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Pair counting, pion-exchange forces and the structure of light nuclei
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A simple but useful guide for understanding the structure of light nuclei is presented. It is based on counting
the number of interacting pairs in different spin-isospin (S, T ) states for a given spatial symmetry and estimating
the overall binding according to the sum of σi · σj τi · τj expectation values, as suggested by one-pion exchange.
Applied to s- and p-shell nuclei, this simple picture accounts for the relative stability of nuclei as A increases and
as T changes across isobars, the saturation of nuclear binding in the p shell, and the tendency to form d, t , or α

subclusters there. With allowance for pairwise tensor and spin-orbit forces, which are also generated or boosted
by pion exchange, the model explains why mixing of different spatial symmetries in ground states increases as
T increases across isobars and why, for states of the same spatial symmetry, the ones with greater S are lower in
the spectrum. The ordering of some sd-shell intruder levels can also be understood. The success of this simple
model supports the idea that one-pion exchange is the dominant force controlling the structure of light nuclei.
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I. INTRODUCTION

The past decade has seen significant progress in both
the characterization of realistic two- and three-nucleon in-
teractions, and in the ability to make accurate many-body
calculations with these models. Nucleon-nucleon potentials
such as Argonne v18 [1], CD-Bonn [2,3], and the Nijmegen
models [4] reproduce NN scattering data extremely well; when
combined with three-nucleon forces such as the Illinois or
Tucson-Melbourne potentials [5,6] and accurate many-body
techniques, nuclear binding energies up to A = 12 can be
reproduced. Seven different many-body methods are in superb
agreement for the binding energy of 4He with a realistic NN

force [7], while Green’s function Monte Carlo (GFMC) [8–11],
no-core shell model (NCSM) [12–14], and coupled-cluster
methods (CCMs) [15,16] are making very successful ab initio
calculations for p-shell nuclei. This progress allows us to study
the interplay between nuclear forces and nuclear structure in
an unprecedented manner.

In a recent letter [17] the authors constructed a series of
increasingly realistic force models and used GFMC calcula-
tions to evaluate the consequences for nuclear structure. This
study showed that a simple central potential, with the canon-
ical intermediate-range attraction and short-range repulsion
indicated by S-wave NN phase shifts, could approximately
reproduce the triton and α binding energies, but failed to
saturate in the p shell, producing stable 5He and greatly
overbinding the A = 6, 7, 8 nuclei. To obtain unstable 5He
and the general saturation of nuclear forces that is evident in
the p shell, it is necessary to have a state-dependent force,
i.e., one that is attractive in L = even partial waves and
repulsive in L = odd partial waves. Indeed, state dependence
appears to be more important for nuclear saturation than either
the repulsive core or the finite range of nuclear forces. To
obtain the further refinement that 8Be is unstable against
breakup into two α’s requires the addition of a tensor force,
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while the stability of 6,7Li suggests spin-orbit terms are also
needed. Together, these are the major operator components
required in a realistic interaction for fitting S- and P-wave
NN data.

Pion-exchange forces play a very significant role here. The
spin-isospin dependence of one-pion exchange (OPE) makes
it attractive in L = even partial waves and repulsive in L = odd
partial waves, just as required for binding the s-shell nuclei
and for the binding to saturate quickly in the p shell. OPE
also is the major source of the tensor force, and iterated tensor
interactions among three or more nucleons provide a large
enhancement to spin-orbit splitting in nuclei [18]. In GFMC
calculations of A � 12 nuclei with realistic interactions, the
expectation value of the OPE potential is typically 70%–75%
of the total potential energy [8]. The importance of pion-
exchange forces is even greater when one considers that much
of the intermediate-range attraction in the NN interaction
can be attributed to uncorrelated two-pion exchange with
the excitation of intermediate �(1232) resonances [19]. In
addition, two-pion exchange among three nucleons is the
leading term in 3N interactions, which are required for getting
the empirical binding in light nuclei [5]. In particular, the 3N

forces provide the extra binding required for stabilizing the
Borromean nuclei 6,8He and 9Be.

The thesis of this paper is that, by counting the number of
different spin-isospin (S, T ) pairs that occur in a given nuclear
state of specific spatial symmetry and multiplying by a numeric
strength taken from the OPE operator σi · σjτi · τj , one obtains
a very good measure of the binding energy. This works both
for the relative energy between different states in the same
nucleus and between different nuclei. The idea is akin to the
supermultiplet theory of Eisenbud Wigner [20], which focused
on the symmetry aspects of light nuclei, but assumed forces
that were primarily central and space exchange in character.
The present study benefits from the extensive recent progress
in the fully realistic calculations mentioned above. There is
also common ground with the recent work by Otsuka and
collaborators [21,22] within the framework of traditional shell
model that emphasizes the importance of OPE spin-isospin and
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tensor interactions in determining how single-particle energy
levels shift as shells are filled.

