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Level densities and thermodynamical quantities of heated 93−98Mo isotopes
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Level densities for 93−98Mo have been extracted using the (3He,αγ ) and (3He,3He′γ ) reactions. From the level
densities thermodynamical quantities such as temperature and heat capacity can be deduced. Data have been
analyzed by utilizing both the microcanonical and the canonical ensemble. Structures in the microcanonical
temperature are consistent with the breaking of nucleon Cooper pairs. The S shape of the heat capacity curves
found within the canonical ensemble is interpreted as consistent with a pairing phase transition with a critical
temperature for the quenching of pairing correlations at Tc ∼ 0.7−1.0 MeV.
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I. INTRODUCTION

Level density is a characteristic property of many-body
quantum mechanical systems. Its precise knowledge is often
a key ingredient in the calculation of different processes,
such as compound nuclear decay rates, yields of evaporation
residues to populate exotic nuclei, or thermonuclear rates in
astrophysical processes.

Measurements of experimental nuclear level density are
an important prerequisite for thermodynamical studies of
atomic nuclei. Level density is directly connected to the
multiplicity of states, i.e., the number of physical realizations
of the system at a certain excitation energy. The entropy is
a fundamental quantity and a measure of the disorder of the
many-body system. Within the microcanonical ensemble it is
defined as the natural logarithm of the multiplicity of states.
When the entropy is known, thermodynamic quantities such
as temperature and heat capacity can be extracted. These
quantities depend on the statistical properties of the nuclear
many-body system and may reveal phase transitions.

Pairing correlations are one of the fundamental properties
of nuclei and have been successfully described by the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [1].
By using the BCS theory the thermodynamical properties
of nuclear pairing were investigated in the study of warm
nuclei [2–5]. In the case of a finite Fermi system such as
the nucleus, statistical fluctuations beyond the mean field
become important. The fluctuations smooth out the sharp
phase transition, and then the pairing correlations do not
vanish suddenly but decrease with increasing temperature.
The quenching of pairing correlations has been obtained in
recent theoretical approaches: the shell-model Monte-Carlo
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(SMMC) calculations [6–8], the finite-temperature Hartree-
Fock-Bogoliubov theory [9], and the relativistic mean-field
theory [10]. Experimental data on the quenching of pair
correlations are important as a test for nuclear theories. A
long-standing problem in experimental nuclear physics has
been to observe the transition from strongly paired states at
zero temperature to unpaired states at higher temperatures.
A signature of the pairing transition at finite temperature
might be a local increase in the heat capacity as a function
of temperature [11]. Recently [12,13], fine structures in the
level densities in the 1-to 7-MeV region were reported, which
are probably because of the breaking of individual nucleon
pairs and a gradual decrease of pair correlations.

The group at the Oslo Cyclotron Laboratory (OCL) has
developed a method to extract simultaneously the level density
and the radiative strength function from primary γ spectra
[14]. The method is a further development of the sequential
extraction method [15,16]. The Oslo method has been tested
in the rare-earth mass region that led to many interesting
applications [12,17–19]. To make quantitative judgments of
the applicability of the method, the Oslo Cyclotron group
has extracted the level density and radiative strength function
(RSF) of the very light 27,28Si nuclei, where these quantities are
known. Excellent overall agreement was found [20]. Subse-
quently, another extension has been made to the intermediate
nuclei 56,57Fe and 96,97Mo, and it has been shown that the
method can be applied in this intermediate mass region where
the level density is still relatively low [21,22]. All of these
successful applications have motivated us to employ the Oslo
method to study medium-heavy nuclei in the vicinity of closed
shells.

The naturally occurring isotopes of molybdenum span one
of the larger isotopic ranges and are well suited as targets for
the study of nuclear properties, such as the effect of changing
from spherical to deformed shapes. When approaching closed
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shells, the nuclear structure changes significantly, and one
expects this to influence the level densities and radiative
strength functions.

The even-even 92Mo has a filled N = 50 neutron shell [23].
It is essentially a spherical nucleus and vibrations are primarily
governed by the proton core. As the mass increases from 94Mo
to 100Mo, neutrons fill the 2d5/2 and 1g7/2 subshells. Moving
away from the N = 50 shell closure, pairing and quadrupole
interactions cause a more collective behavior in the heavier
Mo isotopes. The character of the isotopes changes rapidly
from that of the essentially spherical 92Mo to nuclei making a
transition from collective vibrators to the deformed rotors of
the unstable 104Mo and 106Mo isotopes [24]. The transitional
nature of molybdenum isotopes away from N = 50 has been
the focus of several efforts as described in Ref. [25] and
references therein.

Around closed shells, effects from the increasing single-
particle energy spacings can be expected. These will also
influence the entropy difference between odd-mass and even-
even nuclei. Therefore, a statistical description of the transition
from closed shells to deformed nuclei is of great interest.

