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Shape transitions and collective excitations in 152Dy
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We adopt a self-consistent cranked Nilsson plus quasiparticle random-phase approximation by using a
Hamiltonian of separable form to study the collective properties of 152Dy as it evolves toward the superdeformed
shape. Our calculation, while confirming the octupole character of the negative-parity superdeformed bands,
emphasizes the effect of the new shell structure, induced by fast rotation combined with large deformation, on
the other collective modes. It shows, in particular, that superdeformation enhances strongly the collectivity of the
low-lying scissors mode built on the superdeformed shape.
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I. INTRODUCTION

The discovery of superdeformed (SD) rotational bands [1]
has opened new perspectives in the study of nuclei under
extreme conditions of fast rotation and large deformation.
Under their combined action, novel shell structures emerge.
In fact, new shell gaps in the single-particle spectra originate
from the onset of degeneracy of normal-parity orbitals and
from the redistribution and filling of several high-j intruders
near the Fermi level [2,3].

Because of the modified shell structure, collective modes
in SD nuclei are expected to exhibit new features with
respect to the normal deformed phase. The literature on this
subject, however, is not very rich. One of the few theoretical
investigations is a microscopic analysis of collective SD bands
in 152Dy [4] and 190,192,194Hg [5]. These authors, developing
earlier preliminary studies [6], performed a microscopic
calculation in a cranked Nilsson plus quasiparticle random-
phase approximation (QRPA) by using separable dipole-dipole
plus octupole-octupole interactions for the negative-parity SD
bands and a quadrupole-quadrupole potential for the positive-
parity states. The comparative analysis of computed and
empirical dynamical moments of inertia led to the conclusion
that octupole correlations characterize most of the low-lying
excited SD bands.

An earlier study was focused on the properties of the
magnetic dipole excitations [7]. The authors of Ref. [7]
computed the magnetic dipole spectrum in the SD 152Dy and
192Hg in the QRPA by using a Woods-Saxon mean field plus
quadrupole-quadrupole and spin-spin separable interactions.
They showed that the spin response is dominant in the
low-energy region at normal deformation. In going to the
SD phase, however, the orbital response is strongly enhanced
and becomes dominant even at low energy. These low-lying
M1 excitations should then be associated with the low-lying
scissors mode [8,9], extensively studied experimentally and
theoretically for normally deformed nuclei [10].

At high energy, the M1 transitions are localized in the
region of the isovector quadrupole giant resonance. They
are purely orbital and therefore correspond to the high-
energy scissors mode [11]. These M1 transitions become

overwhelmingly strong in the SD phase and, because of their
orbital nature, are to be considered as the true representatives
of the scissors mode in SD nuclei. This association is further
strengthened by the large overlap of the high-energy RPA
eigenvectors with the schematic orbital scissors state.

As admitted explicitly by the authors [7], however, the effect
of fast rotation on the mode is neglected. On the other hand,
a recent calculation on nuclei undergoing backbending has
proved the dramatic effect of rotation on magnetic dipole
scissorslike excitations [12]. Moreover, the single-particle
space adopted is too restricted to properly account for the
spreading of the high energy strength.

In this paper, we study the combined action of fast rotation
and large deformation on both positive- and negative-parity
collective modes. More specifically, we analyze the octupole
correlations and their effect on the dynamical moment of
inertia. We also investigate how the properties of the other
Eλ (λ = 0, 1, 2) collective modes change with increasing
deformation and angular frequency. These transitions were
studied previously in a schematic model [13]. We then focus
our attention on the magnetic dipole M1 response and show
how the collectivity of the low-lying M1 levels changes
its nature and is dramatically enhanced with the onset of
superdeformation.

Our procedure parallels the one we followed in Ref. [12].
We adopt a cranked Nilsson plus QRPA by using an interaction
of general separable form, as in [4,5]. Such an approach is
shown to lead to a restoration of the symmetries violated
by external, mean, and BCS pairing fields, thereby ensuring
the separation of the spurious or redundant modes from the
physical excitations. The cranked shell model plus RPA was
developed long ago [14] and applied extensively to high-spin
collective modes [15–24].

