean-field level by a perturbative
refit of a given interaction. Including quadrupolar correlations
brings a large improvement; the correlation energies have the
right qualitative behavior and also the right order of magnitude.
With the original Skyrme interaction SLy4, the amplitude
of the arches is decreased. The residuals of the masses still
remain large, but in particular mass differences around magic
numbers become rather accurate. The improvements brought
by correlations are smaller when included in a refit, but clearly
are present for angular-momentum projection; the overall
improvement of the GCM is small and cannot be determined
with a linear refit.

Surprisingly, the mismatch of masses related to shell effects
is much more pronounced when residuals are plotted for
isotopic chains as functions of the neutron number. In plots
made as a functions of the proton number or of the mass
asymmetry, the residuals are much less structured.

The role of dynamical correlations for radii has many
similarities with their role for masses. Correlations lead to
an overall increase of radii that spoils the rms residuals for
an interaction adjusted at the mean-field level. On the other
hand, differences between radii are improved by correlations,
the largest effect being obtained in mass regions where radii
vary rapidly from one isotope to the next, in particular for
transitional nuclei and around magic numbers. The examples
shown for isotopic shifts demonstrate that the dynamical
quadrupole correlations indeed contain the right physics to
improve the description of the ground states of transitional
nuclei.

The aim of this paper was not to set up a new microscopic
mass formula as accurate as the best available theories
including phenomenological terms. This could be done only by
refitting of the effective interactions in both the mean-field and
the pairing channels after the inclusion of correlations. Before
attacking this formidable task, our more limited aim here was
to determine the effect of correlations on residuals of binding
energies and to see whether they have the right tendencies to
remove the deficiencies of pure mean-field calculations. Our
results for binding energies are encouraging in this respect.
Energy differences are less sensitive to wrong global trends of
effective interactions, and the fact that they are significantly
improved by correlations is a clear sign of the necessity to go
beyond the mean field.

The spreading of the nuclear wave function over a large
range of deformed mean-field states does not influence only
binding energies; it has a large effect on other observables
as well. We have examined a few representative examples of
nuclear radii and isotopic shifts. Other observables require an
extension of the present study to excited states.

What should be done to go further? We can distinguish
several main roads that should ideally be followed in parallel
but that all require new developments with different degrees
of difficulty:

(i) From the analysis of mass residuals we conclude that
the poor description of masses around heavy doubly
magic nuclei is due to a deficiency of the Skyrme
energy functional, and is not primarily the manifestation
of large missing correlations. This might be a hint
that the present Skyrme energy functionals are not
yet sufficiently flexible. To improve the mean field
used as a starting point, generalizations of the energy
functional may be necessary. The fit of mean-field
interactions should exclude N = Z nuclei, since the
Wigner energy is large and not well known. Clearly, a fit
protocol that takes into account only magic nuclei is not
sufficient.

(ii) A generalization of the present formalism to the study
of low-lying excited states, in particular to the first
2+ state and its decay by E2 transitions to the ground
state, is needed.

(iii) Additional collective modes should be included. A nice
feature of our study is that correlations seem to saturate
and that the gain of energy for the ground state is small
when more correlations are introduced. However, in some
mass regions, they should affect differently nuclei with
different deformation topographies. Three modes seem
the most natural ones when one is looking to some
deficiencies noted in the present study. The octupole
mode is certainly missing in some heavy nuclei and
could be as important as the axial quadrupole mode near
magic nuclei. The effect of triaxiality has to be tested
in nuclei with coexisting mean-field prolate and oblate
minima that, although already coupled even if only axial
deformations are considered, could be more strongly
linked through the triaxial plane. Finally, pairing has been
treated within the LN approach, which is known to have
deficiencies, in particular in the weak pairing regime. To
include the pairing gap as a dynamical variable would
certainly be more satisfactory.

(iv) Up to now, we have considered only even nuclei. It is
clear that a more complete theory should also include
odd ones. However, a treatment of odd nuclei at the
same level of quality as that of even ones will require an
extension of our model to break time-reversal invariance
and axial symmetry. This work is under way, but it is quite
clear that the restoration of symmetries for odd nuclei
will lead to a considerable increase of the computing
time.

(v) The discussion of differences of energies and radii
demonstrates that the introduction of quadrupole cor-
relations brings in physics that is not included in self-
consistent mean-field models and improves the system-
atics of ground-state observables around shell closures.
However, as we discussed several times in this paper,
effective interactions have been adjusted at the mean-field
level and are not adequate to include correlations. Nuclei
whose masses were included in the determination of the
interaction are overbound by correlations. A linear refit
of the mean-field part of the interaction permits one to
correct wrong tendencies of the interaction in a simple
manner, but is not sufficient for a quantitative study when
configuration mixing is included. This is not surprising,
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since configuration mixing is very sensitive to the relative
position of mean-field energy minima corresponding to
different shapes. One therefore cannot avoid readjusting
the effective interactions in both the mean-field and
pairing channels simultaneously and with the inclusion
of correlations.

Obviously these five steps are not completely independent.
For instance, several previous studies have shown that the
excitation energy of the first excited 2+ state is overestimated
in spherical or near-spherical nuclei if only an axial quadrupole
collective variable is considered. The variational space should
probably be enlarged in these cases by breaking the time-
reversal invariance and introducing a cranking constraint.
However, systematic studies with the present model are still
required for determining which are the critical nuclei requiring
an improved model.

From our study, one can also conclude that the absence
of a Wigner term affects strongly the description of light
nuclei, with a border between light and heavy nuclei around
mass 60. The linear refit of the effective interaction by use
of the C-norm has also put into evidence critical nuclei. A
first way to continue this study could be to use the C-norm
to establish a larger list of critical nuclei. This will require
extending the data included in the refit of the interactions

in order to lift the redundancy of the effective interaction
parameters.
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[38] R. Balian and E. Brézin, Nuovo Cimento B 64, 37
(1969).

[39] K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl.
Phys. A342, 111 (1980).

[40] P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, and
J. Meyer, Nucl. Phys. A510, 466 (1990).

[41] A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phys. A671, 145
(2000).

[42] N. Onishi and S. Yoshida, Nucl. Phys. 80, 367 (1966).
[43] K. Hagino, G. F. Bertsch, and P.-G. Reinhard, Phys. Rev. C 68,

024306 (2003).
[44] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. C 69,

034340 (2004).
[45] A. Gozdz, K. Pomorski, M. Brack, and W. Werner, Nucl. Phys.

A442, 26 (1985).
[46] P.-G. Reinhard and K. Goeke, Rep. Prog. Phys. 50, 1

(1987).
[47] J. Libert, M. Girod, and J.-P. Delaroche, Phys. Rev. C 60, 054301

(1999).
[48] E. K. Yuldashbaeva, J. Libert, P. Quentin, and M. Girod, Phys.

Lett. B461, 1 (1999).
[49] L. Prochniak, P. Quentin, D. Samsoen, and J. Libert, Nucl. Phys.

A730, 59 (2004).
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