In this work, a unique and consistent investigation of the
six 93−98Mo isotopes is performed to determine experimentally
the level density from the ground state to the neutron binding
energy. The Oslo method also determines the RSFs of the
molybdenum isotopes studied; these are presented in an earlier
article [26].

II. EXPERIMENTAL METHODS

The experiments were carried out at the Oslo Cyclotron
Laboratory by bombarding 94,96,97,98Mo targets with 3He ions.
In the present work, results from eight different reactions on
four different targets are discussed. These are the following
six reactions that are the subject of the present investigation:

(i) 98Mo(3He,αγ )97Mo (45 MeV)
(ii) 98Mo(3He,3He′γ )98Mo (45 MeV)

(iii) 96Mo(3He,αγ )95Mo (30 MeV)
(iv) 96Mo(3He,3He′γ )96Mo (30 MeV)
(v) 94Mo(3He,αγ )93Mo (30 MeV)

(vi) 94Mo(3He,3He′γ )94Mo (30 MeV) together with the
reactions

(vii) 97Mo(3He,αγ )96Mo (45 MeV)
(viii) 97Mo(3He,3He′γ )97Mo (45 MeV)

which have been reported earlier [21,22]. The self-supporting
targets with thicknesses of ∼2 mg/cm2 are enriched to
∼95%. The experiments were run with beam currents of
∼2 nA for 1–2 weeks. The particle-γ coincidences were
measured with the CACTUS multidetector array. The charged
ejectiles were detected by eight particle telescopes placed at an
angle of 45◦ relative to the beam direction. An array of 28 NaI
γ -ray detectors with a total efficiency of ∼15% surrounded
the target and particle detectors.

For each initial excitation energy, the γ -ray spectra are
recorded as a function of the initial excitation energy of
the residual nucleus. This is accomplished by utilizing the
known reaction Q values and kinematics. Using the particle-γ

coincidence technique, each γ ray can be assigned to a
cascade depopulating a certain initial excitation energy in
the residual nucleus. The data are therefore sorted into total
γ -ray spectra originating from different initial excitation-
energy bins. Each spectrum is then unfolded with the NaI
response function using a Compton-subtraction method which
preserves the fluctuations in the original spectra and does
not introduce further, spurious fluctuations [27]. From the
unfolded spectra, a primary-γ matrix P (E,Eγ ) is constructed
using the subtraction method of Ref. [28].

The basic assumption of this method is that the γ -ray energy
distribution from any excitation energy bin is independent
of whether states in this bin are populated directly via the
(3He,α) or (3He,3He′) reactions or indirectly via γ decay from
higher excited levels following the initial nuclear reaction.
This assumption is trivially fulfilled if one populates the same
levels with the same weights within any excitation-energy bin,
because the decay branchings are properties of the levels and
do not depend on the population mechanisms. The assumptions
behind this method have been tested extensively by the Oslo
group and have been shown to work reasonably well [29].

The (3He,3He′γ ) and (3He,αγ ) reactions exhibit very
different reaction mechanisms. This is demonstrated in
Fig. 1, where the particle spectra in coincidence with γ rays
show indeed very different yields and peak structures.

The (3He,αγ ) pick-up reaction reveals a cross section dom-
inated by high � neutron transfer. Here, the direct population of
the residual nucleus takes place through one-particle-one-hole
components of the wave function. Such configurations are not
eigenstates of the nucleus, but they are rather distributed over
virtually all eigenstates in the neighboring excitation-energy
region. Thus, the neutron-hole strength for single-particle
levels away from the Fermi energy is distributed over a rather
large range of background states.

However, the inelastic scattering (3He,3He′γ ) reaction is
known to populate mainly collective excitations with a slightly
lower spin window. Collective excitations built on the ground
state give rise to rather pure eigenfunctions and their strength
is less spread over other eigenfunctions of the nucleus in the
neighboring excitation-energy region.

To test if the number of γ rays per cascade depends on the
two types of reactions, we have evaluated the average γ -ray
multiplicity

〈Mγ (E)〉 = E

〈Eγ 〉 , (1)

as a function of excitation energy E. The average γ -ray
energy 〈Eγ 〉 is calculated from γ spectra selected at a certain
energy E.

Figure 2 shows the γ -ray multiplicity versus excitation
energy. Despite the different reaction mechanisms, the two
reactions give similar results. In particular, the multiplicities
(solid and dashed lines) of 96Mo and 97Mo are equal within
their error bars, which gives support to the applicability of the
Oslo method for both reactions.

The experimental extraction procedure and assumptions of
the Oslo method are given in Refs. [14,29] and references
therein. The first generation (or primary) γ -ray matrix that is
obtained as described above can be factorized according to the
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FIG. 1. Charged ejectile spectra for 93−98Mo in coincidence with
γ -rays, labeled by the product nuclei. The arrows indicate the neutron-
separation energy Bn.