This simple guide, supplemented by our knowledge of
tensor, spin-orbit, and Coulomb forces, describes the general
structure of light nuclei in considerable detail. The model
explains the growing binding as A increases, the saturation
of binding going from the s shell to the p shell, the relative
stability as T varies across isobars, and the tendency to
form d, t , and α subclusters in the light nuclei. It explains
why mixing of different spatial symmetries in ground states
increases as T increases and why for states of the same spatial
symmetry, the ones of higher S are lower in the spectrum. The
same logic can also be used to understand the ordering of some
sd-shell intruder levels in these nuclei.

II. PAIR COUNTING

The total number of pairs in a nucleus, PA = A(A − 1)/2,
can be subdivided into pairs of specific spin and isospin
PA(ST ), where S = 0 or 1 and T = 0 or 1. Starting with
the square of the expression

∑
i τi/2 = TA, where TA is

the total isospin of the nucleus, and using the projection
operators (1 − τi · τj )/4 and (3 + τi · τj )/4 for T = 0 and
1 pairs, respectively, one can show that the total number of
such pairs of given isospin in a nucleus depend on only A and
TA [23]:

PA(10) + PA(00) = 1
8 [A2 + 2A − 4TA(TA + 1)], (1)

PA(11) + PA(01) = 1
8 [3A2 − 6A + 4TA(TA + 1)]. (2)

A similar pair of equations can be obtained for the total number
of S = 0 or 1 pairs in terms of the total nuclear spin SA,
assuming spin is conserved, i.e., before configuration mixing
by tensor forces and correlations. An additional expression
can be obtained for the difference p[n] between the number of
symmetric (even) and antisymmetric (odd) pairs for a given
spatial symmetry state specified by the Young diagram [n]:

PA(10) + PA(01) − PA(11) − PA(00) = p[n]. (3)

For example a [3] symmetry state has three symmetric pairs,
p[3] = 3; a [111] state has three antisymmetric pairs, p[111] =
−3; and a [21] state has one symmetric, one antisymmetric, and
one mixed-symmetry pair (which does not contribute here),
giving p[21] = 0. Together we have four independent relations
for four unknowns, which can be rearranged to give

PA(11) = 1
4

[
2PA − p[n] − 3

2A

+ SA(SA + 1) + TA(TA + 1)
]
, (4)

PA(10) = 1
4 [PA + p[n] + SA(SA + 1) − TA(TA + 1)], (5)

PA(01) = 1
4 [PA + p[n] − SA(SA + 1) + TA(TA + 1)], (6)

PA(00) = 1
4

[−p[n] + 3
2A − SA(SA + 1) − TA(TA + 1)

]
. (7)

One obtains the simple energy measure being proposed
for use by multiplying the number of pairs of each type with
the expectation value of the spin-isospin operator σi · σjτi · τj

coming from OPE:

EOPE = C[PA(11) − 3PA(10) − 3PA(01) + 9PA(00)], (8)

where C is a constant in units of energy. A value C ∼
1.5 MeV gives a reasonably good average scale factor. This
expression reflects the fact that S-wave NN interactions are
attractive while P-wave interactions are repulsive. It does not
attempt to differentiate between 1S0 and 3S1−3D1 channels,
when in reality the former is just unbound and the latter
produces a bound deuteron, thanks largely to the OPE tensor
force. However, it does reflect the large difference between
the weakly repulsive 3PJ channels and the strongly repulsive
1P1 interaction. We will find that this simple expression does a
remarkably good job of predicting overall trends in binding and
relative stability for s- and p-shell nuclei, as well as explaining
a variety of observed features in the excitation spectra.

III. ENERGY SPECTRA

The PA(ST ) and EOPE for A = 2–5 nuclei are shown in
Table I. (In the following tables, only the most neutron-rich
member of any isobaric multiplet is shown, e.g., 3H but not
3He, and 6He but not 6Be or the isobaric analog states in
6Li; they should be understood to be essentially the same for
nuclear forces and differ primarily by the Coulomb energy.)
The deuteron 2H has only one ST = 10 pair, to which is
assigned the strength −3C. In our simple model, the ST = 01
dineutron would also be bound, whereas in reality it is
just unbound, and is not shown. The triton 3H has three
pairs, equally divided between ST = 10 and 01 according to
Eqs. (4)–(7), and thus gets a strength of −9C, while the α, 4He
has six such pairs with a total strength of −18C.

If we use EOPE to judge the relative binding of these nuclei,
then the d:t:α energies should be in the ratio 1:3:6, whereas
in reality they are more like 1:4:13. Of course, the binding
is the result of a cancellation between kinetic and potential
energies, and EOPE is essentially a potential measure. In fact,
GFMC calculations for the AV18/IL2 Hamiltonian give the
expectation values for the two-body potential to be in the ratio
1:2.7:6.3 for these nuclei [5], reasonably close to EOPE. The
EOPE will be a useful gauge for binding energies only if there
is something like a virial theorem for nuclei that says the
kinetic and potential energies are proportional to each other.
Fortunately there does seem to be such a relation, at least in
the light p-shell nuclei, as shown by the results of GFMC
calculations displayed in Table II. For 6 � A � 12 nuclei, the
ratio RKV, of kinetic- to potential-energy expectation values

TABLE I. Pairs and OPE weights for A = 2–5 nuclei.