II. BRIEF OUTLINE OF THE METHOD

As in Ref. [12], we adopt the Hamiltonian

H� = H0(�) + VPP + VFF , (1)
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where H0(�) is a cranked Nilsson Hamiltonian, VPP is a
proton-proton and neutron-neutron monopole pairing, and
VFF is a sum of isoscalar and isovector separable potentials.

The cranked term has the structure

H0(�) = H0 −
∑

τ=n,p

λτNτ − h̄�I1, (2)

where the unperturbed term H0 consists of two pieces. The
first is a modified triaxial harmonic-oscillator (HO) Nilsson
Hamiltonian, whose HO frequencies satisfy the volume-
conserving condition

ω1ω2ω3 = ω3
0. (3)

The second term restores the local Galilean invariance broken
in the rotating coordinate system and has the form given in
Refs. [5,12,25].

At � = 0, one may determine the equilibrium deforma-
tion by minimizing the expectation value of the one-body
Hamiltonian H0 with respect to the frequencies ωi under
volume-conserving constraint (3). This prescription is equiva-
lent to a Hartree mean-field approximation applied to a system
of nucleons interacting by means of many-body forces [26,27].

The two-body separable potential has the following struc-
ture:

V =
∑
λµ

κλF
′′2
λµ, (4)

where the sum includes quadrupole-quadrupole plus
monopole-monopole plus spin-spin separable potentials for
positive-parity states and dipole-dipole plus octupole-octupole
interactions for the negative-parity bands.

All multipole and spin-multipole fields F ′′
λµ have good

isospin T and signature r [28]. They are expressed in terms of
doubly stretched coordinates x ′′

i = (ωi/ω0) xi [29,30] that, for
a pure HO one-body Hamiltonian, ensure the self-consistent
conditions

〈Q′′
µ〉 = 0, µ = 0, 1, 2, (5)

for the quadrupole field, at the equilibrium deformation. By
virtue of Eqs. (5), the deformed mean field is not distorted
further by the interaction and makes possible the separation of
the spurious from the physical RPA solutions. Once expressed
in these new coordinates, the λ fields no longer have a well-
defined tensor rank and therefore alter the structure of the
original separable interaction. Thus the unfolding of the doubly
stretched fields yield dipole-octupole or monopole-quadrupole
mixed interactions.

We make use of the generalized Bogoliubov transformation
to express Hamiltonian (1) in terms of quasiparticle creation
and annihilation operators. We then plug the transformed
Hamiltonian into the RPA equations of motion, written in the
form [28]

[H�,Pν] = i h̄ω2
ν Xν, [H�,Xν] = −i h̄ Pν, (6)

[Xν, Pν ′ ] = ih̄δν ν ′ ,

where Xν and Pν are, respectively, the collective coordinates
and their conjugate momenta.

Exploiting the symmetries of the cranked Hamiltonian, we
solve RPA eigenvalue equations (6) separately for the positive

and negative signature pieces, H�(+) and H�(−), respectively,
under the constraints [12][

H�(π=+
r=+ ), Nτ

] = 0,
[
H�(π=−

r=+ ), P1
] = 0,

(7)[
H�(π=+

r=+ ), I1
] = 0,

[
H�(π=+

r=− ), 	†] = �	†,

where τ = p, n, and

	† = 1√
2〈I1〉

(I2 + iI3),

(8)

	 = (	†)† = 1√
2〈I1〉

(I2 − iI3)

satisfy the commutation relation

[	,	†] = 1. (9)

According to Eqs. (7), we have three Goldstone modes.
One is associated with the violation of the particle-number
operator; the other two are zero-frequency translational and
rotational solutions related to the breaking of translational
and spherical symmetries of the mean field, respectively. The
last equation yields a negative signature solution of energy
ωλ = �, which describes a collective rotational mode arising
from the symmetries broken by the external rotational field
(the cranking term).

Equations (7), if fulfilled, ensure the separation of the
spurious or redundant solutions from the intrinsic ones.
They would be automatically satisfied if the single-particle
basis were generated by means of a self-consistent Hartree-
Bogoliubov (HB) calculation. As we shall see, they are fulfilled
with good accuracy also in our, not explicitly self-consistent,
minimization procedure under volume-conserving constraint
(3). Such a constraint was shown to be essential for obtaining
the correct equilibrium deformations [26,27].