Brink-Axel hypothesis [30,31] as

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ), (2)

where ρ is the level density and T is the radiative transmission
coefficient.

The ρ and T functions can be determined by an iterative
procedure [14] through the adjustment of each data point
of these two functions until a global χ2 minimum with the
experimental P (E,Eγ ) matrix is reached. It has been shown
[14] that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other
functions, which give identical fits to the P matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (3)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (4)

FIG. 2. γ -ray multiplicity evaluated by Eq. (1) versus excitation
energy. The individual spectra are labeled by the product nuclei.
Solid and dashed lines represent (3He,α) and (3He,3He′) reactions,
respectively.

Consequently, neither the slope nor the absolute values of the
two functions can be obtained through the fitting procedure.
Thus, the parameters α,A, and B remain to be determined.

The parameters A and α can be determined by normalizing
the level density to the number of known discrete levels at low
excitation energy [32] and to the level density estimated from
neutron-resonance spacing data at the neutron-separation en-
ergy E = Bn [33]. The procedure for extracting the total level
density ρ from the resonance energy spacing D is described in
Ref. [14]. Because our experimental level-density data points
reach up to an excitation energy of only E ∼ Bn − 1 MeV,
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FIG. 3. Normalization procedure of the ex-
perimental level density (data points) of 97Mo.
The data points between the arrows in the upper
panel are normalized to known levels at low
excitation energy (histograms). In the lower
panel they are normalized to the level density
at the neutron-separation energy (open triangle)
using a Fermi-gas extrapolation (line).

we extrapolate with the back-shifted Fermi-gas model [34,35]

ρBSFG(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σI

, (5)

where a constant η is introduced to adjust ρBSFG to the
experimental level density at Bn. The intrinsic excitation
energy is estimated by U = E − C1 − Epair, where C1 =
−6.6A−0.32 MeV and A are the back-shift parameter and
mass number, respectively. The pairing energy Epair is based
on pairing-gap parameters �p and �n evaluated from even-
odd mass differences [36] following the prescription of
Dobaczewski et al. [37]. The level-density parameter is given
by a = 0.21A0.87 MeV−1. The spin-cutoff parameter σI is
given by σ 2

I = 0.0888aT A2/3, where the nuclear temperature
is given by the following:

T =
√

U/a. (6)

In cases where the intrinsic excitation energy U becomes
negative, we set U = 0, T = 0, and σI = 1.

Figure 3 demonstrates the level-density normalization
procedure for the 97Mo case. The experimental data points are
normalized according to Eq. (3) by adjusting the parameters
A and α such that a least χ2 fit is obtained in between the
arrows. For the lower excitation region (see upper panel),
one should take care only to include a fit region where it
is likely that (almost) all levels are known. In practice, this
means that the level density should not exceed ∼50 levels
per MeV. At the higher excitation region (lower panel),
the Fermi-gas extrapolation connects seamlessly the
highest-energy data points with the level-density value

determined from neutron-resonance spacing at Bn. Generally,
the resulting normalization is not very dependent on the choice
of the theoretical extrapolation function (Fermi gas) or the
chosen fit region (∼4.5 to ∼7 MeV).

Unfortunately, no information exists on the level density
at E = Bn for 94Mo. Therefore, we estimate this value from
a systematics of other Mo isotopes where information on
the level density at Bn exists. In Fig. 4 we plot all the
known data points from the Mo isotopic chain. The odd-
and even-mass molybdenum nuclei fall into two groups, both
showing a decreasing level density as function of excitation
energy. This behavior is rather counterintuitive because in
a given nucleus the level density increases exponentially
with excitation energy, and for neighboring nuclei one would
naively expect quite similar level-density curves. Two effects
combine to result in the negative slope of the data points: (i) the
decrease of single-particle level density when approaching the
N = 50 shell gap resulting in a decrease of the level density in
general and (ii) the increase of the neutron-separation energy
with decreasing neutron number. For the negative slope to
emerge, both effects have to be rather precisely of the same
size for each step along the Mo isotopic chain. We have
found no good physical explanation for this to happen, but
we employ this fortuitous coincidence to estimate ρ(Bn) =
(6.2 ± 1.0)104 MeV−1 for 94Mo from our phenomenological
systematics.1 The splitting of data points between even and
odd Mo isotopes must not be interpreted solely as because

1This value also agrees within a factor of 2 with the systematics of
Ref. [38].
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FIG. 4. Level densities at the neutron-separation energy. The
unknown level density of 94Mo (open circle) is estimated from the
slope of the data points of the odd-mass molybdenum isotopes.

of the effect of the pairing-energy shift of the level-density
curves; the difference in the magnitude of Bn between neutron-
odd and -even isotopes also affects the magnitude of this
splitting.

