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Charge and parity projected relativistic mean field model with pion for finite nuclei
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We construct a new relativistic mean field model by explicitly introducing a π -meson mean field with charge
number and parity projection. We call this model the charge and parity projected relativistic mean field (CPPRMF)
model. We take the chiral σ model Lagrangian for the construction of finite nuclei. We apply this framework
first for the 4He nucleus as a pilot case and study the role of the π -meson field on the structure of nuclei. We
demonstrate that it is essential to solve the mean field equation with the variation introduced after the projection
in order to take the pionic correlations into account explicitly. We study the ground-state properties of 4He
by varying several parameters, such as the σ -meson mass and the ω-meson coupling constant. We are able to
construct a good ground state for 4He. A depression appears in the central region of the density distribution, and
the second maximum and the position of the dip in the form factor of 4He are naturally obtained in the CPPRMF
model.

DOI: 10.1103/PhysRevC.73.034301 PACS number(s): 21.60.−n, 24.10.Jv, 11.30.Rd, 14.40.−n

I. INTRODUCTION

One of the fundamental goals of nuclear physics is to
understand the mutual relation between the nuclear structure
and the nuclear force. The π meson was introduced by Yukawa
as a mediator of the nucleon-nucleon interaction [1]. The
π -meson exchange interaction appears mainly as the tensor
force in the nonrelativistic framework. It is considered that
the tensor force plays an important role for the saturation
property of nuclear matter [2]. The reaction matrix theory
showed that the density dependence of the central component
of the G matrix rests on the tensor force [2–4]. The pioneering
work of the variational calculation of the 4He nucleus by
ATMS (amalgamation of two-body correlations into a multiple
scattering process) showed the importance of the tensor force
in nuclei. In this calculation we can see that almost half of
the attraction originates from the tensor force [5]. Recently,
variational calculations based on the realistic nuclear force
in real space by the Argonne-Illinois Group were found
successful in describing light nuclei (A � 10) and showed that
the π meson plays a crucially important role in determining
the nuclear structure [6]. The contribution of the π -meson
exchange interaction to the total binding energy is about
70%–80% of the net two-body interaction. This ab initio
calculation is the main motivation for our study. Since the
importance of the π -meson exchange for the nuclear property
has been demonstrated, it seems natural that we treat the
π -meson exchange interaction and other meson exchange
interactions equally based on the mean field theory. The
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difficulty of the treatment of the π -meson exchange originates
from its pseudoscalar character. The source term of the
π meson demands parity mixing [7]. This framework is,
however, theoretically simple and faithful to the meson theory
by Yukawa [1]. We hope, therefore, to include this feature
of the importance of the π meson for the description of
nuclei even for medium and heavy nuclei, where the mean
field approximation is essential. We employ the relativistic
framework by using the Lagrangian density in order to see
more directly the coupling between the π meson and the
nucleon.

A. Relativistic mean field model and pions

From the point of view of phenomenology and application
for other subjects, the relativistic mean field model [8–13] is
quite successful in the prediction of the structure of nuclei
and the saturation property of nuclear matter [14]. The usual
relativistic mean field framework is based on the major
premise that the nuclear ground state is constructed by parity-
and charge-number-conserved single-particle states. Under
the mean field approximation, the π -meson source term is
zero, and there is no space where the π -nucleon interaction
can explicitly contribute to nuclear structure. This feature
originates from the unique character of the π meson, whose
pseudoscalar and isovector character leads to coupling with
the nucleon by spin-flip and changes in the parity and the
charge number. For this reason, σ, ω, and ρ mesons, which
develop finite mean fields with parity- and charge-conserved
single-particle states, are used as mediators of the nuclear force
to construct relativistic mean field models. Several parameters
of this framework, the meson-nucleon coupling constants
and the strength of the nonlinear coupling terms, have been
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determined so as to reproduce the empirical binding energies
and the r.m.s. radii of nuclei in a wide mass region. At that
moment, the effect of the π -nucleon interaction is considered
to be renormalized in those parameters and are supposed to
be contained in the mean field models provided by the other
mesons.

Since the π -meson exchange interaction is a very important
constituent of the nucleon-nucleon interaction, it is necessary
for the theoretical framework to reflect the unique character of
the π meson in the nuclear structure. Furthermore, in order to
proceed with the study of the relation of the nuclear force
and the structure of medium and heavy nuclei, we would
like to construct a relativistic framework based on the mean
field theory in which the effect of the π -nucleon interaction is
taken into account explicitly on the same footing as for other
mesons. As mentioned above, since the π meson has a unique
character, we have to select an improved model space by using
single-particle states as basis states, which are obtained by
solving the mixed parity and charge mean field. Recently a
parity symmetry-breaking relativistic mean field theory was
proposed in Ref. [15]. The use of the TM1 Lagrangian [12]
supported by a relativistic Brueckner-Hartree-Fock calculation
[16,17], plus the π -nucleon interaction using the free space
π -nucleon coupling constant, demonstrated that mixed-parity
self-consistent solutions were obtained for N = Z closed-shell
nuclei in the wide mass region. This effect appears to be large
for jj closed-shell nuclei, and the contribution from the π

meson increases with the nuclear surface area. On the other
hand, for the LS closed-shell nuclei the pionic effect turned
out to be very small. The amount of π -meson energy is clearly
different in the two groups. When the effect of the π -nucleon
coupling is strong, in the case of the jj closed-shell nuclei, the
framework gives a good approximate description for π -meson
energy, but when the effect of the π -nucleon coupling is small,
as in the case of the LS closed-shell nuclei, the π -meson energy
cannot be taken into account properly [15].

To solve these problems, it is very important to combine the
parity projection procedure with this mean field framework. In
this paper the relativistic framework involving the projection
procedure based on the mean field theory will be derived
and discussed. The positive-parity projected wave function
involves the 2p-2h states as the major correction terms. It is
expected that the admixture of 2p-2h states and 0p-0h states
through the π -nucleon interaction will lead to large amount
of π -meson energy. This admixture corresponds to the D-state
probability for the 4He nucleus. In the strong coupling case
the parity projection does not change the energies of the
ground state very much, while for the weak coupling case,
as in the previous relativistic mean field framework [15], it
is especially important whether the projection is performed
before the energy variation. The finite π -meson mean field is
obtained by the delicate balance between the energy loss due
to the kinetic energy and the profit due to the pionic correlation
in the total energy. The parity projection is performed before
variation and provides the optimized variational model space
for the admixture of the 2p-2h and 0p-0h states. Furthermore,
we introduce the charged π mesons, π±, for the construction
of the single-particle states, which break not only the parity
but also the charge number, and therefore we have to perform

charge number projection. In the previous framework [15] the
charged π -nucleon interaction does not give further energy
gain because of the isospin symmetry for N = Z nuclei
[18,19]. It is expected that charge number projection before
the variation is able to take into account the effect of the
charged π -meson exchange interaction between the proton
and the neutron and to enhance the pionic effects.