ST 2H 3H 4He 5He
3S[2] 2S[3] 1S[4] 2P [41]

ss ss ss ss sp

11 9/4

10 1 3/2 3 3 3/4

01 3/2 3 3 3/4

00 1/4

PA 1 3 6 6 4

EOPE −3C −9C −18C −18C 0
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TABLE II. Ratio of kinetic to potential energy for A� 12 nuclei
from GFMC calculations with the AV18/IL2 Hamiltonian.

AZ RKV
AZ RKV

2H 0.90 8Li 0.79
3H 0.84 8Be 0.76
4He 0.75 9He 0.81
6He 0.78 9Li 0.79
6Li 0.79 9Be 0.77
7He 0.79 10Be 0.77
7Li 0.78 10B 0.77
8He 0.80 12C 0.77

varies only from 0.76 to 0.81, while there is a much greater
range of 0.75 to 0.90 for the s-shell nuclei. We note that the
lowest ratios occur for the most spatially symmetric nuclei
4He, 8Be, and 12C, as we might expect.

A further complication is that, when realistic tensor forces
are included, some fraction of the ST = 01 pairs will be
converted to 11 pairs, and a small fraction of ST = 10 pairs to
00 pairs, because of multibody correlations. Variational Monte
Carlo (VMC) calculations for 4He found the actual distribution
of 11:10:01:00 pairs to be 0.47:2.53:2.99:0.01 [23]. For our
simple model we focus on the distribution of pairs before such
mixing takes place.

While this very qualitative model is not particularly useful
for the s shell, it starts to have some utility in the p shell. The
10 pairs of nucleons in 5He are divided into six pairs within
the s shell, designated ss in Table I, and four pairs with one
nucleon in the s shell and one in the p shell, designated sp.
The ss pairs are distributed exactly as in 4He, while the sp
pairs come in just the right combination to give no additional
contribution to EOPE. Thus the prediction is that 5He should
have the same binding as 4He, when in fact it is unstable against
breakup by ∼1 MeV. For cases like this, our simple measure
is not sufficient to determine stability, but only to indicate a
situation that could go either way, depending on, for example,
how much the virial ratio RKV of Table II varies. In the case
of 5He, the residual attraction from shorter-range NN and
3N forces is not enough to overcome the additional kinetic
energy that is generated by the requirement of putting the fifth
nucleon in a p-shell orbital.

For A = 6 nuclei, shown in Table III, the s-shell core remains
the same, while the number of sp pairs doubles, but still with
no net contribution to EOPE. Effectively, the s and p shells
decouple from each other at the OPE level. The final energy of
6Li and 6He then depends on the last pair of nucleons that is
wholly within the p shell, designated pp in Table III. Starting
with A = 6, there are multiple ways of adding up orbital
and spin angular momenta to get the total Jπ ; T of a given
nuclear state [24]; they are labeled by their LS coupling and
spatial symmetry, 2S+1L[n], and all allowed L values are listed.
For 6Li this last pair can be part of a 3S[42] or 3D[42] state
(essentially a deuteron with orbital momentum of 0 or 2 around
an α core) with an associated strength of −3C, or the last pair
can be part of a 1P [411] state, which contributes +9C to our
binding measure. The total EOPE for 6Li is the sum of the ss and
pp pairs, or −21C for the [42] states and −9C for the [411]

TABLE III. Pairs and OPE weights for A = 6 nuclei. The EOPE

weight does not depend on the total L value, but all possible values
for a given spin and spatial symmetry combination are enumerated
the allowed T = 0 states are given under the 6Li header and the
T = 1 states under the 6He header.

ST 6Li 6He
3SD[42] 1P [411] 1SD[42] 3P [411]

ss sp pp pp pp pp

11 9/2 1
10 3 3/2 1
01 3 3/2 1
00 1/2 1

PA 6 8 1 1 1 1

EOPE −18C 0 −3C +9C −3C +1C

state. For 6He the last pair can be part of either a 1S[42] or
1D[42] state (essentially a spin-zero dineutron with L = 0 or
2 around an α core) with strength −3C, or part of a 3P [411]
state with strength +C; the corresponding total EOPE is −21C

or −17C, respectively.
Thus the prediction of our simple model is that 6Li and 6He

ground states should have [42] symmetry, with about the same
energy, and be weakly bound compared with 4He, which is
pretty much correct, given the above a caveat about a unbound
dineutron and bound deuteron. The experimental spectrum
[25] is shown in Fig. 1, where the levels are labeled by their
dominant symmetry. The 6Li ground state is 1.47 MeV below
the α-deuteron threshold, while 6He is 0.97 MeV below the
α-dineutron threshold. GFMC calculations indicate that much
of the binding between clusters is provided by the 3N force;
if only the AV18 NN force is used, 6Li is stable by 0.6 MeV
and 6He is unstable by 0.3 MeV [10].

Not surprisingly, in the excitation spectrum the D states
are higher than the S states, because the angular-momentum
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FIG. 1. (Color online) Experimental spectrum for A = 6 nuclei;
T = 0 (T = 1) states are shown by blue (red) solid lines and breakup
thresholds by black dotted lines.
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TABLE IV. Pairs and OPE weights for A = 7 nuclei.