III. LEVEL DENSITY AND FINE STRUCTURES
OF THE ENTROPY

The present knowledge on level density is concentrated
in mainly two regions; the low-excitation region up to
∼2 MeV, studied in detail using spectroscopy and counting
of known, discrete levels [39] and the region around the
neutron-separation energy studied by experiments on neutron
resonances [40]. Almost nothing is known of the level density
in between the above-mentioned regions, but it is possible to
determine quite reliably two anchor points of the level density.

Figure 5 shows the extracted anchor points (filled data
points) for nine molybdenum isotopes together with the level
density deduced from known discrete levels (solid lines).
The upper anchor point is simply determined from neutron-
resonance data. The lower anchor point, which is the average
value of three data points, is determined such that a straight line
on a logarithmic plot, going through the upper anchor point,
provides an upper bound of the level-density distribution of
known levels. The algorithm is iterative and treats all nuclei
similarly to ensure that the results are comparable. The straight
line connecting the lower and upper anchor points is defined
by the constant temperature formula

ρ(E) = CeE/τ (7)

FIG. 5. Level density of nine molybdenum isotopes. The his-
tograms represent levels from spectroscopy [39]. A straight line is
drawn from these levels to the level density at the neutron-separation
energy that is determined by average neutron-resonance spacings.
The line represents the constant-temperature level-density formula
(see text).

with τ−1 = (ln ρ2 − ln ρ1)/(E2 − E1) and C = ρ1 exp(−E1/

τ ). Details are given in Ref. [41]. Provided that all the levels
are measured at the excitation energy of the lower anchor
point, we find from the plots of Fig. 5 that the temperature-like
parameter τ drops from 1.05 MeV for the spherical 93Mo to
about 0.72 MeV for the well-deformed 101Mo nucleus. This
figure also illustrates the excitation energy where one would
expect the appearance of missing levels in spectroscopic work,
typically if the density of levels exceeds 50 MeV−1.

The level densities ρ(E) extracted from the eight reactions
are displayed in Fig. 6. The data have been normalized as
prescribed above, and the parameters used for 93−98Mo in
Eq. (5) are listed in Table I. We find that the normalization
constant η drops by one order of magnitude when going from
deformed to spherical nuclei. This means that the spherical
93Mo has about ten times lower level density than predicted
by a global Fermi-gas model. As mentioned earlier, this effect
is one of the reasons for the negative slope of the data points
in Fig. 4.

Our experimental data interpolate between the previously
known lower anchor point at ∼2 MeV and about 1 MeV
below the upper anchor point at ∼7 MeV. For the energy
interval between ∼6 and ∼7 MeV, we rely on models [34,35].
Despite the fact that the final extrapolation of the level density
up to the nucleon-separation energy is model dependent, this
affects only the average slope of the level density and does
not affect the fine structure. This enables us to observe fine
structures in the level density that are thought to reflect the
breaking of individual pairs. In an earlier work, we showed how
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FIG. 6. Normalized level densities for 93−98Mo. The open and
filled circles are data from the (3He,α) and (3He,3He′) reactions,
respectively.

a simple single-particle-plus-pairing model can qualitatively
explain the emergence of such fine structures [21]. Moreover,
we have in the past investigated how pairing correlations are
weakened in the presence of already unpaired nucleons, but

also how these unpaired nucleons around the Fermi energy
can increase the cost in energy to break up further nucleon
pairs because of the blocking effect of the Pauli principle [42].
Our goal in the present work is to obtain experimental values
for the critical temperature of the pair-breaking process. On
the way, we also investigate some other thermodynamical
properties, in particular the entropy, when going from spherical
to deformed nuclei. The generalization of the concept of
temperature for a small system is not straightforward and
has been discussed extensively in the literature (see, e.g.,
Ref. [42] and references therein). Traditionally, temperature
is introduced in slightly different ways in the microcanonical
statistical ensemble (as a property of the system itself) and
in the canonical statistical ensemble (as imposed by a heat
bath). The temperature-energy relations for rare-earth nuclei
(the caloric curves) derived within the two statistical ensembles
display in general a different behavior because the nuclei under
discussion are essentially discrete systems [13].

To avoid the shortcomings imposed by the above-mentioned
statistical ensembles, a new approach for the caloric curves
based on the two-dimensional probability distribution P (E, T )
has been proposed [42,43]. This approach bypasses the well-
known problem of spurious structures such as negative tem-
peratures and heat capacities in the microcanonical ensemble.
Conversely, more structures in the new caloric curve are
evident than in the canonical caloric curve. However, this new
method is still not well settled and we will defer the discussion
of caloric curves to another occasion.