B. Chiral symmetries

We adopt the linear σ model Lagrangian [20] for the
description of nuclei. The chiral symmetry is known to be
the most important character in hadron physics. The π mesons
emerge as Nambu-Goldstone bosons from the spontaneous
SU(2) chiral symmetry breaking [21]. The chiral symmetry
and the generation of the hadron mass are described clearly in
the Nambu-Jona-Lasinio model with the Fermion fields [21].
At the hadron level, the chiral symmetry is well described
by using the linear σ model of Gell-Mann and Levy [22].
The application of the linear σ model for the description of
the nuclear system is demonstrated by several groups in the
relativistic mean field approximation [23–26]. The chiral σ

model in its original form, however, is not able to describe
nuclear matter. This problem is removed by introducing the
dynamic generation of the ω-meson mass in the same manner
as the nucleon mass. It was suggested by Boguta to be one
of the solutions for this problem [23]. The extended chiral σ

model can reproduce the saturation property of infinite matter.
The effective mass of the nucleon is relatively large, around
0.8 of the free value, as compared with that obtaining in the
Walecka model of about 0.6 [8].

This model gives very large incompressibility, however.
Further applications of this model for the finite nuclei were
demonstrated by Savushkin et al. [25,26]. The predicted
binding energies are reasonable, but the spin-orbit splitting
is too small, reflecting the large effective mass of the nucleon.
In our previous work we employed this Lagrangian in the
parity symmetry-breaking relativistic mean field framework,
introducing the π -meson mean field, and applied it to finite
nuclei [27]. The role of the π meson in the nuclear structure,
especially the properties of single-particle spectra, was care-
fully studied. It was found that energy splitting between the
spin-orbit partners clearly appears for jj closed-shell nuclei.
However, for LS closed-shell nuclei, since the effect of the
π -nucleon coupling is very weak, there is no improvement
for the single-particle spectra. As one possible solution for
this problem, it is necessary to combine the projection scheme
with the mixed parity relativistic mean field model based on
the method of variation after projection. We can expect a
sufficiently large π -meson mean field to also yield the energy
splitting between the spin-orbit partners for the LS closed-shell
nuclei.

In this paper we apply the extended chiral σ model with the
charge and parity projected relativistic mean field for 4He as a
pilot case. We present the formalism of the scheme with charge
and parity projected relativistic mean field framework and
discuss the importance of the scheme with variation after pro-
jection to take the π -meson mean field into account properly.
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We construct the framework based on the mean field theory,
but we take the Slater determinant of the mixed-parity and
-charge number single-particle wave function. In the present
study we concentrate on the π -meson degrees of freedom. We
do not include the tensor coupling term of the ρ meson or the
contribution of the coupling of the π meson with the � state.
The contents of this paper are follows. In Sec. II we present
the formulation of the charge and parity projected relativistic
mean field model. In Sec. III we apply this framework for
4He as the simplest example. Results and discussions are
given in Sec. III. A summary and outlook are given in
Sec. IV.

II. FORMULATION

In this section we derive the charge and parity projected
relativistic mean field (CPPRMF) model. This framework is
composed of the mixed-parity and -charge number relativistic
mean field with the scheme of strong π -nucleon interaction
combined with the scheme of variation after projection. This
framework goes beyond the mean field theory because of the
variation after projection, but the mean field is the fundamental
concept behind the projection method.

A. Lagrangian

We start with the linear σ model with the ω meson,
which has chiral symmetry. In the relativistic approach, the
pseudoscalar coupling between the π meson and the nucleon
leads to an unrealistically large attractive contribution from
the negative-energy states, because γ5 involve strong coupling
between positive- and negative-energy states. We thus employ
the nonlinear realization of the Lagrangian density, which is
obtained by the Weinberg transformation of the linear σ model
[28], because pseudovector coupling appears in the π -nucleon
interaction and the γ5γµ operator decouples the positive- and
negative-energy states. We take only the lowest-order term in
the π -meson field, and the Lagrangian we use is [27]

L = ψ̄

(
iγµ∂µ − M − gσσ − gA

2fπ

γ5γµτ · ∂µπ − gωγµωµ

)
ψ

+ 1

2
∂µσ∂µσ − 1

2
mσ

2σ 2 − λfπσ 3 − λ

4
σ 4 + 1

2
∂µπ∂µπ

− 1
2mπ

2π2 − 1
4ωµνω

µν + 1
2mω

2ωµωµ

+ g̃ω
2fπσωµωµ + 1

2 g̃ω
2σ 2ωµωµ, (1)

where the masses and coupling constants are set at M =
gσfπ ,m2

π = µ2 + λf 2
π ,m2

σ = µ2 + 3λf 2
π , and mω = g̃ωfπ .

We take the empirical values for the masses and the π

decay constant as M = 939 MeV, mω = 783 MeV, mπ =
139 MeV, and fπ = 93 MeV. The σ -nucleon coupling constant
gσ and the σω-coupling constant g̃ω are automatically fixed
by the relations gσ = M/fπ = 10.1 and g̃ω = mω/fπ = 8.42,
respectively. The strength of the σ -meson self-energy terms
depends on the σ -meson mass, mσ , through the relation
λ = (m2

σ − m2
π )/2f 2

π . The σ -meson mass and ω-nucleon
coupling constant, gω, are the free parameters. We introduce
the π -nucleon coupling constant gA into this Lagrangian. In

the linear σ model gA = 1. In the nonlinear realization, it is
set to gA = 1.25, which is related to the coupling strength
in the free-space πNN scattering by the Goldberger-Treiman
relation [29]. The characteristic feature of Lagrangian (1) is
the Higgs mechanism, where not only the nucleons but also
the ω mesons obtain their masses by σ -meson condensation
in vacuum. The effective nucleon mass, M∗ = M + gσσ , is
given to be around 0.8 of the free value at the nuclear matter
density. The spin-orbit force for this Lagrangian is about half
of that of the TM1 case, reflecting the amount of nucleon
effective mass.

