
PHYSICAL REVIEW C 73, 034006 (2006)

Nucleon-nucleon bremsstrahlung: Anomalous magnetic moment effects
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Background: Two soft-photon amplitudes, the two-u-two-t special (TuTts) amplitude and the Low amplitude,
are known to produce quantitatively similar npγ cross sections, but they predict quite different ppγ cross sections
for those kinematic conditions in which the nucleon scattering angles are small (less than 25◦). Purpose: These
two amplitudes have been applied to systematically investigate three different nucleon-nucleon bremsstrahlung
(NNγ ) processes: ppγ, npγ , and nnγ . The nnγ process is explored for the first time. The primary focus of this
work is to investigate the contribution of the proton and the neutron anomalous magnetic moments to all three
NNγ processes for projectile energies above 150 MeV and for laboratory scattering angles (θ1 and θ2) lying
between 8◦ and 40◦. Method: A special soft-photon expansion in which the TuTts amplitude is expanded in terms
of the Low amplitude plus additional amplitudes is utilized to explore the relationship between the TuTts and
Low amplitudes and the reasons why they agree and disagree. We also used the TuTts amplitude to calculate the
NNγ cross section with and without the anomalous magnetic moment contributions to explore the importance
of that element of the electromagnetic current. Results: The TuTts amplitude describes well the available ppγ

cross-section data. The anomalous magnetic moment contribution is (i) significant in the ppγ process when each
scattering angle is less than 25◦ but insignificant when each scattering angle is 40◦ or greater and (ii) insignificant
in the npγ process for all scattering angles. The nnγ cross sections for the TuTts and Low amplitudes differ
substantially for the kinematics investigated. Conclusions: In general, the Low amplitude agrees well with the
TuTts amplitude when anomalous magnetic moment effects are not significant, but the two amplitudes can yield
quite different predictions when such effects are significant. These findings have enhanced our understanding
of the fundamental emission mechanism governing NNγ processes, and they explain why the TuTts amplitude
should be used to describe all three NNγ processes.
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I. INTRODUCTION

The effect of the nucleon anomalous magnetic moments in
nucleon-nucleon bremsstrahlung (NNγ , including ppγ, npγ ,
and nnγ ) has received renewed attention because it has
been found to play an important role in our understanding
of the fundamental photon emission mechanism governing
bremsstrahlung in the two-nucleon scattering process. The
anomalous magnetic moment effect in ppγ has been stud-
ied using the nonrelativistic potential model approach [1].
Most recently, utilizing two different relativistic soft-photon
amplitudes (the two-u-two-t special amplitude MTuTts

µ and
the Low [2] amplitude MLow

µ ), the effect was investigated
in both ppγ and npγ processes [3]. The most interesting
results can be summarized as follows: (i) The anomalous
magnetic moment contribution to the ppγ cross section was
found to be significant while that to the npγ cross section
was found to be insignificant. (ii) The amplitude MTuTts

µ

retains most of the essential contribution from the terms in
the soft-photon expansion which depend upon the anomalous

magnetic moments. The primary difference between MTuTts
µ

and MLow
µ is that the former includes an additional term

M (3)
µ (K1; κ), which is of order K in the photon energy and

is a function of the anomalous magnetic moments. (iii) For
the ppγ process, the MTuTts

µ amplitude provides a better
soft-photon approximation than does the MLow

µ amplitude,
because the contribution coming from M (3)

µ (K1; κ) can be
important in the calculation of the ppγ cross sections. In
fact, the success of the MTuTts

µ approximation in describing
the available ppγ data has been well established; for that
reason, MTuTts

µ is the preferred soft-photon amplitude for
investigating the role of the proton anomalous magnetic
moment in that process. (iv) For the npγ process, MTuTts

µ and
MLow

µ provide approximately equivalent results, because the
contribution from both M (3)