Within the microcanonical ensemble the experimentally
obtained level density corresponds to the partition function
that is simply the multiplicity 
 of accessible states. Thus, the
entropy S of the system within the energy interval E and E + δ

is determined by the following:

S(E) = kB ln 
(E), (8)

where 
(E) = ρ(E)/ρ0 and the Boltzmann constant is set to
unity (kB ≡ 1) for simplicity.2 To fulfill the third law of ther-
modynamics; namely S → 0 when T → 0, the normalization
denominator is set to ρ0 = 1.5 MeV−1. Entropy as a function of
energy can be defined and measured for small and mesoscopic
systems as well as for large systems. However, fluctuations in

2More precisely, multiplicity 
(E) is proportional to ρ(E) (2〈J
(E)〉 + 1), where 〈J (E)〉 is the average spin of levels with excitation
energy E. However, in the present work, we neglect the weak
excitation-energy dependence of 〈J (E)〉.

TABLE I. Parameters used for the back-shifted Fermi-gas level density.

Nucleus Epair (MeV) a (MeV−1) C1 (MeV) Bn (MeV) D (eV) ρ(Bn) (104 MeV−1) η

98Mo 2.080 11.33 −1.521 8.642 75 9.99 0.87
97Mo 0.995 11.23 −1.526 6.821 1050 3.10 0.65
96Mo 2.138 11.13 −1.531 9.154 105 7.18 0.46
95Mo 1.047 11.03 −1.537 7.367 1320 2.50 0.34
94Mo 2.027 10.93 −1.542 9.678 — 6.20a 0.25
93Mo 0.899 10.83 −1.547 8.067 2700 1.27 0.08

aEstimated from systematics (see text).
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FIG. 7. Experimental entropy for 93,94Mo (upper panel) and
97,98Mo (lower panel) as function of excitation energy E.

level spacings that are typical for small systems will make the
entropy sensitive to exactly how the energy interval between
E and E + δE is chosen. Thus, Eq. (8) is useful only if 
(E)
is a sufficiently smooth function, i.e., for the case that its first
derivative exists. Small statistical fluctuations in the entropy
S may give rise to large contributions to the temperature T,
which is defined within the microcanonical ensemble as

T (E) =
(

∂S

∂E

)−1

. (9)

Figure 7 shows the entropy deduced within the microcanon-
ical ensemble for 93,94Mo (upper panel) and 97,98Mo (lower
panel). The entropy curve plotted on a linear scale is essentially
identical to the level-density curve on a logarithmic scale. In
general, the most efficient way to create additional states in
atomic nuclei is to break J = 0 nucleon Cooper pairs from
the core. The resulting two nucleons may thereby be thermally
excited rather independently to the available single-particle
levels around the Fermi surface. We therefore interpret, e.g.,
the steplike increases in entropy around 2–3 MeV excitation
energy in Fig. 7 as because of the breaking of the first nucleon
Cooper pair.

The entropies of odd-mass nuclei are higher than those
of their even-even neighbors, even when their mass numbers
are lower. It is interesting to compare entropies between
neighboring nuclei. The difference in entropy

�S(E) = Sodd−mass − Seven−even (10)

is assumed to be a measure for the single-particle entropy. The
entropies of the almost spherical 93Mo and 94Mo (upper panel
of Fig. 7) follow each other closely above E ∼ 2.5 MeV. Here,
the odd valence nucleon behaves almost as a passive spectator.
For 93,94Mo, we find �S >∼ 0 for E > 2.5 MeV. The deformed
case, (lower panel of Fig. 7) exhibits an entropy difference of

�S >∼ 1. This is less than the value of �S ∼ 2 found for
rare-earth nuclei [44,45].

These observations can be explained qualitatively by the
fact that the single-particle entropy depends on the number of
single-particle orbitals that are available for excitations at a
certain temperature. For 93,94Mo at low energies, the single
neutron outside the closed shell can only occupy the two
d5/2 and g7/2 orbitals giving an entropy of ln 2 ∼ 0.7. For
the case of deformed nucleus 97,98Mo, symmetry breaking
results in a splitting of these two single-particle orbitals into
seven Nilsson orbitals, giving a total entropy of ln 7 ∼ 1.9, i.e.,
about one unit more than for the 93,94Mo case. In the rare-earth
region strong deformation and intruder orbitals from other
shells result in an even higher single-particle level density,
giving rise to an even larger single-particle entropy. Although
our simple argument somewhat overestimates the observed
single-particle entropies, it provides a satisfactory explanation
for the differences between the single-particle entropies in the
different cases.

The entropy in atomic nuclei at low energies does not simply
scale with the total number of nucleons. In the presence of
pairing correlations, i.e., away from closed shells, the entropy
scales rather with the number of unpaired nucleons at a
certain excitation energy. When pairing correlations cannot
form because of the large single-particle level spacings around
closed shells, an unpaired nucleon will behave almost as
a passive spectator without contributing significantly to the
entropy of the system.