B. Parity and isospin mixed single-particle wave function

We stipulate that the single-particle state have the mixed-
parity and -charge number to extend the model space so that
the π meson is able to contribute to the finite mean field as to
other mesons. Since the π -meson mean field requires a change
of parity and of charge number of the nuceon state as shown
in Fig. 1, the nucleon Dirac spinor is given as

ψnτjm =
(

iGnτκ(p)Yκmζ (p)

Fnτκ(p)Yκ̄mζ (p)

)
+

(
iGnτκ(n)Yκmζ (n)

Fnτκ(n)Yκ̄mζ (n)

)

+
(

iGnτ κ̄(p)Yκ̄mζ (p)

Fnτκ̄(p)Yκmζ (p)

)
+

(
iGnτ κ̄(n)Yκ̄mζ (n)

Fnτκ̄(n)Yκmζ (n)

)
, (2)

where ζ (t) represents an isospin state, and the or-
bital angular momentum and the spin state are given
as Yκm = ∑

ml,ms
(1/2ms ; lκml|jm)Ylκml

χ1/2,ms
. The single-

particle state (2) is composed of four parts. The first term is the
proton normal parity state, the second is the neutron normal
parity, the third is the proton abnormal parity state, and the forth
is the neutron abnormal parity state. The label n distinguishes
radial wave functions of states that have the same τjm quantum
number. The label τ = 1 or 2 distinguishes a proton-dominant
or neutron-dominant state, and the κ represents the parity state.
Thus κ = −(l + 1) for l = j − 1/2, κ = l for l = j + 1/2,
and κ̄ = −κ represents the opposite (abnormal) parity state.
The radial parts of the wave function, G and F, represent
the upper and the lower components of the Dirac spinor,
respectively. The intrinsic mixed parity and charge number
total wave function is defined by a Slater determinant of
a set {ψnτjm},

� =
A∏

i=1

a
†
i |0〉, i = nτjm. (3)

π π π 0

(0-)

τaγ
5
γ . τa

γ
5
γ .

FIG. 1. Pion mean field diagram combined in the new relativistic
framework.
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Here the creation operator a
†
i creates a nucleon state with

the quantum number i. The orthonormalization condition is
〈ψi |ψj 〉 = δij .

C. Parity and charge number projection

Since the nuclear state is a good eigenstate of parity and
charge number, it is necessary to restore the parity and charge
number of the total wave function. In order to obtain the
total wave function of the definite parity and charge number
state, the intrinsic total wave function has to be projected out
into the good eigenstate of the parity and charge number by
using the following charge number, Pc(Z), and parity, Pp(±),
projection operators, as

Pc(Z) = 1

2π

∫ 2π

0
dθei(Ẑ−Z)θ , Ẑ =

A∑
i=1

1 + τ 3
i

2
, (4)

Pp(±) = 1 ± P̂

2
, P̂ =

A∏
i=1

p̂i , p̂iψi(r, ξ ) = γ0ψi(−r, ξ ).

(5)

The charge number and parity projected total wave function is
written as

�[Z,±] = Pc(Z)Pp(±)�,

= 1

4π

∫ 2π

0
dθe−iZθ [�(θ ) ± �p(θ )], (6)

where

�q(θ ) =
A∏

i=1

eiθ(1+τ 3
i )/2�q, ψi(θ ) = eiθ(1+τ 3

i )/2ψi. (7)

The Ẑ operates on the isospin state and makes the phase eiθ

change only for the proton state, that is, eiθ(1+τ 3
i )/2ζ (p) =

eiθ ζ (p) and eiθ(1+τ 3
i )/2ζ (n) = ζ (n). We define an overlap

matrix, Bq(θ ),

〈�|�q(θ )〉 = det
[〈
ψi

∣∣ψq

j (θ )
〉]

= det[Bq(θ )]ij . (8)

Hereafter if we use a symbol, q = {1, p}, as superscript, it
represents both cases, that is, that the expectation value of
various operators are taken by the mixed-parity and -charge
number intrinsic wave function, �(θ ), when q = 1, and by the
parity operated wave function, p̂�(θ ) = �p(θ ), when q = p,
respectively.

D. Total energy

We write the representation of the total energy of the
A-nucleon system from Lagrangian density (1) to obtain a
condition of total energy minimization. The relation between
the Hamiltonian density and the Lagrangian density is written
as

H =
∑

φ

∂L
∂φ̇

φ̇ − L, (9)

where φ denotes the nucleon field ψ and the π -, σ -, and
ω-meson fields. According to this equation, the Hamiltonian
density of one nucleon moving in the potential that is created
by the meson field is written as (notation as in Ref. [30]),

H = ψ̄

(
−iγ · ∇ + M + gσσ + gA

2fπ

γ5γ τ a∇πa + gωγµωµ

)
ψ

+ 1

2
∇σ · ∇σ + 1

2
m2

σ σ 2 + λfπσ 3 + λ

4
σ 4 + 1

2
∇πa · ∇πa

+ 1

2
m2

ππa2 − 1

2
∇ω0 · ∇ω0 + 1

2
(∇ × ω) · (∇ × ω)

− 1

2
m2

ωωµωµ − g̃ 2
ωfπσωµωµ − 1

2
g̃ 2

ωσ 2ωµωµ, (10)

where we consider the static case and the time derivative terms,
∂0φ, vanish. The total Hamiltonian is written as

Ĥ =
∫

d3x H. (11)

The total energy representation is given, by using the Hamil-
tonian, as [8]

E[Z,±] = 〈�[Z,±]|Ĥ |�[Z,±]〉
〈�[Z,±]|�[Z,±]〉 . (12)

The ψ is a nucleon field operator that operates the total
Fermion system, |�[Z,±]〉, the charge number and parity
projected wave function. When the source terms are large, the
meson field operators can be approximated by their expectation
values, which are the classical fields,

σ −→ 〈Cσ |σ ∣∣Cq
σ (θ )

〉 = σq(θ ), (13)

ωµ −→ 〈Cω|ωµ

∣∣Cq
ω(θ )

〉 = δµ,0ω
q

0 (θ ), (14)

πa −→ 〈Cπa |πa
∣∣Cq

πa (θ )
〉 = πaq(θ ) (a = 0,±), (15)

where Cφ are the coherent states for meson φ. The rota-
tional invariance implies that the expectation value of the
spatial component, 〈ω〉, vanishes. We explicitly write the
meson coherent states, which have θ dependence. We have
to distinguish two classical fields, 〈C|φ|C〉 and 〈C|φ|Cp〉.
This is a critically important point to reduce the minimum
energy condition, Eqs. (21)–(26) and (28). We extend the
mean field approximation for the general nth order meson
fields as

〈C|φ(x)n|Cq〉 = 〈C|φ(x)|Cq〉n. (16)

We apply the above approximation to the cubic and quadratic
self-interaction terms of the σ meson, which means that we
approximate then as follows:

〈C|σ 3|Cq(θ )〉 = 〈C|σ |Cq(θ )〉3 = σq(θ )3,

(17)
〈C|σ 4|Cq(θ )〉 = 〈C|σ |Cq(θ )〉4 = σq(θ )4.