µ (K1; κ) and the other magnetic-
moment-dependent amplitude M

mag
µ (K0; κ) are essentially

negligible, so that the two soft-photon amplitudes predict
quantitatively similar npγ cross sections. (v) In addition
to showing interesting results for ppγ and npγ , Ref. [3]
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has introduced a new soft-photon expansion in which the
amplitude MTuTts

µ is expanded in terms of several special
amplitudes [MLow

µ ,M (1)
µ (K−1; e),Mmag

µ (K0; κ),Mex
µ (K0), and

M (3)
µ (K1; κ); see Eq. (1) of Ref. [3]]. This expansion provides

a useful method which can be utilized to analyze experimental
data and to investigate the contributions of those special
amplitudes to NNγ . This method has been employed in our
investigation reported here.

In order to explore completely the effect of anomalous
magnetic moments in the NNγ process, we must include
nnγ in our investigations. Therefore, we have systematically
investigated these effects in ppγ, npγ , and nnγ . We have
used the amplitudes MTuTts

µ and MLow
µ , as defined in Sec. II,

to calculate coplanar NNγ cross sections d3σ/d�1d�2dψγ

as functions of the photon angle ψγ for several laboratory
nucleon projectile energies above 150 MeV and for laboratory
scattering angles between 8◦ and 40◦. For the ppγ case, we
present calculations to support our previous finding that the
contribution from the proton anomalous magnetic moment
dominates the cross section. Moreover, to clearly demonstrate
that the contribution from M (3)

µ (K1; κ) is important in the
ppγ process, we compare results for three new amplitudes
[MTuTts

(1)µ ,MTuTts
(2)µ , and MTuTts

(3)µ ] defined in Sec. II to calculate
ppγ cross sections. These results not only explain why
the MTuTts

µ calculation agrees well with the available ppγ

cross-section data but also provide an explanation for dis-
crepancies between the data and calculations using the MLow

µ

amplitude. In contrast, our investigation shows for the npγ

case that the overall contribution from the anomalous magnetic
moments [including M (3)

µ (K1; κ)] is consistently small for the
kinematics investigated. Our numerical results suggest that the
insignificant anomalous magnetic moment effect in the npγ

process may arise from a cancellation between the contribution
from the anomalous magnetic moment of the proton and that of
the neutron. Because the anomalous magnetic moment effect
is small, contributions from meson-exchange current effects
play a much larger role in npγ cross-section calculations.

The nnγ process has not been previously investigated
systematically. Although free-space nn scattering is not
directly observable in the laboratory, the nnγ process does
contribute to nucleus-nucleus bremsstrahlung (even though
the most important contribution comes from the E1-dominated
npγ process). Because the neutron has zero charge, the two
soft-photon amplitudes MTuTts

µ and MLow
µ (and the resulting

nnγ cross sections) can only depend upon the anomalous
magnetic moment of the neutron. This is an ideal situation
in which to investigate without ambiguity the anomalous
magnetic moment effect and the contribution of M (3)

µ (K1). It is
understood that if the contribution of M (3)

µ (K1) is significant,
then MTuTts

µ and MLow
µ will yield very different nnγ cross-

section predictions. In that case, MTuTts
µ should be used to

describe the nnγ process. We also compare calculated ppγ

and nnγ cross sections, in order to investigate similarities and
differences in the two processes.

Our presentation is organized as follows: In Sec. II, we
define the amplitude MTuTts

µ for ppγ, npγ , and nnγ processes.
We derive an explicit relationship between MTuTts

µ and MLow
µ .

We also define three additional amplitudes [MTuTts
(1)µ ,MTuTts

(2)µ ,
and MTuTts

(3)µ ] to be used in the investigation of the M (3)
µ (K1)

contribution. In Sec. III, we present our numerical results.
We also discuss their implications. Our conclusions are
summarized in Sec. IV. In the Appendix, we outline how the
MTuTts

µ amplitude for npγ and nnγ processes is derived.