ST 7Li 7He
2PF [43] 4PD[421] 2PD[421] 2S[4111] 2PD[421] 4S[4111]

ss sp pp pp pp pp pp pp

11 27/4
3/2

3/4
3/2

3/2 3
10 3 9/4

3/2
3/2

3/4

01 3 9/4
3/2

3/4
3/2

00 3/4
3/4

3/2

PA 6 12 3 3 3 3 3 3

EOPE −18C 0 −9C −3C +3C +15C −3C +3C

barrier screens some of the overall potential attraction. In
shell-model studies this feature is taken into account by the
inclusion of an L2 term in the interaction [26], but the spread
between different L states of the same spatial symmetry is
generally smaller than the spacing between different spatial
symmetry groups, and here we are after only the most general
nuclear structure aspects. Further, the 3D combination in
6Li is split into J = 1,2,3 states ordered with maximum J
lowest, as dictated by the spin-orbit force. The antisymmetric
[411] states are several MeV higher in the spectrum, and
no corresponding experimental states have been identified.
However, our simple model predicts that the antisymmetric
1P [411] state in 6Li is much higher than the 3P [411] state
in 6He, which suggests that when configuration mixing with
tensor forces is done, the admixture of these components in the
respective ground states will be less for 6Li than for 6He. This
is borne out in VMC diagonalizations with realistic forces
in which the amplitudes of the different components in the
ground state are 0.98:0.14:0.10 for the 3S[42]:3D[42]:1P [411]
pieces in 6Li and 0.97:0.23 for the 1S[42]:3P [411] pieces
in 6He [10].

The PA(ST ) and EOPE for A = 7 nuclei are given in
Table IV. Again we see that the s-shell core gives the same
contribution as before, and though there are now 12 sp pairs,
they continue to give no net contribution to EOPE. All the
action is now in the three pp pairs. In 7Li they can form part
of a maximally symmetric 2P [43] or 2F [43] state with energy
contribution −9C for a total EOPE = −27C, which equals the
sum of α and triton energies; experimentally the ground state is
2.47 MeV below this sum, as seen in the experimental spectrum
of Fig. 2. Again, much of the binding between clusters is
apparently due to the 3N forces; GFMC calculations with
AV18 alone produce a 7Li ground state only 0.3 MeV below
the α-triton threshold [10].

As labeled in the figure, the 7Li states are ordered according
to our simple model, with 2P [43] and 2F [43] states lowest,
followed by the 4P [421] states and the start of the 4D[421]
states; VMC calculations confirm that these are by far the
dominant components of the first eight states. (The lowest five
states in 7Be follow a similar pattern with a Coulomb shift;
the higher states may not be as well known experimentally.)
The 4P [421] states have a net EOPE = −21C, the same as
that of 6Li ground state, and they lie just above the threshold
for breakup into 6Li + n. The 2P [421] and 4P [421] T = 1/2

states in 7Li have the same spatial symmetry but the former
contain an admixture of the very repulsive ST = 00 pairs, which
pushes their energy up significantly, and no corresponding
experimental states have been identified. In contrast, the
2P [421] T = 3/2 ground state in 7He (and its isobaric analogs)
does not have any ST = 00 pp pairs and by our simple model
has the same energy as the 6He ground state, which is about
right.

The PA(ST ) and EOPE for A = 8 nuclei are given in
Tables V and VI. In the former the ss and sp pairs are shown
again to remind us that each of the p-shell nuclei has an s-shell
core contributing −18C to EOPE and no contribution from the
sp pairs. In 8Be the six pp pairs in the maximally symmetric
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FIG. 2. (Color online) Experimental spectrum for A = 7 nuclei;
T = 1/2 (T = 3/2) states are shown by blue (red) solid lines.
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TABLE V. Pairs and OPE weights for 8Be.

ST 8Be
1SDG[44] 3PDF [431] 5SD[422] 1SD[422] 3P [4211]

ss sp pp pp pp pp pp

11 9 3/2 3 3/2
5/2

10 3 3 3 5/2 3 3/2
3/2

01 3 3 3 3/2
3/2

1/2

00 1 1/2
3/2

3/2

PA 6 16 6 6 6 6 6

EOPE −18C 0 −18C −6C −6C +6C +10C

[44] ground state effectively form a second α, so the total EOPE

is 2(−18C) = −36C, compared with −28C for 8Li and −24C

for 8He ground states. This is a fair representation of the spread
in the experimental spectrum, shown in Fig. 3 [27]. The 8Be
ground state is practically degenerate with the energy of two
α’s, 8Li is significantly less bound, but is a little more bound
than 7Li (−27C), and 8He is somewhat less bound, but below
6He and 7He (both −21C). The increased binding for 8He is
essentially due to the completion of a second dineutron pair in
its [422] symmetry ground state, which is worth an additional
−3C in EOPE.