This approximation agrees with the parity projected Hartree-
Fock method for the linear mean field case without the
nonlinear terms. Finally the total energy is given in the mean
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field approximation and for the static system as

E[Z,±] =
∫

d3x
〈�[Z,±]|H|�[Z,±]〉
〈�[Z,±]|�[Z,±]〉

= 1

N [Z,±]

1

4π

∫ 2π

0
dθe−iZθ

∫
d3x[〈�|H(θ )|�(θ )〉

± 〈�|Hp(θ )|�p(θ )〉]. (18)

The mean field Hamiltonian density is given as

Hq(θ ) = ψ†ĥq

D(θ )ψ + Eq
meson(θ ), (19)

where the Dirac Hamiltonian, ĥ
q

D(θ ), and meson energy part,
Eq

meson(θ ), are

ĥ
q

D(θ ) = −iα · ∇ + γ0(M + gσσ q(θ )) + gωωq(θ )

+ gπγ0γ5γ · τ a∇πaq(θ ),

Eq
meson(θ ) = 1

2

(−∇2 + m2
σ

)
σq(θ )2 + λfπσ q(θ )3 + λ

4
σq(θ )4

+ 1

2

(−∇2 + m2
π

)
πaq(θ )2 − 1

2

(−∇2 + m2
ω

)
ωq(θ )2

− g̃ 2
ωfπσ q(θ )ωq(θ )2 − 1

2
g̃ 2

ωσ q(θ )2ωq(θ )2. (20)

E. Charge and parity projected relativistic mean field equations

Using the representation of the total energy, E[Z,±], defined
in Eq. (18), we obtain the condition of energy minimization.
To optimize the variational space, we adopt the variation after
projection scheme. We employ the parity and charge number
projected total wave function defined in Eq. (6) as a trial
function. The unknown functions included in the total energy,
E[Z,±], are the meson fields {φq} and occupied single-particle
state {ψi, i = 1, . . . , A}. The variation with respect to each
meson, δE[Z,±]/δφq = 0, leads to the meson field equations:(−∇2 + m2

σ

)
σq(θ ) = −gσρq

s (θ ) − 3λfπσ q(θ )2 − λσq(θ )3

+ g̃ω
2fπωq(θ )2 + g̃ω

2σq(θ )ωq(θ )2
,

(21)(−∇2 + m2
ω

)
ωq(θ ) = gωρq

v (θ ) − 2g̃ω
2fπσ q(θ )ωq(θ )

− g̃ω
2σq(θ )2

ωq(θ ), (22)(−∇2 + m2
π

)
πaq(θ ) = gπρaq

ps(θ ). (23)

The source terms of the meson fields can be calculated as

ρq
s (θ ) =

A∑
i=1

ψ
†
i γ0ψ̃

q

i (θ ), (24)

ρq
v (θ ) =

A∑
i=1

ψ
†
i ψ̃

q

i (θ ), (25)

ρaq
ps(θ ) =

A∑
i=1

∇ · ψ
†
i γ0γ5γ τ aψ̃

q

i (θ ) (a = 0,±). (26)

The field equation for σ and ω are coupled, and two meson
fields are strongly correlated.

The variation with respect to each single-particle orbit under
the orthonormalization condition, 〈ψi |ψj 〉 = δij ,

δ

δψ∗
i

E[Z,±] −
A∑

i,j=1

εij 〈ψi |ψj 〉
 = 0, (27)

leads to the charge number and parity projected relativistic
mean field equations,

1

4π

∫ 2π

0
dθe−iZθ

(
N (θ )

{
ĥD(θ )ψ̃i(θ ) − [E[Z,±] − E(θ )]ψ̃i(θ )

−
A∑

j=1

ηij (θ )ψ̃j (θ )

}
± Np(θ )

{
ĥ

p

D(θ )ψ̃p

i (θ )

− [E[Z,±] − Ep(θ )]ψ̃p

i (θ ) −
A∑

j=1

η
p

ij (θ )ψ̃p

j (θ )

})

= N [Z,±]
A∑

j=1

εijψj , (28)

where ψ̃
q

i (θ ) = ∑A
k=1 ψk(Bq(θ )−1)ki and εij represents the

Lagrange multiplier. This is the variational equation for the
mixed-parity and -charge number single-particle state, ψi .
Eq(θ ) represents the expectation value of the total Hamil-
tonian, Ĥ , as �q(θ ), and η

q

ij (θ ) is an off-diagonal component
of the single-particle state energy for the Dirac Hamiltonian.
They are defined as

Eq(θ ) = 〈�|Ĥ |�q(θ )〉
〈�|�q(θ )〉 =

A∑
i=1

〈ψi |ĥq

D(θ )
∣∣ψ̃q

i (θ )
〉 + Eq

meson(θ ),

(29)

η
q

ij (θ ) = 〈ψj |ĥq

D(θ )
∣∣ψ̃q

i (θ )
〉
. (30)

With the field equations for mesons, Eqs. (21)–(23), the
contribution from the meson part to the total energy in
Eq. (29) can be written as

Eq
meson(θ ) =

∫
d3x

[
− 1

2
gσρq

s σ q(θ ) − 1

2
gωρq

v ωq(θ )

− 1

2
(−gπ )ρaq

ππaq(θ ) − 1

2
λfπσ q(θ )3 − 1

4
λσq(θ )4

+ 1

2
g̃ωfπσ q(θ )ωq(θ )2 + 1

2
g̃ω

2σq(θ )2
ωq(θ )2

]
.