II. THE NUCLEON-NUCLEON BREMSSTRAHLUNG
AMPLITUDE

Consider photon emission accompanying the scattering of
two nucleons N1 and N2,

N1
(
P

µ

1

) + N2
(
P

µ

2

) → N1
(
P

′µ
1

) + N2
(
P

′µ
2

) + γ (Kµ), (1)

where Ni (i = 1, 2) can be either a proton p or a neutron n, P µ

1
(P µ

2 ) is the four-momentum of the incident (target) nucleon,
P

′µ
1 (P ′µ

2 ) is the four-momentum of the scattered (recoil)
nucleon, and Kµ is the four-momentum of the emitted photon
with polarization εµ. Equation (1) describes three distinct NN

bremsstrahlung processes: ppγ, npγ , and nnγ . Each nucleon
Ni (i = 1, 2) has mass m, charge ei , and anomalous magnetic
moment κi . Here, ei = e for a proton and 0 (zero) for a neutron,
while κi = κp = +1.793 for a proton and κi = κn = −1.913
for a neutron. The five four-momenta comprising Eq. (1),
which satisfy the energy-momentum conservation defined by

P
µ

1 + P
µ

2 = P
′µ
1 + P

′µ
2 + Kµ, (2)

can be used to define six Mandelstam variables for NN

bremsstrahlung processes:

si = (P1 + P2)2, sf = (P ′
1 + P ′

2)2,

t1 = (P ′
1 − P1)2, t2 = (P ′

2 − P2)2, (3)

u1 = (P ′
2 − P1)2, u2 = (P ′

1 − P2)2.

A. The NN elastic scattering amplitudes

When the photon momentum K approaches zero, the three
NN bremsstrahlung processes depicted in Eq. (1) reduce to
the corresponding NN elastic scattering processes,

N1
(
P

µ

1

) + N2
(
P

µ

2

) → N1
(
P̄

′µ
1

) + N2
(
P̄

′µ
2

)
, (4)

where

P̄
′µ
1 = lim

K→0
P

′µ
1 , P̄

′µ
2 = lim

K→0
P

′µ
2 , (5)

and the six Mandelstam variables defined by Eq. (3) reduce to
three variables s, t , and u:

s = si = lim
K→0

sf ,

t = lim
K→0

t1 = lim
K→0

t2, (6)

u = lim
K→0

u1 = lim
K→0

u2.

The fact that these three variables satisfy the on-shell condi-
tion,

s + t + u = 4m2, (7)

034006-2



NUCLEON-NUCLEON BREMSSTRAHLUNG: ANOMALOUS . . . PHYSICAL REVIEW C 73, 034006 (2006)

implies that only two are independent. We employ a covariant
NN elastic scattering amplitude obtained by Goldberger,
Grisaru, MacDowell, and Wong (GGMW) [4] as the input
for our bremsstrahlung calculations. The GGMW amplitude
has the form [5]

F =
5∑

α=1

Fα[Gα + (−1)αG̃α], (8)

where

Gα = ū(P̄ ′
1)λαu(P1)ū(P̄ ′

2)λαu(P2),
(9)

G̃α = ū(P̄ ′
2)λαu(P1)ū(P̄ ′

1)λαu(P2),

and the tensors λα and λα are defined by

(λ1, λ2, λ3, λ4, λ5) =
(

1,
σµν√

2
, iγ5γµ, γµ, γ5

)
,

(10)

(λ1, λ2, λ3, λ4, λ5) =
(

1,
σµν

√
2

, iγ5γ
µ, γ µ, γ5

)
.

In Eq. (8), Fα (α = 1, 2, 3, 4, 5) are invariant functions of
two independent variables chosen from s, t, and u. Because the
GGMW amplitude will be used to construct the two-u-two-t
special (TuTts) amplitude for the NN bremsstrahlung process,
we choose u and t to be the two independent variables, and we
write Fα = Fα(u, t). Furthermore, for states belonging to the
isotopic triplet (pp and nn), we impose the condition

Fα(u, t) = (−1)α+1Fα(t, u), (11)

so that the amplitude F, as given by Eq. (8), will obey the
Pauli principle [5]. [The condition for the isotopic singlet state
is Fα(u, t) = (−1)αFα(t, u).]