The gap between the [44] and [431] symmetry states in 8Be
has the large value of 12C, suggesting little mixing between
them, and VMC calculations indicate the first 0+, 2+, and 4+
states are ∼99% pure symmetry [44]. By comparison, the small
energy gap of 4C between the [422] and [4211] symmetry
states in 8He leads to mixed amplitudes of 0.8:0.6 in its ground
state [10]. In 8Li there are both triplet and singlet states of
symmetry [431], but the higher spin states fall lower in the
spectrum because they avoid the repulsive ST = 00 pairs;
the same is true for the three different spin states of [4211]
symmetry and in 8Be for the two different spin states of [422]
symmetry.

The PA(ST ) and EOPE in A = 9 nuclei are given in
Tables VII and VIII. With the contribution from the s-shell
core added in, the EOPE are −36C,−30C, and −24C for
the ground states of 9Be, 9Li, and 9He, respectively, which is
again a very good approximation to the experimental spectrum
shown in Fig. 4 [27]. The 9Be ground state is predicted to

have the same energy as 8Be or two α’s: The addition of one
nucleon to the ground state of 8Be generates four new pp pairs
in 9Be, but with just the right combination to add no additional
binding to EOPE. Experimentally 9Be is bound with respect to
the threshold for α-α–neutron breakup by 1.57 MeV, which
in turn is 0.10 MeV below the 8Be + n threshold. GFMC
calculations indicate that the stability of the last neutron is
again due to 3N forces: Whereas the AV18/IL2 Hamiltonian
gets 1.9 ± 0.5 MeV for the binding relative to 8Be, AV18 alone
is stable by only 0.1 ± 0.4 MeV [9,10].

The 9Li ground state is predicted to be somewhat more
bound with respect to 8Li (−30C compared with −28C), and
experimentally it is stable by 4.06 MeV. On the other hand, 9He
is predicted to be the same energy as 8He (both −24C) because
the last neutron is unpaired; experimentally the lowest natural-
parity 1/2− state is unbound by ∼1.2 MeV. However, recent
experiments indicate the lowest state in 9He is an unnatural
positive-parity 1/2+ state just above threshold, and there are
also many low-lying positive-parity states in 9Be, starting with
a 1/2+ state just above the 2α + n threshold. One can construct
these unnatural-parity states by putting the last nucleon in an
sd-shell orbital outside the p-shell core. As with the p shell,
the EOPE weight factor is such that there is no net interaction
between an sd-shell nucleon and the core. In the cases of 9He
and 9Be, our simple model suggests that the the long-range
part of the NN potential does not care what orbital the last
nucleon goes into; whether a p-shell or sd-shell orbital is more
stable depends on the residual shorter-range NN interaction,
the 3N interaction, and the kinetic-energy cost.

TABLE VI. Pairs and OPE weights for 8Li and 8He.

ST 8Li 8He

3PDF [431] 1PDF [431] 3SD[422] 5P [4211] 3P [4211] 1P [4211] 1SD[422] 3P [4211]
pp pp pp pp pp pp pp pp

11 2 3/2
5/2 4 3 5/2 3 4

10 2 3/2
3/2 2 1 1/2

01 2 5/2
3/2 1 3/2 3 2

00 1/2
1/2 1 3/2

PA 6 6 6 6 6 6 6 6

EOPE −10C −6C −2C −2C +6C +10C −6C −2C
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FIG. 3. (Color online) Experimental spectrum for A = 8 nuclei:
T = 0, 1, and 2 states are shown by blue, red, and green solid lines,
respectively, and isospin mixed states by magenta lines.

There is a moderate gap of size 6C between the first and
second symmetry states in 9Be, which is not as large as the
gap in 8Be; consequently the low-lying states are mostly
[441] symmetry with relatively small admixtures of [432]
components, but not as pure as the 8Be [44] states [9]. The
smaller gap between symmetry states in 9Li leads to more
mixing of the [432] and [4311] components there. VMC
diagonalizations also continue to show that, for states of the
same spatial symmetry, those with higher spin lie lower in the
spectrum, again because of a smaller presence of repulsive
ST = 00 pairs.
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FIG. 4. (Color online) Experimental spectrum for A = 9 nuclei:
T = 1/2, 3/2, and 5/2 states are shown by blue, red, and green lines
respectively; solid lines denote natural-parity states and dashed lines
unnatural-parity states.

The PA(ST ) and EOPE in A = 10 nuclei are shown in
Tables IX–XI. The EOPE are −27C,−31C,−39C, and −39C

for 10He, 10Li, 10Be, and 10B, respectively. Thus 10B and 10Be
should have the same binding, which experimentally they do
at 64.75 and 64.98 MeV, as seen in Figs. 5 and 6. They are
predicted to be about 4–5 MeV more bound than 8Be and
9Be, but experimentally it is more like 7–8 MeV. On the other
hand, the prediction for 10Li is that it should be a little more
bound than 9Li, whereas it is unbound by about 0.25 MeV.
Further, 10He should be bound by several mega-electron-volts
compared with 8He and 9He by the completion of another
dineutron pair, whereas it is unbound by 1 MeV compared with
8He. This could be an indication that jj coupling is starting to
be more appropriate as the neutron p shell is completed [28],
with this last pair of neutrons being a p1/2 pair that joins at
a noticeably higher energy than the first two dineutrons. 10Li
and 10He are the only two nuclei out of 27 in the p shell

TABLE VII. Pairs and OPE weights for 9He and 9Li.