(31)

The total norm is defined as

N [Z,±] = 1

4π

∫ 2π

0
dθe−iZθ [N (θ ) ± Np(θ )], (32)

where Nq(θ ) denotes the norm between � and �q(θ ) ·
{Bq(θ )}ij represents the overlap matrix elements. The total
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energy can be written as

E[Z,±] = 1

N [Z,±]

1

4π

∫ 2π

0
dθe−iZθ[N (θ )E(θ ) ± Np(θ )Ep(θ )].

(33)
If the single-particle state has a definite parity and charge
number, Eq. (28) results in the usual relativistic mean field
equation, ĥDψi = εiψi .

We solve Eqs. (21)–(26) and (28) self-consistently. First
we solve the normal Dirac equations, ĥDψi = εψi , by using
the prepared, certain initial potential and the obtained intrinsic
mixed parity and charge wave function, �. We then obtain
the parity and isospin projected wave function as a trial wave
function, following Eq. (6). Using this trial wave function,
we calculate the source term for each meson according to
Eqs. (24)–(26). Using these meson sources, we calculate
the meson field by using Eqs. (21)–(23). Each potential is
given by the meson field and by returning to the equation of
motion for one nucleon, Eq. (28). We obtain the mixed-parity
and -charge number single-particle state again. This is the
procedure for one iteration loop. We continue this operation
until convergence is achieved.

F. Numerical calculation

The wave functions for the nucleon and the meson fields
are expanded in the Gaussian basis. For the nucleon, we write

Gnτκmτ
=

∑
µ=1

Cu
nτκmτ µ

φlκµ,

(34)
Gnτκ̄mτ

=
∑
µ=1

Cu
nτ κ̄mτ µ

φlκ̄µ,

Fnτκmτ
=

∑
µ=1

Cl
nτκmτ µ

φlκ̄µ,

(35)

Fnτκ̄mτ
=

∑
µ=1

Cl
nτ κ̄mτ µ

φlκµ.

The width of the Gaussian basis is chosen by means of the
geometrical progression,

φlµ = NF (l, µ)rlexp

(
− r2

2α2
µ

)
(36)(

αµ = a0R
µ−1
F , µ = 1, 2, . . . , nF

max

)
,

where a0 = 0.5 fm, RF = 1.2, and nF
max = 20. For the σ -,

ω-, and πa-meson fields, we expand them in the same way as
for the nucleon by means of the Gaussian functions,

φµ = NMexp

(
− r2

β2
µ

) (
βµ = b0R

µ−1
M , µ = 1, 2, . . . , nM

max

)
,

(37)

where b0 = 1.0 fm, RM = 1.2, nM
max = 20. The merits of

the Gaussian (nonorthogonal) basis are the following. The
Gaussian basis makes the calculation of matrix elements easy,
and we are able to describe various types of wave functions

well so as to take into account the long-range character of
the π -nucleon interaction. As for the iteration, we take the
imaginary time step method [31] and eliminate the small
component in the Dirac equation so as not to pick up the
solution for the negative energy state. We use a tolerance of
10−6. The number of iterations is around 1000–10000.

III. RESULTS AND DISCUSSION

We apply the new relativistic mean field framework (CP-
PRMF) constructed in the previous section to the 4He nucleus.
The 4He nucleus is suitable as the simplest example, and it
has been extensively studied with various theoretical methods.
We assume that the intrinsic ground state is fully occupied,
as {nτjm} = {0, 1, 1/2,±1/2} and {0, 2, 1/2,±1/2}. The
intrinsic total wave function (3) is a state of mixed charge
numbers, Z = 0–4, and positive- and negative-parity states.
The total wave function of the 4He ground state (0+, Z = 2)
is obtained by projecting the positive-parity and charge state,
Z = 2, according to Eq. (6).

In this Lagrangian we have two free parameters. One is
the mass of the σ meson, mσ , and another is the ω-nucleon
coupling constant. In addition to these free parameters, we
sometimes change the strength of π -nucleon coupling, namely,
the axial vector coupling constant gA, although we know it
empirically by the Goldberger-Treiman relation [29], to test
the critical point where the π -meson mean field becomes
finite. We adjust these parameters under some constraint in
the calculation.

A. Parity projection and variational method

Let us consider the positive- and negative-parity states,
which are obtained by using the parity projection into the
intrinsic mixed parity state to understand the mechanism of
the π -nucleon interaction. We represent the mixed parity
single-particle state as

|jm〉 = αj |jm, κ〉 + βj |jm, κ̄〉, |αj |2 + |βj |2 = 1. (38)

The intrinsic mixed parity total wave function, which is
fully occupied up to the Fermi level, defined as just multiples
of the single-particle states for simplicity,

|�〉 =
∏
jm

(αj |jm, κ〉 + βj |jm, κ̄〉)

=
∏
jm

αj |jm, κ〉 +
∑
j1m1

βj1 |j1m1, κ̄〉
∏

jm�=j1m1

αj |jm, κ〉

+
∑
j1m1

∑
j2m2

βj1 |j1m1, κ̄〉βj2 |j2m2, κ̄〉

×
∏

jm�=j1m1,j2m2

αj |jm, κ〉 + · · · . (39)

The first term corresponds to the state in which all the single-
particle states are occupied by the normal parity state, and it is
the |0p − 0h〉 state. This state has the 0+ state. In the second
term, the |j1m1, κ〉 state is replaced with the opposite parity
state, |j1m1, κ̄〉. This means that in the |0p − 0h〉 ground state
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FIG. 2. Total energy (left) and the π -meson energy per particle (right) as a function of the π -nucleon coupling constant for the cases of
variation before projection (diamonds), variation after projection (solid circles) and mixed parity RMF (open circles). gA(0) is the axial vector
coupling constant in the free-space πNN scattering.

a particle moves from the normal parity single-particle state,
|j1m1, κ〉, to the abnormal parity state, |j1m1, κ̄〉. Thus the
second term refers to the sum of |1p − 1h〉 states, which has
0− spin-parity due to the π (0−)-nucleon coupling. In the same
manner, the third term means two 0− |1p − 1h〉 states, namely,
the |2p − 2h〉 states which have 0+ parity. Therefore the wave
functions that are projected to the positive and the negative
parity states, respectively, are written as

Pc(+)|�〉 = |(0p − 0h)〉 + |(2p − 2h)〉 + |(4p − 4h)〉 + · · · ,
(40)

Pc(−)|�〉 = |(1p − 1h)〉 + |(3p − 3h)〉 + · · · . (41)

The character of the parity projected wave function is that
the positive-parity state consists of an even number of 1p-1h
pairs with 0−, which means that the positive-parity projection
provides 2p-2h states as major correction terms. The matrix
element of the Hamiltonian,

〈0p − 0h|ĥD|2p − 2h〉, (42)

gives the dominant component for the πa-nucleon interaction,
while for other mesons, σ -, and ω-nucleon interactions
〈0p − 0h|ĥD|0p − 0h〉 and 〈2p − 2h|ĥD|2p − 2h〉, are the
dominant components.