If we apply the Fierz transformation, G̃α (α = 1, 2, 3, 4, 5)
can be expressed in terms of Gα , and the amplitude F can be
written as

F =
5∑

α=1

Fe
α (u, t)Gα, (12)

where the invariant functions Fe
α (u, t) are defined in terms of

invariant functions Fα(u, t). [See Eq. (48) of Ref. [5].]

B. The two-u-two-t special amplitude

The NN elastic scattering amplitude F given by Eq. (12)
has been used to construct the TuTts amplitudes for NN

bremsstrahlung processes. They are given by the following
expressions:

MTuTts
µ =

5∑
α=1

[
ū(P ′

1)Xµαu(P1)ū(P ′
2)λαu(P2)

+ ū(P ′
1)λαu(P1)ū(P ′

2)Yµα
u(P2)

]
, (13)

where

Xµα = Fe
α (u1, t2)

e1P
′
1µ + R

P ′
1

1µ

P ′
1 · K

− Vxµ

 λα

− Fe
α (u2, t2)λα

[
e1P1µ + R

P1
1µ

P1 · K
− Vxµ

]
,

(14)

Yµα = Fe
α (u2, t1)

e2P
′
2µ + R

P ′
2

2µ

P ′
2 · K

− Vyµ

 λα

− Fe
α (u1, t1)λα

[
e2P2µ + R

P2
2µ

P2 · K
− Vyµ

]
,

in terms of

R
P ′

1
1µ = e1

4
[γµ,K/ ] + κ1

8m
{[γµ,K/ ], P/′

1},

R
P1
1µ = R

P ′
1

1µ(P ′
1 → P1),

R
P ′

2
2µ = e2

4
[γµ,K/ ] + κ2

8m
{[γµ,K/ ], P/′

2},

R
P2
2µ = R

P ′
2

2µ(P ′
2 → P2),

and we have used [A,B] ≡ AB − BA and {A,B} ≡ AB +
BA. The Vxµ and Vyµ can be either Vµ or V ′

µ, where

Vµ = e

[
(P2 − P ′

2)µ
(2P2 − P ′

2) · K
+ (P1 − P ′

2)µ
2(P1 − P ′

2) · K

]
,

(15)

V ′
µ = e

[
(P2 − P ′

2)µ
2(P2 − P ′

2) · K
− (P1 − P ′

2)µ
2(P1 − P ′

2) · K

]
.

More precisely, Eq. (13) represents three different amplitudes:

(i) For the ppγ process, e1 = e2 = e, κ1 = κ2 = κp, and
Vxµ = Vyµ = Vµ.

(ii) For the npγ process, e1 = 0, e2 = e, κ1 = κn, κ2 =
κp, Vxµ = V ′

µ, and Vyµ = Vµ.
(iii) For the nnγ process, e1 = e2 = 0, κ1 = κ2 = κn, and

Vx,µ = Vyµ = 0.

It is easily shown that MTuTts
µ satisfies the gauge invariant

condition, KµMTuTts
µ = 0.

The amplitude MTuTts
µ given by Eq. (13) for the ppγ process

is identical to the amplitude MTuTts
1µ given in Eq. (49) of Ref. [5].

As discussed in Appendix A, we have followed the method
used in Ref. [5] to derive the amplitude MTuTts

µ for both npγ

and nnγ processes. Because the neutron has no charge and
the external amplitude for the nnγ process is already gauge
invariant, the amplitude MTuTts

µ involves no additional gauge
term.