The strength function for an electric (X = E) or magnetic
(X = M) transition of multipolarity λ from a state of the yrast
line with angular momentum I is

SXλ(E) =
∑
νI ′

B(Xλ, I → I ′, ν) δ(E − h̄ων), (10)

where B(Xλ, I → I ′, ν) is the reduced strength. The strength
function method avoids the explicit determination of the RPA
eigenvalues and eigenfunctions [28]. We just have to replace
the δ distribution with a Lorentzian weight. Thus, on use of the
Cauchy theorem, we obtain for SXλ(E) expressions involving
only two quasiparticle matrix elements of one-body multipole
operators.

The nth moments are obtained simply as

mn(Xλ) =
∫ ∞

0
EnSXλ(E) dE. (11)

The m0(Xλ) and m1(Xλ) moments give, respectively, the
energy-unweighted and energy-weighted summed strengths.

To compute the strength function, we should be able to
expand the intrinsic RPA states into components with good
K quantum numbers, which is practically impossible in the
cranking approach. We therefore compute the strength in the
limits of zero and high angular frequencies (see Ref. [12] for
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details), taking into account the energy shift

∑
µ

SXλµ(E) →
∑

µ

SXλµ(E − µh̄�) (12)

in each µth component of the Xλ transition operator, where
µ = 
I = I − Iyrast, in going from the intrinsic to the labo-
ratory frame [17,18].

III. NUMERICAL PROCEDURE

In Ref. [12], we took the parameters of the Nilsson potential
from Ref. [31], where they were determined from a systematic
analysis of the experimental single-particle levels of deformed
nuclei of rare earth and actinide regions at low rotational
frequency.

To properly describe the single-particle properties at high
spins and superdeformation, it would be necessary to adopt
the Strutinsky shell correction method, since in SD nuclei
the liquid-drop energy is large and necessary for determining
the equilibrium deformation. This was the procedure adopted
in Refs. [2] and [3] for a Woods-Saxon and a Nilsson
Hamiltonian, respectively. In our simplified approach, we
change the Nisson parameters of Ref. [31] so as to obtain
at each � a set of single-particle energies close to the ones
determined in a Nilsson-Strutinsky approach [32] and adopted
in Ref. [3]. We thus obtain the new parameters κ = 0.0637,

µ = 0.75 and κ = 0.064, µ = 0.9 for the major neutron shells
N = 6 and N = 7, respectively, instead of κ = 0.0637, µ =
0.393, adopted in [31] for both N = 6 and N = 7 neutron shells.
We also use the new values κ = 0.0620, µ = 0.9, instead of
κ = 0.0620, µ = 0.614 [31], for the N = 7 proton shell. We
include all shells up to N = 8. Using these new parameters,
we reproduce also the energy gaps for Z = 66 and N = 86
and the particle-like N = 7 single-particle intruder states just
above the Fermi level obtained in [4,5].

The quite pronounced changes of the l2 parameters µ

are to be noted. These changes represent, partly, the price
we have to pay to reproduce the single-particle energies of
the Nilsson-Strutinsky approach and, partly, these changes are
justified by the different treatment of the Nilsson potential.
We use, in fact, the unstretched Nilsson scheme and account
fully for the interactions between all 
N �= 0 shells, while, in
Refs. [4,5,32], singly stretched coordinates are adopted and
the 
N �= 0 coupling is neglected.

As in [12], we determine the pairing gaps following the
phenomenological prescription [33]:


τ (�) =





τ (0)

[
1 − 1

2

(
�
�c

)2
]

, � < �c


τ (0) 1
2

(
�c

�

)2
, � > �c

, (13)

where �c is the critical rotational frequency of the first
band crossing. This empirical procedure avoids unwanted
singularities one would encounter in correspondence to the
critical frequencies within a pure self-consistent approach. We
deduce the pairing gaps at zero rotational frequency from the
odd-even mass differences, obtaining 
n(0) = 0.771 MeV and

p(0) = 1.09 MeV.