Figure 2 shows the total energy and the π -meson energy
per particle as a function of the π -nucleon coupling constant
squared. In the mixed parity relativistic mean field framework
there is a critical coupling constant where the π -meson mean
field starts to become finite as shown in Fig. 2. In the case
of strong π -nucleon coupling, the variation before projection
(VBP) method gives approximately the same results as the
variation after projection (VAP) method. In the weak coupling
region at around (gA/gA(0))2 � 1, we do not get any energy
gain by the VBP method. On the other hand, we obtain a
large energy gain by the VAP method in this region. It is
very important that the critical coupling constant is sufficiently
small as compared with that of the free-space πNN coupling,
gA = 1.25, and this means that any state where the π -meson
mean field becomes finite exists as more stable state. In the
mixed parity relativistic mean field framework, there are two

groups: one is the jj closed-shell nuclei, which is favorable for
coupling with the π meson; the other is the LS closed-shell
nuclei, which have small contributions from the π meson. In
the parity projected relativistic mean field framework based
on the VAP scheme, we can take into account the effect of
π -nucleon interaction, namely 2p-2h correlations. The LS
closed-shell nuclei also show a sufficiently large effect of the
π -nucleon interaction. It is indispensable to solve the finite
π -meson mean field based on the VAP scheme, especially
when the π -nucleon coupling has a small effect.

B. Effect of charge projection

We perform now not only the parity projection but also the
charge number projection. We compare the results obtained by
using various methods in Table I. Here we fixed the σ -meson
mass to be 850 MeV and the π -nucleon coupling gA to be
1.15 in all methods. The ω-nucleon coupling constant gω is
adjusted so as to reproduce roughly the empirical total energy
and matter r.m.s. radius simultaneously in the charge and
parity projected relativistic mean field (CPPRMF) calculation.
The second column shows the results in the RMF calculation
without parity and charge number projection. The π -meson
mean field dose not appear yet, because the effect of the
π -nucleon interaction cannot be taken into account sufficiently
in this framework. The third column shows the results in
the PPRMF method, in which only the parity projection
is performed. The π -meson mean field becomes finite and
contributes to the energy gain due to the coupling of 0p-0h
state to the 2p-2h state through the π -nucleon interaction.
For the even N = Z nucleus, however, the single-particle
state with all the isospin components is fully occupied, and
the interaction term is invariant under the rotation in the
isospin space. Thus the z axis can be taken as the direction
of the isospin space without loss of generality [18,19]; that
is, we choose σ · τ a∇πa −→ σ · τ 0∇π0. Therefore the only
σ · τ 0∇π0 type interaction is active owing to the isospin
symmetry.
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TABLE I. Constituents of the total energy (Etotal) for the ground state with 0+ of 4He for various methods. The expectation values of the
kinetic energy (Ekin), the π -meson potential (Uπ ), the σ -meson potential (Uσ ), the ω-meson potential (Uω), and the sum of the nonlinear and
σω coupling term (Enl) (MeV) are listed. The matter r.m.s. radius (Rm) (fm) is also listed. RMF denotes the usual relativistic mean field approach,
but the mixed parity and isospin state is used as a trial wave function. PPRMF denotes the parity projected relativistic mean field method and
CPPRMF denotes the charge and parity projected relativistic mean field method; gA represents the strength of the π -nucleon coupling, and
gω is the strength of the ω-nucleon coupling, which adjusts the strength of the repulsive force. mσ is fixed to be 850 MeV.

RMF RMF PPRMF CPPRMF

gA 0.0 1.15 1.15 1.15
gω 7.042 7.267 7.267 7.267

Etotal −28.22 −16.27 −20.47 −28.72
Ekin 65.08 44.38 56.76 83.93
Uπ 0.00 0.00 −10.83 −43.16
Uσ +Uω −58.76 −35.86 −37.51 −32.54

(= −237.55 + 178.79) (= −133.33 + 97.47) (= −166.26 + 128.75) (= −212.13 + 179.59)
Enl −15.17 −5.41 −9.52 −17.57

Rm (fm) 1.563 2.045 1.778 1.515

In the CPPRMF method, not only the σ · τ 0∇π0 type but
also the σ · τ−∇π+ and σ · τ+∇π− type interactions are
active, and we can take this effect into account by method
of variation after charge number projection. Thus the expected
value of the π -meson energy, Uπ , is around 3 times as large as
that obtained in the case of the parity projected relativistic
mean field method. This fact shows that the critical point
where the π -meson mean field arises is sufficiently reduced,
and a more stable state is realized where the π -meson mean
field becomes finite. Therefore the variation after projection
method is important for constructing the mean field framework
with mixed parity and charge number to take into account
the effect of the π -nucleon interaction properly. For the sake
of comparison, we show the results of the relativistic mean
field calculations in the first column. We adjust the ω-nucleon
coupling gω to reproduce the empirical total energy of the 4He
nucleus when the π -meson mean field is switched off, gA = 0.