Equation (13) plus the first two equations in Eq. (14) show
that MTuTts

µ depends on the invariant functions Fe
α evaluated

at four on-shell points (ui, tj ) for i, j = 1, 2. To help one
understand how and why (ui, tj ) have been chosen as the
on-shell points for the amplitude MTuTts

µ , we should first point
out that there are several options for choosing the on-shell
conditions. There are four different external photon emission
processes, because a photon can be emitted from any one of
the four nucleon legs in a given NN bremsstrahlung process.
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The external amplitude is, therefore, a sum of four different
half-off-shell amplitudes. A different off-shell kinematic con-
dition specifies each of the half-off-shell amplitudes. These
four off-shell kinematic conditions can be expressed as [6,7]

sf + u2 + t2 = 4m2 − 2P1 · K,

si + u1 + t2 = 4m2 + 2P ′
1 · K,

(16)
sf + u1 + t1 = 4m2 − 2P2 · K,

si + u2 + t1 = 4m2 + 2P ′
2 · K.

These expressions define the off-shell kinematic conditions
for those external processes in which a photon is emitted from
the P1, P ′

1, P2, and P ′
2 legs, respectively. Equations (16) are

said to define the off-shell kinematic conditions, because each
equation involves an off-shell factor (P1 · K,P ′

1 · K,P2 · K , or
P ′

2 · K) and because there exist three independent variables in
each of the four equations. From these four off-shell kinematic
conditions, two well-defined sets of on-shell conditions can be
obtained [6].

1. The four on-shell conditions specifying the TuTts amplitude

The first set of on-shell conditions can be defined by
introducing new variables sij (i, j = 1, 2) of the form

sij + ui + tj = 4m2, (17)

where

s22 = sf + 2P1 · K,

s12 = si − 2P ′
1 · K,

(18)
s11 = sf + 2P2 · K,

s21 = si − 2P ′
2 · K.

Because there are only two independent variables in a given set
of (sij , ui, tj ), four separate on-shell points [(ui, tj ), i, j = 1, 2
or (sij , tj )] can be defined, and we can write

Fe
α (ui, tj ) = Fe

α (sij , tj ). (19)

Moreover, as shown in Ref. [6], four center-of-mass momenta
q

ij
c.m. and four center-of-mass angles θ

ij
c.m. can be obtained

from the four given on-shell points (sij , tj ). In other words,
Fe

α (sij , tj ) is evaluated at the set of (qij
c.m., θ

ij
c.m.),

Fe
α (ui, tj ) = Fe

α (sij , tj ) = Fe
α

(
qij

c.m., θ
ij
c.m.

)
. (20)

Thus, by imposing the on-shell conditions given by Eq. (17),
Fe

α (ui, tj ) can be treated as on-shell amplitudes. We emphasize
that the on-shell conditions given by Eq. (17) are equivalent
to the original four off-shell kinematic conditions specified by
Eqs. (16). Therefore, the choice of the four separate on-shell
points at which to evaluate the TuTts amplitude MTuTts

µ is both
natural and physical. Furthermore, because of such a choice,
the amplitude MTuTts

µ is free of any derivative of Fe
α (ui, tj )

with respect to u and/or t. For the ppγ process, an important
advantage of using the amplitude MTuTts

µ is that it retains most
of the contributions from the κp-dependent terms [3]. In fact,
these κp-dependent terms were shown to play a key role in
ppγ cross sections for the kinematic conditions reported in
Ref. [3].

2. The single on-shell condition specifying the Low amplitude

The second set of on-shell conditions involves only a single
equation, and it has been used in the Low amplitude. If we add
the four off-shell kinematic conditions defined by Eqs. (16),
we find

s̄ + ū + t̄ = 4m2, (21)

where

s̄ = 1
2 (si + sf ),

ū = 1
2 (u1 + u2),

t̄ = 1
2 (t1 + t2).

All four off-shell factors cancel precisely because of energy-
momentum conservation and the condition KµKµ = 0. Equa-
tion (21) defines a unique on-shell point, (s̄, t̄ ), and all Fe

α are
to be evaluated at this common point for the Low amplitude.
Because only a single on-shell point is used, each of the four
half-off-shell external emission amplitudes must be expanded
about (s̄, t̄ ) before the gauge invariance condition can be
imposed to determine the corresponding internal amplitude.
Therefore, the input for the Low amplitude MLow

µ will be the
on-shell amplitudes Fe

α (s̄, t̄ ) and their derivatives evaluated at
(s̄, t̄). This expansion about the special on-shell point (s̄, t̄ )
is standard in the Low procedure. As pointed out in Ref. [3],
a serious drawback of using the Low procedure for the ppγ

process is that an essential part of the important contribution
from the κp-dependent terms will be lost. To see this, let us
compare the amplitude MTuTts

µ with the Low amplitude MLow
µ .