IV. EQUILIBRIUM DEFORMATIONS AND
SHAPE TRANSITIONS

We use the BCS vacuum to compute the expectation
value of cranked Nilsson Hamiltonian (2) plus the pairing
potential for several values of � under the volume-conserving
constraint.

The β-γ contour plot in Fig. 1 shows that, for each �,
we have two minima, one corresponding to β ≈ 0.2, γ = 0
(normal deformation) and the other to β ≈ 0.5–0.6, γ = 0
(superdeformation). A more detailed analysis shows that the
absolute minimum is the one at normal deformation up to
the rotational frequency h̄� ≈ 0.67, while the SD minimum
becomes deepest for h̄� > 0.67 and moves smoothly from
β = 0.53 at h̄� = 0.67 to β = 0.6 at h̄� = 0.8. In other
words, h̄� ≈ 0.67 is a critical rotational frequency that marks
the transition from deformed to SD shapes along the yrast
line. This conclusion agrees with the results obtained in the
Strutinsky shell correction calculations [2,3]. The similarity
of the two results is due to the new Nilsson parameters,
chosen so as to reproduce the single-particle energies used
in Ref. [3], which amplify the effect of the l2 term in shaping
the single-particle spectrum. Such a change may represent a
critical point. It was shown, in fact, that the energy minimum
is sensitive to the details of the Nilsson Hamiltonian and, in
particular, to the l2 term and the way it is treated [34]. On the
other hand, we have checked that the collective responses are
not highly sensitive to these changes.

Alternatively, the equilibrium deformations may be deter-
mined by self-consistent conditions (5),

〈Q′′
2µ〉� = 〈�| Q′′

2µ|�〉 = 0, µ = 0, 2, (14)

at each �. As pointed out already, these zeros correspond to
the energy minima of the HO Hamiltonian under the volume-
conserving constraint [26,27]. The plots in Fig. 2 show that, for
γ = 0, 〈Q′′

20〉� has two zeros for all rotational frequencies up

FIG. 1. (Color online) The β and γ contour plots of the cranked
Nilsson plus pairing energy surfaces at different rotational frequencies
� in 152Dy. The surfaces give the relative energies E(β, γ ) − Emin.
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FIG. 2. The expectation value of the doubly stretched quadrupole
moment versus β at different �’s.

to h̄� = 0.7 MeV. In correspondence to this latter frequency,
the doubly stretched quadrupole moment vanishes at only
the SD value β ≈ 0.6 and is very small (but not vanishing)
in correspondence to the low deformation minimum, which
becomes unstable toward triaxial deformation (Fig. 1).

From inspecting the two figures, one can see that the zeros
of 〈Q′′

2µ〉� do not coincide with the minima of the energy
surfaces, as they should for a pure HO Hamiltonian, under
the volume-conserving constraint. Apparently the minima are
sensitive to the extra terms of the Nilsson Hamiltonian and, in
particular, to the 〈l2〉 piece [34], which in our case is amplified
by the large parameters of µ adopted. Although not coinciding,
the zeros are close to the energy minina for several values of �,
suggesting that our equilibrium deformations are not far from
the self-consistent ones.

The validity of our treatment is provided by its success in
describing the angular-momentum expectation value, 〈Ix〉� =
〈�|Ix |�〉, along the yrast line. As shown in Fig. 3, the
calculation reproduces fairly well the experimental angular
momenta extracted from the energy levels of the yrast line
through the formula

h̄�(I ) = Eyr(I + 2) − Eyr(I )

2
, (15)

where the energies are taken from experiments [35].
We observe a first shape transition, β = 0.2 → β = 0.28,

for h̄� ≈ 0.3 MeV corresponding to the first backbending,
then a second one, β ≈ 0.28 → β ≈ 0.6, connected with the
second backbending at h̄� ≈ 0.67 MeV. For h̄� > 0.66 MeV,
the SD yrast band, which we denote by SD1 according to the
labeling adopted in Ref. [4], becomes the yrast line.

FIG. 3. (Color online) Yrast line angular momenta versus the
rotational frequency. For an appropriate comparison with experi-
ments, we plot the angular momentum over the whole SD yrast
band (SD1 band). This coincides with the actual yrast band only
for h̄� > 0.67 MeV.