C. Effect of π -meson mean field

We study the constituents of the total energy for the case
of a finite π -meson mean field in the CPPRMF method. The
σ -meson mass is set to several values, 777, 800, 840, and
850 MeV, and for each mass we adjust the ω-nucleon coupling
constant gω and π -nucleon coupling constant gA to reproduce
the total energy. A series of results are shown in Table II. The
sum of scalar and vector potentials corresponds to the central
potential in the nonrelativistic framework. The components
are shown in parentheses. In general, as the π -meson mean
field becomes larger, the kinetic energy becomes larger, and
the central potential, Uσ + Uω, becomes smaller. This is the
general tendency when the π -meson mean field arises. The
mechanism of the energy gain due to the π -nucleon interaction
is shown in Eq. (42). To reach the 2p-2h state for the 4He
nucleus, for example, because two nucleons jump from a
0s1/2 orbital to the 0p1/2 orbital across the major shell in

TABLE II. Constituents of the total energy (Etotal) for the ground state with 0+ of 4He in the CPPRMF method. The expectation values of
the kinetic energy (Ekin), the π -meson potential (Uπ ), the σ -meson potential (Uσ ), the ω-meson potential (Uω), and the sum of the nonlinear
and the σω coupling term (Enl) (MeV) are listed. The matter r.m.s. radius (Rm) (fm) is also listed. We adjust the π -nucleon coupling gA and
the ω-nucleon coupling gω to reproduce the total energy for various σ -meson masses.

mσ (MeV) gA gω Etotal Ekin Uπ Uσ +Uω Enl Rm (fm)

1.15 7.753 −28.74 62.60 −25.07 −32.28(= −169.49+137.22) −14.63 1.788
777 1.20 7.806 −28.52 65.79 −30.99 −28.77(= −168.17+139.40) −15.17 1.775

1.25 7.861 −28.55 69.67 −37.93 −24.90(= −167.90+143.00) −16.02 1.755

1.15 7.591 −28.53 68.63 −29.83 −32.53(= −181.23+148.68) −15.43 1.702
800 1.20 7.642 −28.60 72.79 −37.22 −28.53(= −180.74+152.21) −16.26 1.682

1.25 7.703 −28.61 77.00 −45.22 −23.87(= −179.66+155.79) −17.16 1.663

1.15 7.329 −28.63 80.68 −40.18 −32.63(= −205.43+172.80) −17.13 1.552
840 1.20 7.385 −28.74 85.72 −49.83 −27.16(= −203.51+176.35) −18.09 1.532

1.25 7.455 −28.59 90.25 −59.53 −20.95(= −199.99+179.04) −18.99 1.519

1.15 7.267 −28.72 83.93 −43.16 −32.54(= −212.13+179.59) −17.57 1.515
850 1.20 7.327 −28.66 88.88 −53.13 −26.58(= −208.81+182.22) −18.45 1.499

1.25 7.398 −28.54 93.61 −63.38 −20.00(= −204.95+184.95) −19.40 1.487
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FIG. 3. The σ -meson mass dependence of the constituents of the total energy of 4He under the constraint of the total energy in CPPRMF
calculation. We adjust the ω-nucleon coupling to reproduce the total energy. For each mσ , we take the following coupling constants: gω =
8.929 (650 MeV), 7.753 (777 MeV), 7.591 (800 MeV), 7.329 (840 MeV), 7.267 (850 MeV), respectively. On the left are the π -meson potential
(solid squares), σ + ω-meson potential (solid circles) and the kinetic energy (open squares, the scale is shown on the right axis). The total
energy is represented by open circles. The matter r.m.s. radii are shown on the right.

shell model language, requires a large kinetic energy. The
matter r.m.s. radius becomes small as the π -meson mean
field increases, which is also understandable according to
Eq. (42). It is feasible to include overlap between the 0p1/2

orbital and the 0s1/2 orbital so as to make the matrix element
larger. Next let us compare the results in the same π -nucleon
coupling constant lines for each σ -meson mass. The amount
of π -meson potential becomes larger as the σ -meson mass
becomes heavier. Of course, the kinetic energy increases
accompanied by an increase in the π -meson attraction. In
contrast, the σ -meson mass dependence of the central potential
almost never changes, although the absolute values of the
scalar and vector potentials increase. The potential becomes
deeper with mσ , and the matter r.m.s. radius becomes smaller.
At around 850 MeV we can reproduce the total energy and
matter r.m.s. radius simultaneously.

Figure 3 shows the mass dependence of the π -meson
potential energy, central potential, and kinetic energy. The

omega-nucleon coupling constant is adjusted to reproduce the
empirical total binding energy for each mass. The π -nucleon
coupling constant is set to be 1.15. In this mass region, at
around 650 MeV, the π -meson potential dose not contribute so
much. The matter r.m.s. radius is quite large. The contribution
of the π -meson potential to total energy gain becomes larger
as the σ -meson mass becomes heavier. There is a strong
correlation between the kinetic energy and the π -meson
potential. The right-hand part of Fig. 3 shows the matter r.m.s.
radius. The matter r.m.s. radius becomes smaller with mσ .

D. Intrinsic single-particle components

Figure 4 shows the square of the intrinsic single-particle
wave function in the CPPRMF method. The proton-dominant
single-particle wave functions (τ = 1) are shown in the left-
hand panel. The dominant component is the positive-parity
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FIG. 4. Square of components of the single-particle wave function for the case with mσ = 850 MeV, gω = 7.267, and gA = 1.15.
The constituents of the total energy are listed in Table II, where the total energy and matter r.m.s. radius are reproduced simultaneously.
The dashed curve represents the positive-parity (0s1/2) proton state, the solid curve the negative-parity (0p1/2) neutron state, the dotted curve the
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wave function of the lowest state, and the right-hand figure that of the second state.
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(s1/2) proton state. This state couples with the negative-parity
(p1/2) neutron state through the π -nucleon interaction. The
positive-parity (s1/2) neutron and negative-parity (p1/2) proton
component also appear, but they are very tiny. The negative-
parity (p1/2) neutron component has its peak at around 0.8 fm.
This component becomes quite compact compared with that of
the normal harmonic-oscillator p-shell wave function, which
has its peak at around 1.5 fm. We calculate the overlap between
the (p1/2) proton component (upper part) in the CPPRMF
method and the 0p shell state of the harmonic-oscillator wave
function with various widths, then the oscillator length at b =
0.85 fm gives the maximum amount of overlap. This tendency
has been clearly shown in the nonrelativistic treatment for the
case of the tensor force [32]. The 2p-2h state in the CPPRMF
method is not to be expressed in terms of the usual simple
0p state. This is because the mechanism of the energy gain
is due to the π -nucleon interaction according to Eq. (42).
If the overlap between the 0p-0h state [(0s)4 configuration] and
the 2p-2h state [(0s)−2(0p)2 configuration] becomes larger, the
0p state tries to shrink compared with the kinetic energy; then
the matrix element of the π -nucleon interaction increases.
Thus the compact distribution of the negative component is
related to the increase of the kinetic energy as shown in Tables I
and II. The negative-parity (p1/2) neutron component has some
value at the origin of the radius. This is because the lower part
of this component has the opposite parity (s wave) and has the
a value comparable with that of the upper part.