ST 9He 9Li
2P [4221] 2PDF [432] 4SD[4311] 2SD[4311] 4P [4221] 2P [4221]

ss sp pp pp pp pp pp pp

11 45/4 6 15/4 5 17/4
11/2

19/4

10 3 15/4
9/4

5/2
7/4 2 5/4

01 3 15/4 4 15/4
5/2

13/4 2 11/4

00 5/4
1/4

3/4
1/2

5/4

PA 6 20 10 10 10 10 10 10

EOPE −18C 0 −6C −12C −10C −4C −1C +4C
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TABLE VIII. Pairs and OPE weights for 9Be.

ST 9Be

2PDFG[441] 4PDF [432] 2PDF [432] 4SD[4311] 2SD[4311] 6P [4221] 4P [4221] 2P [4221]
pp pp pp pp pp pp pp pp

11 9/4
15/4 3 17/4

7/2 6 19/4 4
10 15/4

15/4 3 13/4
5/2 4 11/4 2

01 15/4
9/4 3 7/4

5/2
5/4 2

00 1/4
1/4 1 3/4

3/2
5/4 2

PA 10 10 10 10 10 10 10 10

EOPE −18C −12C −6C −4C +2C −6C +4C +10C

(not counting isobaric analogs) that are falsely predicted to be
stable by our simple model.

Comparing the different symmetry states in Table XI
for 10B, we see that the [442] components are 12C below
the [4411], [433], etc., components, so there is very little
admixture of the latter into the lowest-lying states. However, in
10Be the gap between the ground-state [442] symmetry and the
[4411] and [433] components is only 4C, so there is a moderate
admixture into the ground state [9]. The clearest signature for
a state of these next spatial symmetries in the p shell would
be a 1+ state in 10Be, expected at ∼6 MeV excitation, but
no such state has been observed. However, unnatural-parity
states that involve an sd-shell intruder are now low enough in
the spectrum for some of them to be particle stable; discussion
of these is deferred to the next section.

In full GFMC calculations, the 3N force starts to make an
especially large impact by A = 10 in that it starts to reorder
some of the states from our simple expectations. Naively we
would expect the 10B spectrum to be something like 6Li, with
a 1+ 3S[442] ground state, and a collection of 3+, 2+, and
1+ states above coming from the spin-orbit splitting of the
3D[442] state. The situation is complicated by the fact that
there are two linearly independent ways to construct an L = 2
[442] symmetry state in the p shell. With AV18 only, the
ground state of 10B is in fact a 1+ state, but for AV18/IL2,
the spin-orbit splitting of the 3D[442] states is large enough
that one of the 3+ states is lowered to become the ground
state [9], as observed experimentally. Similar results are
obtained in NCSM calculations by use of the CD-Bonn or AV8′

TABLE IX. Pairs and OPE weights for 10He and 10Li states.

ST 10He 10Li

1S[4222] 3PD[4321] 1PD[4321] 3S[4222]
ss sp pp pp pp pp

11 27/2
29/4

27/4 8 9
10 3 9/2

11/4
9/4 2

01 3 9/2
19/4

21/4 4 6
00 3/2

1/4
3/4 1

PA 6 24 15 15 15 15

EOPE −18C 0 −9C −13C −9C −1C

NN potentials versus AV8′ with the TM′(99) 3N potential
added [13,14]. By comparison, 10Be behaves more like what
we expect, with a 0+ ground state that is predominantly
1S[442] symmetry in character, while the next two 2+
excited states are dominated by the two 1D[442] symmetry
combinations.

The complicated spectrum for 10B is shown in detail in
Fig. 6. Based on GFMC calculations, the two 3D[442] triplets
can be sorted by their quadrupole moments Q. One triplet
with large positive Q is widely split and contains the ground
state, the second 2+ near 6 MeV excitation, and a predicted,
but unobserved, fourth 1+ near 8 MeV. The other triplet has
smaller negative Q and is closely spaced, starting with the
second 1+ at 2-MeV excitation, followed by the first 2+ and
second 3+. The first 1+ is the 3S[442] state, while the third
1+ around 5 MeV excitation (marked by a dash-dotted line in
the figure) is believed to be a 2h̄ω excitation. Likewise, the
second 0+ in 10Be near 6-MeV excitation is believed to be a
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FIG. 5. (Color online) Simplified experimental spectrum for A =
10 nuclei; only stable natural-parity states are shown for 10Be and
10B.
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TABLE X. Pairs and OPE weights for 10Be states.