C. The relationship between MTuTts
µ and MLow

µ

The Low amplitude for both ppγ and npγ processes was
first derived by Nyman [8]. The on-shell point defined in
Nyman’s original derivation was (ν,�), where ν = s̄ − 2m2

and � = 2m2 − t̄ . Here we use the on-shell point (s̄, t̄ ), which
has been used by most other authors. The fact that the Low
amplitude MLow

µ for ppγ and npγ can be reproduced from the
TuTts amplitude MTuTts

µ was demonstrated in Ref. [3]. In order
to show that the amplitude MLow

µ (for all three ppγ, npγ , and
nnγ processes) can be obtained from the amplitude MTuTts

µ

given by Eq. (13), we must expand MTuTts
µ about the on-shell

point (s̄, t̄ ). Using the following expressions

s12 = s̄ + (P ′
2 − P ′

1) · K,

s22 = s̄ + (P1 − P2) · K,

s21 = s̄ − (P ′
2 − P ′

1) · K,
(22)

s11 = s̄ − (P1 − P2) · K,

t1 = t̄ − (P2 − P ′
2) · K,

t2 = t̄ + (P2 − P ′
2) · K,

to expand Fe
α (ui, tj ) = Fe

α (sij , tj ) for i, j = 1, 2, we find

Fe
α (u1, t2) = Fe

α (s12, t2)

= Fe
α (s̄, t̄ ) + ∂F e

α (s̄, t̄ )

∂s̄
(P ′

2 − P ′
1) · K

+ ∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K,
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Fe
α (u2, t2) = Fe

α (s22, t2)

= Fe
α (s̄, t̄ ) + ∂F e

α (s̄, t̄ )

∂s̄
(P1 − P2) · K

+ ∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K,

(23)
Fe

α (u2, t1) = Fe
α (s21, t1)

= Fe
α (s̄, t̄ ) − ∂F e

α (s̄, t̄ )

∂s̄
(P ′

2 − P ′
1) · K

− ∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K,

F e
α (u1, t1) = Fe

α (s11, t1)

= Fe
α (s̄, t̄ ) − ∂F e

α (s̄, t̄ )

∂s̄
(P1 − P2) · K

− ∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K.

Substituting Eqs. (23) into Eq. (13), we obtain the following
special soft-photon expansion:

MTuTts
µ = MLow

µ + M (3)
µ (K1) + Oµ(K2), (24)

where

MLow
µ = M (1)

µ (K−1; e) + M (2)
µ (K0),

M (1)
µ (K−1; e) =

(
e1P

′
1µ

P ′
1 · K

− e1P1µ

P1 · K

+ e2P
′
2µ

P ′
2 · K

− e2P2µ

P2 · K

)
F (s̄, t̄ ),

F (s̄, t̄ ) =
5∑

α=1

Fe
α (s̄, t̄ ) Uα(1)Uα(2),

M (2)
µ (K0) = Mmag

µ (K0) + Mex
µ (K0; e), (25)

Mmag
µ (K0) = Mmag

µ (e) + Mmag
µ (κ),

Mmag
µ (e) =

5∑
α=1

Fe
α (s̄, t̄ )

[
ū(P ′

1)Z(1)
µα(e)u(P1)Uα(2)

+ Uα(1)ū(P ′
2)Z(2)

µα(e)u(P2)
]
,

Mmag
µ (κ) =

5∑
α=1

Fe
α (s̄, t̄ )

[
ū(P ′

1)Z(1)
µα(κ)u(P1)Uα(2)