At excitations energies around 5.5 MeV, a bump is observed
in the entropy curves for the lighter 93,94Mo nuclei. In light
of the discussion above, it is unlikely that such a bump can
be interpreted as the breaking of a nucleon Cooper pair.
We propose that this bump is related to the sudden onset of
neutron excitations across the N = 50 shell gap. Because of
the generally higher level density and the onset of deformation
in the heavier Mo isotopes, the opening of the g9/2 shell might
be less significant, leading to the effect being spread out in
energy. However, such an effect might become visible in the
lighter 93,94Mo nuclei. This interpretation is supported by the
fact that the large transfer peak at 5.5 MeV excitation energy
in the particle spectrum of the 97Mo(3He,αγ )96Mo reaction
at a beam energy of 45 MeV (see Fig. 1) has been shown
in an experiment at the Yale University Enge splitpole to be
dominated by high � transfer, most likely � = 4h̄ [46].

IV. PHASE TRANSITIONS

A. Model

In this section we utilize a recently developed thermo-
dynamic model [41,47,48] that allows the investigation and
classification of the pairing phase transition. The model is
based on the canonical ensemble theory where equilibrium is
obtained at a certain given temperature T. It can describe level
densities for midshell nuclei in the mass regions A = 58, 106,
162, and 234.

The basic idea of the model is the assumption of a reservoir
of nucleon pairs. These nucleon pairs can be broken and the
unpaired nucleons are thermally scattered into an infinite,
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equidistant, doubly degenerated single-particle level scheme.
The nucleon pairs in the reservoir do not interact with each
other and are thought to occupy an infinitely degenerated
ground state. The nucleons in the single-particle level scheme
do not interact with each other either, but they have to obey
the Pauli principle.

The essential parameters of the model are the number of
pairs n in the reservoir at zero temperature, the spacing of
the single-particle level scheme ε = 30 MeV/nucleon, and the
energy necessary to break a nucleon pair 2� = 24 MeV/

√
A.

Quenching of pairing correlations is introduced in this model
by reducing the energy required to break a nucleon pair in
the presence of unpaired nucleons. We assume that for every
already broken nucleon pair, the energy to break a further
nucleon pair is reduced by a factor of r = 0.56, which is
suggested by theoretical calculations [49]. To simulate the
effect of the N = 50 shell closure on the A < 98 isotopes,
we depart from the global systematics for ε and replace it
with ε′ = εa(A = 98)/a(A < 98) using the experimentally
deduced a values of Ref. [40]. We use the same parameters for
both protons and neutrons, keeping the proton pairs fixed to
seven because there are 14 more protons outside the Z = 28
shell closure.

The total partition function is written as a product of
proton (Zπ ), neutron (Zν), rotation (Zrot), and vibration (Zvib)
partition functions where the parameters for the collective
excitations are the rigid moment of inertia Arig = 34 MeV
A−5/3 and the energy of one-phonon vibrations h̄ωvib =
1.5 MeV taken from spectroscopic data [39]. Thermodynam-
ical quantities of interest can be deduced from the Helmholtz

free energy defined as

F (T ) = −T ln (ZπZνZrotZvib) . (11)

This equation connects statistical mechanics and thermody-
namics. Quantities such as entropy, average excitation energy,
and heat capacity can be calculated by

S(T ) = −
(

∂F

∂T

)
V

(12)

〈E(T )〉 = F + ST (13)

CV (T ) =
(

∂〈E〉
∂T

)
V

, (14)

respectively.
In Fig. 8, the Helmholtz free energy F, entropy S, average

excitation energy 〈E〉, and heat capacity CV are shown as
functions of temperature for even-even, odd, and odd-odd
systems in the 96Mo mass region. The free energy F and
the average excitation energy 〈E〉 are rather structureless as
functions of temperature. The odd-even effects are small: The
even-even, odd, and odd-odd systems have different excitation
energies at the same temperature, where the even-even system
requires the highest 〈E〉 to be heated to some given temperature
T. Around Tc ∼ 0.9–1.1 MeV the nuclei are excited to their
respective nucleon-separation energies.

The entropy S and heat capacity CV are more sensitive
to thermal changes. The entropy difference �S between
systems with A and A ± 1 is a useful quantity. At moderate
temperatures, it is approximately extensive (additive) and
represents the single-particle entropy associated with the

FIG. 8. Model calculation for nuclei around
96Mo. The four panels show the free energy
F, the entropy S, the thermal excitation energy
〈E〉, and the heat capacity CV as a function
of temperature T. The arrow at Tm ∼ 0.9 MeV
indicates the local maximum of CV where the
pair-breaking process takes place in the even-
even system. The same parameter set is used for
even-even (solid lines), odd (dashed lines), and
odd-odd systems (dash-dotted lines).
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valence particle (or hole) [41]. In the upper right panel, we
find, e.g., that the nucleon carries a single-particle entropy of
�S ∼ 2.0 at T ∼ 0.4 MeV.