ST 10Be

1SD∗FG[442] 3PF [4411] 3PF [433] 5PD[4321] 3P ∗D∗[4321] 1PD[4321] 5S[4222] 1S[4222]
pp pp pp pp pp pp pp pp

11 9/2
11/2

11/2
29/4

25/4
23/4 8 13/2

10 9/2
9/2

9/2
19/4

15/4
13/4 4 5/2

01 11/2
9/2

9/2
11/4

15/4
17/4 2 7/2

00 1/2
1/2

1/2
1/4

5/4
7/4 1 5/2

PA 15 15 15 15 15 15 15 15

EOPE −21C −17C −17C −13C −5C −1C −1C +11C

∗Denotes two linearly independent combinations.

2h̄ω state. These latter states will be discussed below with the
unnatural-parity states.

The A = 10 nuclei are the halfway points in the p shell;
moving further up in the shell is comparable with removing
particles from the filled [4444] state of 16O. The A = 11
nuclei are the five-hole complements of the five- (p-shell)
particle A = 9 nuclei, A = 12 nuclei are complements of
A = 8, etc. For example, 11B is the complement of 9Be
with the same allowed set of 2S+1L components, except that
[441] symmetry becomes [443], [432] becomes [4421], [4311]
becomes [4331], and [4221] becomes [4322]. In like manner,
11Be is the complement of 9Li, and 11Li is the complement
of 9He. Consequently tables are not given for these heavier
nuclei, except for 12C, which is of particular interest as it is
at the present limits of GFMC and NCSM calculations with
realistic forces [11,12], as well as being an extremely popular
experimental target.

Table XII shows that 12C has exactly the same 2S+1L

combinations as 8Be, with spatial symmetries augmented by
an additional [4] in the Young diagram. The ground state will
be a 1S[444] 0+ state with EOPE = 3(−18) = −54C three
times that of 4He. Experimentally 12C is 7 MeV or 8% more
bound than three α’s. The distribution of the 28 pp pairs is
such that 16 average to give zero contribution to EOPE leaving
12 ST = 10 and 01 pairs that are equivalent to two α’s in
the p shell. In this simple model every time an α is formed
in the p shell, it effectively decouples from other nucleons
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FIG. 6. (Color online) Detailed experimental spectrum for 10Be
and 10B nuclei.

TABLE XI. Pairs and OPE weights for 10B states.

ST 10B

3SD∗FG[442] 1PF [4411] 1PF [433] 5PD[4321] 3PD[4321] 7S[4222] 3S[4222]
pp pp pp pp pp pp pp

11 9/2
9/2

9/2
27/4

23/4 9 13/2

10 11/2
9/2

9/2
21/4

17/4 6 7/2

01 9/2
9/2

9/2
9/4

13/4
5/2

00 1/2
3/2

3/2
3/4

7/4
5/2

PA 15 15 15 15 15 15 15

EOPE −21C −9C −9C −9C −1C −9C +11C

∗Denotes two linearly independent combinations.
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TABLE XII. Pairs and OPE weights for 12C states.

ST 12C
1SDG[444] 3PDF [4431] 5SD[4422] 1SD[4422] 3P [4332]

ss sp pp pp pp pp pp

11 18 9 21/2 12 21/2
23/2

10 3 6 9 17/2 9 15/2
15/2

01 3 6 9 15/2 6 15/2
13/2

00 2 1 3/2 1 5/2
5/2

PA 6 32 28 28 28 28 28

EOPE −18C 0 −36C −24C −24C −12C −8C

in the p shell. There is again a large energy gap between
the first and second symmetry components in 12C, so we
expect the ground and low-lying states to have predominantly
[444] symmetry. By contrast, we can predict that 12B and
12Be should have substantial mixing of different symmetries
in their ground states. This knowledge is of practical benefit
for the quantum Monte Carlo calculations, for which allowing
for all the possible spatial symmetries in A = 12 nuclei is
computationally prohibitive at present.

The total energy for 30 s- and p-shell nuclei, ordered by
increasing A,Z but not including isobaric analogs, is plotted in
Fig. 7, where experiment and our EOPE are compared. For this
figure, the coefficient in Eq.(8) has been set to be C = 1.5 MeV.
The figure shows that up to A ≈ 9 the simple model works
quite well, but then starts to underestimate the overall binding
as A increases. Considering the necessity of including 3N

forces in full GFMC and NCSM calculations to obtain the
empirical binding energies, it is not surprising that a simple
model based on pairwise forces will start to fail in this manner.
Cohen and Kurath in their study of effective interactions for
the p shell [29] found it difficult to fit all 6 � A � 16 nuclei at
the same time, and consequently made some models to fit only
A � 8 states. They also found in their studies of spectroscopic

factors [28] that there is a gradual transition from LS coupling
to jj coupling over the range A = 9–14, and perhaps this
transition is not unrelated to the increasing importance of 3N

forces.
As mentioned above, our simple model also predicts 10He

and 10Li to be definitely stable when they are not. In a
number of other cases, the model gives identical energies
for neighboring nuclei, such as 4,5He and 8,9Be, and cannot
predict stability one way or the other; this will be determined
by finer details of the NN and 3N forces and kinetic-energy
considerations. Nevertheless, the simple formula reproduces
the experimental trends fairly well.