V. COLLECTIVE EXCITATIONS AT NORMAL
DEFORMATION AND SUPERDEFORMATION

We solved RPA Eqs. (6) under symmetry constraints (7) for
each parity (π = ±) and signature (r = ±1). These constraints
ensure the separation of the redundant or spurious solutions
from the physical ones on one hand, and, on the other hand,
determine the strength constants of the multipole-multipole
interactions. These constants came out to be close to the
HO values [12]. We made a standard choice [12,36] for
the remaining Hamiltonian parameters, the strengths of the
spin-spin interaction. We completed the parameter set by using
bare charges for the E0 and E2 transitions and a quenching
factor gs = 0.7 for the spin gyromagnetic ratios.

A. Low-lying octupole bands and the
dynamical moment of inertia

Figure 4 shows how the lowest RPA energies, built on the
SD yrast (SD1) band states as phonon vacua, evolve with the
rotational frequency. In accordance with Ref. [4], the negative-
parity RPA phonons are lowest in energy, because of the strong
octupole correlations present in the SD states. One may note
the crossing of the two lowest negative-parity bands with either
positive or negative signature. These crossings have important
effects on the dynamical moment of inertia. Since only the
relative energies of the levels in the individual SD bands can
be extracted from experiments [4,5,37], it is enough to compute
the dynamical moments of inertia by use of the formula

	(2)
α (�) = 	(2)

yr − d 2Eα

d�2
, (16)

where 	(2)
yr is the dynamical moment of inertia of the SD yrast

band, which can be described approximately by the Harris
formula

	(2)
yr = a + b�2. (17)

The fit of the yrast band of 152Dy yields for the above pa-
rameters a = 88.5 h̄2 MeV−1 and b = −11.9 h̄4 MeV−3. The
fluctuating part originates from the second derivative of the
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FIG. 4. Negative-parity (upper panel) and positive-parity (lower
panel) lowest RPA intrinsic energies (routhians) versus rotational
frequency. Solid and dashed lines correspond to positive and negative
signatures, respectively.

phonon energy Ephon(�), which is a computed in RPA for a
given band at different rotational frequencies.

The dynamical moment of inertia so defined is to be
compared with the empirical one extracted from the energies
Eα(I ) of the SD bands α according to the formula

	(2)
α (�) = 4h̄2

Eα(I + 4) − 2Eα(I + 2) − Eα(I )
. (18)

The experimental energies are taken from [37] for all ob-
served excited SD bands (α = SD2, SD3, SD4, SD5, SD6).
According to Eq. (16), only the moments of inertia of the
negative-parity crossing bands, which yield nonzero second
derivatives for the energy, should be appreciably affected
by the rotation. This is confirmed empirically. As shown in
Fig. 5, the dynamical moment of inertia, 	(2), undergoes strong
variations with � only for the negative parity and positive
signature bands SD2,SD3 as well as for the negative parity
and negative signature band SD6. The computed quantities
are in fair agreement with the empirical moments of inertia of
these three SD bands.

The fluctuations induced by the RPA phonons on the
moments of inertia 	(2)(�) of the SD4 and SD5 bands are
negligible, in qualitative agreement with experiments. The
empirical quantities, in fact, undergo small oscillations and
do not get far from the SD yrast values determined by the
Harris formula (dashed curves). The RPA, however, is unable
to reproduce the observed modest fluctuations, suggesting that
they may be related to anharmonic effects.

FIG. 5. The dynamical moments of inertia, determined by
Eq. (16) (solid curves) are compared with the corresponding empirical
values obtained from Eq. (18). The dashed curves correspond to the
Harris fit [Eq. (17)].

It is important to point out that our results are fully
consistent with the calculation and conclusions drawn in
Ref. [4], where it was first pointed out the importance of
the octupole correlations in shaping the dependence of the
dynamical moment of inertia with rotational frequency in SD
nuclei.