The shape of the heat-capacity curve is related to the
level density. Traditionally, level-density curves have been
described by the two-component model as proposed by Gilbert
and Cameron [34]. Within this model, the low energetic
part is a constant-temperature level density and the high
energetic part is a Fermi-gas model. It has been shown in
Ref. [12] that the inclusion of a constant-temperature part
in the level-density formula creates a heat-capacity curve as
function of temperature with a pronounced S shape similar
to that shown in Fig. 8. With our model parameters, the
maximum of the local increase in the CV curve takes place
at about T ∼ 0.9 MeV. This temperature compares well with
the temperature determined in the microcanonical ensemble
from Eq. (9), giving a temperature of T ∼ 0.9 MeV for 96Mo
(see also Fig. 5).

B. Comparison with experimental data

Our model is described within the canonical ensemble,
whereas experimental data refer to the microcanonical en-
semble. There are two ways to compare our model with
experiments. Details are given in Ref. [41]. In this work we
will make use of the saddle-point approximation [50]

ρ(〈E〉) = exp(S)

T
√

2πCV

, (15)

which gives satisfactory results for the nuclear level density
[41,48].

Figure 9 shows the theoretical level densities calculated
using Eq. (15). The agreement with the anchor points and
the experimental level densities for 97,98Mo isotopes is sat-
isfactory. Some of the model parameters could be adjusted
more precisely, however, in this work we have chosen to use
parameters taken from systematics.

To investigate the behavior of the pairing correlations when
approaching a major shell gap, we compare the canonical
CV curves that are based on the Laplace transforms of the
experimental level densities. The curves are plotted in Fig. 10
for even 94,96,98Mo (upper panel) and odd 93,95,97Mo (lower
panel) nuclei. The CV curves resemble washed-out step
structures and show an S shape as a function of temperature
quite similar to the model calculation on the lower right
panel of Fig. 8. Because of the averaging performed by
the Laplace transformation discrete transitions between the
different quasiparticle regimes, as observed within the mi-
crocanonical ensemble, are hidden. Only the phase transition
related to the quenching of the pair correlations as a whole can
be seen. Details are given in Ref. [17].

The canonical heat-capacity curves show local enhance-
ments around T ∼ 0.5–1.0 MeV. Such enhancements were
predicted in the calculations of Fig. 8, and they are expected
to be larger in the even-mass nuclei compared to the odd-mass
neighbors. The experimental heat capacities show this feature
for the 97,98Mo pair, and up to a certain extend for the
93,94Mo pair, but it is not very obvious for the 95,96Mo pair,

FIG. 9. Calculated level density of 98Mo (solid line) and 97Mo
(dashed line) as function of average excitation energy 〈E〉. The big
open circles and squares are experimental level-density anchor points
from Ref. [41]. The small filled and open circles are experimental
data points measured with the (3He,α) and (3He,3He′) reactions,
respectively for the two isotopes.

where 95Mo shows a more pronounced enhancement than
expected. Approaching the N = 50 closed shell, the local
enhancements become less and less pronounced. The general
behavior of pairing correlations is that at shell closure there
are almost no pairing correlations and, as particles are added,
the pairing correlations increase. Therefore the signature of
a transition from a “paired phase” to an “unpaired phase”
when approaching a major shell gap becomes less and less
pronounced. We should note that very recently an alternative
interpretation has been given [51]. These authors find that the S
shape can be accounted for as an effect of the particle-number
conservation, and it occurs even when assuming a constant gap
in the BCS theory.

From the CV curves, we have extracted the critical tem-
perature for the quenching of pair correlations. The critical
temperatures have been obtained by a fit of the canonical heat
capacity of a constant-temperature level-density model to the
data for the first 600 keV in temperature. The algorithm and
its sensitivity are discussed in Ref. [12]. The values obtained
are plotted in Fig. 11; there is a tendency for the critical
temperature to be slightly higher for odd 93,95,97Mo than for
even 92,94,96Mo nuclei, similar to the local enhancement of the
heat-capacity curve in the model calculation (see the lower
right panel of Fig. 8) that is observed at higher temperatures
for odd-mass Mo isotopes. The higher critical temperature for
odd-mass nuclei is because of the Pauli blocking effect of
the unpaired quasiparticle that increases the distance to the
Fermi surface for low-lying orbitals with coupled pairs and
thus increases the cost in energy to break pairs into more

034311-9



R. CHANKOVA et al. PHYSICAL REVIEW C 73, 034311 (2006)

FIG. 10. Observed heat capacity as functions of temperature in
the canonical ensemble for the even 94,96,98Mo (upper panel) and odd
93,95,97Mo (lower panel) nuclei.

quasiparticles. Incidentally, the critical temperature for the
quenching of pairing correlations coincides (by construction)
quite well with the temperature-like parameter τ of Fig. 5.