The model naturally indicates that total energies are close
to those of summed α, t , and d subclusters, where applicable.
In fact, the following energy relations hold for the maximally
symmetric states with N � Z:

E(AZ = mα) = E(AZ = mα + n) = mEα, (9)

E(AZ = mα + 2n) = E(AZ = mα + 3n)

= mEα + E2n, (10)

E(AZ = mα + 4n) = E(AZ = mα + 5n)

= mEα + 2E2n, (11)

FIG. 7. (Color online) Ground-
state binding energies for A � 16 s- and
p-shell nuclei.
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E(AZ = mα + 6n) = mEα + 3E2n, (12)

E(AZ = mα + d) = mEα + Ed, (13)

E(AZ = mα + t) = mEα + Et, (14)

E(AZ = mα + t + n) = mEα + Et − C, (15)

E(AZ = mα + t + 2n) = mEα + Et + E2n, (16)

E(AZ = mα + t + 3n) = mEα + Et + E2n − C, (17)

E(AZ = mα + t + 4n) = mEα + Et + 2E2n, (18)

where m is the number of included α’s, and E2n = −3C is
the energy of a dineutron, which again in this simple model
is equal to Ed . Two nontrivial cases are Eqs. (15) and (17),
which in the p shell would apply to 8,10Li and 12B. The model
indicates there is a little extra binding, C more than the sum
of the subclusters, on the addition of the last neutron. This is
an accurate description of experiment for 8Li and 12B, but not
for 10Li.

IV. BEYOND THE p SHELL

This simple model can be extended into the sp shell,
although the utility of doing so will continue to diminish as
A increases. Counting pairs among the s, p, and sd shells,
the contributions to EOPE again average out so there is no
net interaction between the shells. Then the progression from
16O to 17O, 18O, and 18F nuclei is exactly analogous to the
progression from 4He to 5He, 6He, and 6Li. This is in rough
accord with experiment, as is the prediction that the multiple-α
nuclei will continue as Eq. (9). However, it will also predict that
19F is definitely more bound than 20O, which is not the case;
among other things, Coulomb effects are becoming important
enough that they need to be treated explicitly.

However, the basic logic of this simple model may be
applicable to sd-shell, intruder states in the p shell. The intruder
states in A = 10 nuclei, in which particle-stable intruders first
occur, are an example. An interesting feature of the data is
that the intruders in 10Be are ordered starting from the most
bound level as 1−, 2−, 3−, and 4−. However, in 10B the order
is 2−, 3−, 4−, and then 1−. The relative ordering of the 1− and
2− states in these nuclei can be understood in the following
manner. A major part of the A = 9 ground state is 8Be(0+) plus
an unpaired 1p-shell nucleon (1p3/2 orbital in jj coupling)
to which we add a spin-up or spin-down 2s-shell nucleon.
Because these nucleons have on average no net interaction
with the 8Be core, their pairwise interaction should dominate.
The 2− state is a “stretch” state obtainable only if both spins
of the pair are aligned, i.e., pure S = 1, while the 1− state will
have some S = 0 pair content. In 10Be the last pair has T = 1,
so the 2− state will be a 3P pair, whereas the 1− state will be
partially a 1S pair, which is more attractive—hence the 1− state

should be lower in the spectrum. In 10B the last pair has T = 0,
so the 2− state will be a 3S pair, whereas the 1− state will have
some admixture of 1P , which is (much) more repulsive—
hence the 1− state will be (much) higher. Preliminary VMC
calculations with realistic interactions successfully reproduce
these level orderings and exhibit exactly this type of S, T pair
distribution.

One may also consider placing both last two nucleons
outside the 8Be core into the sd shell, either as a dineutron
pair in 10Be or a deuteron in 10B. In our simple model, these
would have the same energy as the ground states, although in
practice there would be some reduction in binding that is due
to the greater distance from the core of these orbitals and the
consequent overall loss of potential attraction. In actual fact,
the second 0+ in 10Be and third 1+ in 10B (shown in Fig. 6 by
dash-dot lines) are believed to be 2h̄ω excitations of this type.
These states pose an interesting challenge for both the GFMC
and NCSM microscopic calculations.

The present simple model provides an interesting contrast
to relativistic mean-field theories, which commonly omit the
pion with the argument that its contribution will spin-isospin
average to zero in nuclear matter; such models have been
applied to nuclei as light as 16O [30]. However, summing the
expectation value of the OPE operator σi · σjτi · τj over all
pairs, we get a result that grows linearly with A for the multiple-
α nuclei. In practice, the quantum Monte Carlo calculations
with realistic forces find that OPE provides about 75% of the
net potential energy expectation value, although much of this
comes from the tensor part of OPE [5].

V. CONCLUSIONS

A simple model has been presented for understanding the
basic structure of light nuclei. It is based on counting the
number of different S, T pairs that occur in a given nuclear
state of specific spatial symmetry and multiplying by a numeric
strength taken from OPE. This simple picture gives a good
description for the growth of binding as A increases while
showing saturation as the p shell is reached. It explains the
tendency of light nuclei to form d, t and α subclusters and
a variety of features in the excitation spectra, including why,
for states of the same spatial symmetry, those of higher S are
lower in the spectrum. I hope this picture provides some useful
physical intuition.
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