+ Uα(1)ū(P ′
2)Z(2)

µα(κ)u(P2)
]
,

Mex
µ (K0; e) =

5∑
α=1

∂F e
α (s̄, t̄ )

∂s̄

[
(P ′

2 − P ′
1) · K

×
(

e1P
′
1µ

P ′
1 · K

− e2P
′
2µ

P ′
2 · K

)
− (P1 − P2) · K

×
(

e1P1µ

P1 · K
− e2P2µ

P2 · K

)
− 2(P1 − P ′

2) · K

× (Vyµ − Vxµ)

]
Uα(1)Uα(2)

+
5∑

α=1

∂F e
α (s̄, t̄ )

∂t̄

[
(P2 − P ′

2) · K

×
(

e1P
′
1µ

P ′
1 · K

− e1P1µ

P1 · K
+ e2P2µ

P2 · K
− e2P

′
2µ

P ′
2 · K

) ]
×Uα(1)Uα(2),

M (3)
µ (K1) = M (3)

µ (e) + M (3)
µ (κ),

M (3)
µ (e) =

5∑
α=1

∂F e
α (s̄, t̄ )

∂s̄

[
Uα(1)ū(P ′

2)Z̃(2)
µα(e)u(P2)

− ū(P ′
1)Z̃(1)

µα(e)u(P1)Uα(2)
]

+
5∑

α=1

∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K

× [
ū(P ′

1)Z(1)
µα(e)u(P1)Uα(2)

− Uα(1)ū(P ′
2)Z(2)

µα(e)u(P2)
]
,

M (3)
µ (κ) =

5∑
α=1

∂F e
α (s̄, t̄ )

∂s̄

[
Uα(1)ū(P ′

2)Z̃(2)
µα(κ)u(P2)

− ū(P ′
1)Z̃(1)

µα(κ)u(P1)Uα(2)
]

+
5∑

α=1

∂F e
α (s̄, t̄ )

∂t̄
(P2 − P ′

2) · K

× [
ū(P ′

1)Z(1)
µα(κ)u(P1)Uα(2)

− Uα(1)ū(P ′
2)Z(2)

µα(κ)u(P2)
]
.

Here we have defined (j = 1, 2)

Uα(j ) = ū(P ′
j )λαu(Pj ),

Uα(j ) = ū(P ′
j )λαu(Pj ),

Z(j )
µα(e) = R

P ′
j

jµ(e)

P ′
j · K

λα − λα

R
Pj

jµ(e)

Pj · K
,

Z(j )
µα(κ) = R

P ′
j

jµ(κ)

P ′
j · K

λα − λα

R
Pj

jµ(κ)

Pj · K
,

(26)

Z̃(j )
µα(e) = (P ′

1 − P ′
2) · K

R
P ′

j

jµ(e)

P ′
j · K

λα

+ (P1 − P2) · Kλα

R
Pj

jµ(e)

Pj · K
,

Z̃(j )
µα(κ) = (P ′

1 − P ′
2) · K

R
P ′

j

jµ(κ)

P ′
j · K

λα

+ (P1 − P2) · Kλα

R
Pj

jµ(κ)

Pj · K
,
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along with the modified vertex functions

R
P ′

j

jµ(e) = R
Pj

jµ(e),

= ej

4
[γµ, �K],

R
P ′

j

jµ(κ) = κj

8m
{[γµ, �K], P/′

j },

R
Pj

jµ(κ) = κj

8m
{[γµ, �K], P/j }.

In Eqs. (24) and (25), M (1)
µ (K−1; e),M (2)

µ (K0), and
M (3)

µ (K1) are the terms of order K−1,K0, and K1, respectively,
in the soft-photon expansion. M (1)

µ (K−1; e), which involves
only the charge contribution, is the leading external amplitude.
F (s̄, t̄ ) is the NN (pp, np, nn) elastic scattering amplitude.
Mex

µ (K0) includes the external terms of order K0 and the
internal exchange current (gauge) contribution of the same
order. Both M

mag
µ (K0), of order K0, and M (3)

µ (K1), of order
K1, which belong to the external amplitude contribution, are
functions of the charges of the nucleons and the anomalous
magnetic moments κp for the proton and κn for the neutron.