A discontinuity of the heat capacity in a macroscopic
system indicates a second-order phase transition according to
the Ehrenfest classification; this is observed in the transition
of a paired Fermion system such as a low-temperature
superconductor or superfluid 3He to their normal phases. Thus,
the experimentally observed local enhancement of the heat
capacity is interpreted as a fingerprint of a phase transition

FIG. 11. Critical temperature for the quenching of pair correla-
tions for 93−98Mo isotopes.

from a phase with strong pairing correlations to a phase
where the pairing correlations are quenched [12]. Shell-model
Monte-Carlo calculations [7] have shown that the pairing phase
transition is strongly correlated with the suppression of neutron
pairs with increasing temperature. It has also been observed
that the reduction of the neutron-pair content of the wave
function is much stronger in the even-even than in the odd-mass
isotopes, giving rise to the more pronounced S shape in the
canonical heat-capacity curves in the even-even nuclei. The
same odd-even difference in the heat capacity is also observed
experimentally between 161Dy and 162Dy, as well as 171Yb and
172Yb [12].

C. Entropy as function of neutron number

To study entropy as a function of neutron number, we
compare the microcanonical entropy obtained by the saddle-
point approximation of Eq. (15) to our experimental data.
In Fig. 12 the data are plotted as a function of the neutron
number N (left panel) and as a function of the number of
available neutrons in the reservoir (right panel). Although only
qualitative agreement is achieved, some simple conclusions
can be drawn.

For the isotopes under investigation in this work, we see
that the entropy at 1 MeV in both panels increases moderately
as a function of the number of particles. The entropy at
7 MeV increases more rapidly and this is correlated to the
evolution of the temperature-like parameter τ (see Fig. 5).
Both theoretically and experimentally, the odd systems show
�S = 1.0kB higher entropy than their neighboring even-even
systems.

FIG. 12. Entropy extracted at excitation energies of 1 and 7 MeV
as a function of neutron number N (left panel) and number of available
neutrons in the model (right panel) for odd-even (open circles) and
even-even (filled circles) molybdenum isotopes.
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The slopes at 7 MeV in the left panel of Fig. 12 give
dS/dN = 0.5kB . Thus, going from 98Mo to 93Mo the level
density drops when approaching the N = 50 shell gap by a
factor of ∼0.03. This mechanism is also reflected in the η

parameter of Eq. (5), which drops from 0.87 for 98Mo to 0.08
for 93Mo.

As we already mentioned, the less pronounced S shape
shows that the pairing correlations decrease when approaching
the N = 50 shell gap. At the same time, the critical temperature
for the quenching of pair correlations increases, which is
the opposite of what one might expect. This effect can be
explained by the increase in single particle level spacing when
approaching the N = 50 shell gap. We have already seen in the
discussion in the previous section, that this increase, together
with the weakening pairing correlations, which fail to push
the nuclear ground state sufficiently down in energy, lead to a
decrease in single-particle entropy, see Figs. 7 and 12.

Therefore, the increase in critical temperature for the
quenching of pairing correlations when approaching the N =
50 shell gap is because of the competition between the weak-
ening pairing correlations and the increasing single-particle
level spacing. Just as the weakened pairing correlations in odd
nuclei cannot compensate for the effect of Pauli blocking on
Tc, they cannot compensate for the effect of an increase in
single-particle level spacing on Tc when approaching a major
shell gap.

V. CONCLUSIONS

Levels in 93−98Mo in the excitation-energy region up to
the neutron-separation energy were populated using (3He,αγ )
and (3He,3He′γ ) reactions. The level densities of 93−98Mo
were determined from their corresponding primary γ -ray

spectra. Within the canonical ensemble, thermodynamical
observables were deduced from the level density; they display
features consistent with signatures of a phase transition from a
strongly pair-correlated phase to a phase without strong pairing
correlations. This conclusion is supported by recent theoretical
calculations within shell-model Monte Carlo simulations by
Alhassid et al. [7,8,50], where it is shown that the expectation
value of the pair operator decreases strongly around the
critical temperature. However, we would like to point out that
other interpretations are not excluded. Different mechanisms
governing the thermodynamic properties of odd and even
systems were studied. A simple, recently developed model
for the investigation and classification of the pairing phase
transition in hot nuclei has been employed and qualitative
agreement with experimental data achieved. Using the saddle-
point approximation the experimental level densities of even-
even and odd-even systems are reproduced. Estimates for
the critical temperature of the pairing phase transition yield
Tc ∼ 0.7–1.0 MeV.
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