B. Electric and magnetic responses and the scissors mode

Fast rotation together with shape transition have a deep
impact on the other electric and magnetic responses. Of con-
siderable importance for our purposes are the changes induced
by rotation plus deformation on the E1 giant resonance. As
shown in Fig. 6, the broad E1 peak around ∼15 MeV, at low
energy and small deformation, gets broader with increasing
β and �. As superdeformation sets in, the resonance gets
damped and splits into two broad branches, the more prominent
Kπ = 0− hump around 10–11 MeV and the Kπ = 1− peak
around 22–23 MeV.

As shown in Fig. 7, the E0 spectrum exhibits a well-
pronounced peak, which remains around 18 MeV for all values
of β and � until the point of transition to superdeformation is
reached. With the onset of superdeformation, the E0 strength
gets damped and fragmented while the (quenched) peak moves
upward by a few mega-electron-volts.

The E2 spectrum (Fig. 8) shows some sensitivity also at
small deformations and low rotational frequencies. Its main
peak becomes more spread as the nucleus undergoes the
first shape transition and the rotational frequency increases.
It is dramatically damped and shifted upward by several
mega-electron-volts as soon as the nucleus reaches the
point of transition to superdeformation. In this new regime,
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FIG. 6. E1 strength distribution for different angular frequencies
and deformations. The reduced strengths are summed in bins of
1 MeV around the energy E of the final state excited from the yrast
band.

the spectrum shows little sensitivity to rotation. It might be
worth noting that the much smaller, high-energy isovector
peak, clearly noticeable at normal deformation, is quickly
swept away as rotation and deformation increase.

The behavior of the M1 response appears to be quite in-
triguing. Most of the M1 strength remains concentrated in the
energy range 2–10 MeV at all frequencies and deformations
(Fig. 9). At low rotational frequency and normal deformation
(β = 0.2), most of the strength is due to spin excitations.
It is only in the low-energy tail (2–4) MeV that the orbital
contribution is comparable with the one that is due to spin.

The first shape transition (β = 0.2 → β = 0.28) induces
an overall enhancement of the orbital transition, especially at
low energy, with a consequent downward shift of the total M1
strength. For fixed deformation, rotation has a damping effect
on spin and affects marginally the orbital strength.

The onset of superdeformation induces more dramatic
changes. It enhances strongly the orbital strength, which
becomes strongly peaked around 6 MeV and has a damping
and spreading effect on spin transitions, which get scattered
all along the 2–10 MeV interval. The shape and peak of
the total M1 strength distribution are determined almost
solely by the orbital response. Rotation no longer affects
appreciably either the orbital or the spin motion once the
nucleus is settled down in the SD phase. The low-lying orbital
strength amounts to ∼20µ2

N (Fig. 10). Although scattered,
the low-lying spin transitions carry an appreciable strength,

FIG. 7. E0 spectra for different angular frequencies and defor-
mations. The reduced strengths are summed in bins as in Fig. 6.

amounting to ∼10µ2
N . Orbital and spin amplitudes interfere

constructively, yielding a total M1 strength of ∼30µ2
N .

FIG. 8. E2 spectra for different angular frequencies and defor-
mations. The reduced strengths are summed in bins as in Fig. 6.
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FIG. 9. (Color online) M1 spectra for different angular frequen-
cies and deformations. The reduced strengths are summed in bins as
in Fig. 6.

A high-energy peak, which can hardly be noticed at
normal deformation, is well noticeable in the SD phase. It
is rather broad and carries a M1 strength of only ∼5µ2

N ,

FIG. 10. (Color online) M1 strengths partially summed over
three distinct energy ranges. The corresponding orbital and spin
contributions are plotted in the middle and lower panels, respectively.

much smaller than the the one collected by the low-energy
excitations.

The present calculation converges with the one performed
in Ref. [7] at some points, but diverges strongly at others.
Consistent with Ref. [7], we find a spin dominance at normal
deformation as well as an enhancement of the orbital over
the spin strength as we move from normal deformation
to superdeformation. More quantitatively, the low-lying or-
bital strength (∼20µ2

N ) approaches from below the value
23µ2

N obtained in Ref. [7]. The spin strength computed in
Ref. [7], instead, though comparable in magnitude with the
one obtained here, is much more strongly peaked.