There is one more intrinsic single-particle state (τ = 2)
shown in the right-hand part of Fig. 4. This component has the
positive-parity (s1/2) neutron component as the dominant one.
The negative-parity(p1/2) proton state also has some value at
the origin for the same reason mentioned above. The positive-
parity neutron component is no longer the normal 0s wave
function not only due to the lower component, which has the
opposite parity, but also due to the out-of-phase admixture of
the 1s1/2 state.

E. Density distribution and form factor

The point proton density distribution of the 4He ground state
is shown in Fig. 5. The density distribution in the CPPRMF
method is depressed at the central part. Its peak corresponds
to that of the negative-parity (p1/2) proton component in
Fig. 4. This is because the π -nucleon interaction induces
the admixture of p1/2 and s1/2 components. There is no
depression at the central part unless the π -nucleon interaction
is at work. The form factor of 4He is obtained by Fourier
transformation and is shown in Fig. 6 [33]. The form factor
obtained in the CPPRMF method has a dip near the momentum
transfer squared, q2 = 10 fm−2. This position is related to
the depression of the density distribution in Fig. 5. Without
the π -nucleon interaction, the form factor has the dip at
a higher-momentum region, around q2 = 16 fm2. As the
π -meson mean field becomes stronger, the dip position
gradually approaches q2 = 10 fm−2. Another critical feature
of the form factor in the CPPRMF method has a large amount
of second maximum at the high-momentum region. It is related
to the increase of the kinetic energy as the π -meson mean field
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FIG. 5. Density distribution for the 4He ground state in the case
with mσ = 850 MeV, gω = 7.267, and gA = 1.15. The constituents
of the total energy are listed in Table II, where the total energy and
matter r.m.s. radius are reproduced simultaneously (solid curve). For
comparison the density distribution obtained by the usual relativistic
mean field calculation is also shown by the dashed curve, which
corresponds to the (0s1/2)4 configuration. The parameters are taken
to be mσ = 850 MeV, gω = 7.042, and gA = 0, respectively.

works strongly. This fact means that the pionic correlation
needs higher-momentum components. In this calculation the
amount of the second maximum significantly grows up from
the case without π -meson mean field. The dip position and
the second maximum at higher momentum clearly indicate the
π -meson effect in the nucleus.

We discuss the meson-exchange current in the Z diagram
that corresponds to the three-body force in the nonrelativistic
framework. As for the depression in the central region of the
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FIG. 6. Form factor for the 4He ground state in the case with
mσ = 850 MeV, gω = 7.267, and gA = 1.15. The constituents of
the total energy are listed in Table II, where the total energy and
matter r.m.s. radius are reproduced simultaneously (solid curve). For
comparison the form factor obtained by usual relativistic mean field
calculation is also shown by dashed curve, which corresponds to the
(0s)4 configuration. The parameters are taken to be mσ = 850 MeV,
gω = 7.042, gA = 0, respectively.
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π

FIG. 7. Z diagram, which is known as the relativistic effect for
the pionic pair current.

density distribution and the second maximum of the form
factor, it is well known that the meson-exchange current
that is enhanced by the two-pion exchange three-body force
dominantly contributes to the central depression, as shown
in the ATMS calculations [34]. The effect of the meson-
exchange current is included naturally as a relativistic effect
in the CPPRMF method. This is to be contrasted with any
nonrelativistic models. Figure 7 shows the diagram of meson-
exchange current, the so-called Z diagram [14].

IV. SUMMARY

We have constructed a new relativistic mean field basis
model, where the parity and charge number projection is
performed after the introduction of the finite π -meson mean
field. We have developed the variation after the projection of
the parity and the charge number. We call this model the charge
and parity projected relativistic mean field (CPPRMF) model.
The π -meson property of the pseudoscalar and isovector
character requires the single-particle state with mixed-parity
and -charge number as a basis in the mean field framework.
To restore the symmetry, we perform the parity and charge
number projection. We have used the chiral σ model in the
nonlinear realization.

We have made the energy variational after projection. This
procedure is very important sufficiently to take into account
the effect of π -nucleon interaction. As is shown in Sec. III,
variation before the projection procedure cannot sufficiently
take into account the π -meson effect in the weak coupling
region. For the π -nucleon interaction, the matrix element
〈0p − 0h|ĥD|2p − 2h〉 gives the dominant contribution; it
is better to use the projected wave function as a energy
variational function so as to remove the negative-parity states
(odd-number particle-hole states) in the ground state.

We have applied this CPPRMF framework for even N =
Z nuclei, especially for the ground state of the 4He nucleus, to

study the effect of the π meson in the ground-state structure.
We have compared the amount of π -meson potential among the
three methods, the relativistic mean field (RMF) without parity
and charge number projection, the parity projected relativistic
mean field (PPRMF), and the charge and parity projected
relativistic mean field (CPPRMF). In the RMF without the
projection method, when the π -nucleon coupling constant is
weak there is no π -meson mean field. In the PPRMF method,
the π -meson mean field appears, but the π -meson mean field
effect is not large enough [4,32]. In the CPPRMF method, the
amount of π -meson potential is around 3 times larger than
that of PPRMF. This is because not only the π0 but also the
π± mesons contribute. Therefore the critical coupling constant
where the π -meson mean field starts to become finite is much
smaller than that of free space, gA=1.25.

We have compared the constituents of the total energy
in various cases of the strength of π -meson mean field. In
general, as the π -meson mean field becomes stronger, the
central potential (the sum of the scalar and vector potentials)
becomes shallow, and the kinetic energy increases. Observing
each component of the single-particle wave function, the
negative-parity (p) proton state has quite a compact distribution
compared with the usual p-shell harmonic-oscillator wave
function. This fact is related to the increase in the kinetic
energy. The π -nucleon interaction is accompanied by the
higher-momentum components. Further, the amount of 0s state
is depressed due to the parity admixture. It is seen as the
depression at the central part of the density distribution in
Fig. 5. We can naturally reproduce the feature of the density
distribution and form factor of 4He in the CPPRMF method
as shown in Figs. 5 and 6. The results we obtained in this
paper are qualitatively consistent with those of the case of the
nonrelativistic framework (CPPHF) [32].

It is very important to perform the CPPRMF model calcula-
tions for medium and heavy nuclei in order to take into account
the effect of π mesons in the mean field approximation. Since it
is conceptually a simple method, but heavy in actual numerical
calculations, it would be very interesting to study the medium
and heavy nuclei in this method. Work in this direction is in
progress.
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