Our high-energy M1 strength (∼5µ2
N ) is far smaller than

the huge value, 37µ2
N , obtained in Ref. [7]. Moreover, it is

considerably spread over a range of several mega-electron-
volts, contrary to the findings of Ref. [7], in which the whole
strength is concentrated into a single narrow peak. The latter
feature, however, was admittedly ascribed to the restricted
single-particle space adopted, which allowed for only two
quasiparticle energies up to 20 MeV.

The large discrepancy between the two calculations con-
cerning the high-nergy M1 response is rather puzzling. It may
be partly related to the much larger single-particle space we
use to reach the equilibrium deformation and to the combined
action of deformation and rotation, neglected in Ref. [7]. It is
unlikely, however, that these two factors can determine such
different responses. The difference cannot be ascribed to our
Nilsson parametrization. We have checked that the distribution
and magnitude of the M1 and the other strengths change little
if we use standard Nilsson parameters [32].

We conclude that, according to our calculation, rotation
plus superdeformation have the main effect of enhancing
strongly the low-lying orbital M1 transitions over the spin.
The orbital response determines the shape and peak of the
strength distribution and therefore qualifies the low-lying M1
excitations as scissors mode.

To further test this assertion, we put the m1(M1) moment,
yielding the energy-weighted sum of the M1 strengths, in
relation to the kinematical moment of inertia 	(1). These two
quantities should be intimately correlated if the M1 excitations
have a scissors nature. For these kinds of transitions, in fact,
the following energy-weighted sum rule holds [38,39]:

m1(M1)(sc) =
∑

n

(En − E0)B(sc)
n (M1) = 3

16π
	(1)ω2, (19)

where ω is the centroid of the scissorslike excitations.
As shown in Fig. 11, not only the orbital but also the

total M1 moments follow closely the moment of inertia in
its evolution with β and �. Like 	(1), they jump at the phase
transition points and remain practically constant in between.
Because of such a close link with 	(1), the low-lying M1
excitations in SD nuclei are to be associated with the scissors
mode. The high-lying M1 peak corresponds to the high-energy
scissors mode. This, however, being rather weakly excited, is
of little relevance for experimental purposes.

It is, instead, of considerable interest to explore the
possibility of detecting the low-energy scissors mode in decay
processes. This is actually the collective mode that is lowest in
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FIG. 11. (Color online) The yrast line kinematical moment of
inertia (upper panel) versus the total (second panel), orbital (third
panel), and spin (bottom panel) m1(M1) moments.

energy, apart from the octupole states. Indeed, the M1 peak is
well below the humps of the E0 and E2 resonances and also
below the Kπ = 0− E1 giant resonance peak at ∼10 MeV.
It overlaps only with the low-lying queues of the E2 and the
Kπ = 0− E1 resonances. On the other hand, the methods of
analysis of γ -cascade spectra have improved considerably in

recent years. Indeed, these methods have proved to be quite
successful in disentangling the M1 from the Eλ excitations,
thereby, detecting for the first time the scissors mode built on
excited states in slowly rotating nuclei [40].

VI. CONCLUSIVE REMARKS

We have shown that, through adopting a cranked Nilsson
mean field, our QRPA approach ensures the separation of
the spurious or redundant solutions from the physical ones.
The evolution of the dynamical moment of inertia with
increasing deformations and rotational frequencies confirms
the conclusion drawn in Refs. [4,5] about the octupole
character of the negative-parity excited SD bands near the yrast
line. Our analysis shows that the onset of superdeformation
has a strong impact on the other electric collective modes and,
to a much higher degree, on the orbital M1 response. This
is dramatically enhanced over the spin around 6 MeV above
the yrast line and confers to these low-lying M1 transitions
the typical features of the scissors mode. Being the lowest
in energy, apart from the octupole excitations, such a mode
should have a good chance of being detected in γ -cascade
processes, thanks to the very effective modern methods of
analysis of the decay spectra. We are confident that the present
results remain valid even in a more realistic Nilsson-Strutinsky
approach. We found, indeed, that our collective responses are
rather insensitive to changes in the Nilsson parameters.
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dell’Istruzione, Universitá and Ricerca and is part of the
research plan MSM 0021620834 supplied by the Ministry of
Education of the Czech Republic.
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