The expansion given by Eq. (24) demonstrates that the
TuTts amplitude MTuTts

µ is identical to the Low amplitude MLow
µ

through order K0 in the soft-photon expansion. Moreover,
Eq. (24) shows that the amplitude MTuTts

µ includes M (3)
µ (K1),

which cannot be obtained if the Low procedure is used. It
is interesting to note that the expression for M (3)

µ (K1) is
the same for all three of the (different) NNγ processes,
ppγ, npγ , and nnγ . As was pointed out in Ref. [3], the
amplitudes MTuTts

µ and MLow
µ yield very similar npγ cross

sections, but they predict quite different ppγ cross sections.
Moreover, in the ppγ case the amplitude MTuTts

µ is a better
soft-photon approximation than is the amplitude MLow

µ . It was
concluded in Ref. [3] that the amplitude MTuTts

µ describes the
ppγ better than does the amplitude MLow

µ , primarily because
the κp contribution is so significant that the additional term
M (3)

µ (K1) cannot be neglected. In contrast, in the npγ case,
the κp and κn contributions are so small that the M

mag
µ (K0)

and M (3)
µ (K1) terms are essentially negligible. Therefore, the

MTuTts
µ and MLow

µ amplitudes are approximately equivalent,
and they predict quantitatively similar npγ cross-sections.
These conclusions [3] were drawn from the comparison of
cross-section calculations using MTuTts

µ as given by Eq. (13)
and MLow

µ [= M (1)
µ (K−1; e) + M (2)

µ (K0)] given by Eq. (25) with
and without the contribution from κp and κn. In other words, the
contribution coming from M (3)

µ (K1) has not been investigated
directly; this can be done through the use of the approximation
MTuTts

µ � MLow
µ + M (3)

µ (K1) given by Eq. (24). Because the
investigation of the anomalous magnetic moment effect in
NNγ cross sections is the primary focus of this work, we must
carefully study the contributions from M (3)

µ (K1). Therefore,
we define the following amplitudes:

MTuTts
(1)µ = MLow

µ + M (3)
µ (K1),

= MLow
µ + M (3)

µ (e) + M (3)
µ (κ), (27)

MTuTts
(2)µ = MLow

µ + M (3)
µ (κ), (28)

MTuTts
(3)µ = MLow

µ + M (3)
µ (e). (29)

These amplitudes can be used to calculate NNγ cross sections.
In order to demonstrate that the cross sections calculated using
these amplitudes can be used to investigate the contributions
from M (3)

µ (K1), we have applied these amplitudes to the ppγ

process, because the M (3)
µ (K1) contribution to ppγ cross

sections is important. Furthermore, the best way to check
and to understand our nnγ results is to compare the nnγ

and ppγ cross sections using the following special ppγ

amplitude:

MTuTts
(4)µ = [

MTuTts
µ (ppγ )

]
e=0

= Mmag
µ (κp) + M (3)

µ (κp) + [
O(p)

µ (K2)
]
e=0. (30)

In other words, MTuTts
(4)µ is obtained from MTuTts

µ by setting the
proton charge to be zero. Moreover, we should point out that
the MTuTts

µ amplitude for the nnγ process has the following
expansion:

MTuTts
µ (nnγ ) = Mmag

µ (κn) + M (3)
µ (κn) + O(n)

µ (K2), (31)

which has a form quite similar to that for MTuTts
(4)µ given

by Eq. (30). The major difference between MTuTts
(4)µ and

MTuTts
µ (nnγ ) is that the amplitudes M

mag
µ and M (3)

µ in Eq. (30)
are evaluated for κp while those in Eq. (31) are evaluated
for κn.

Altogether we have defined a set of 12 amplitudes:

Mµ ≡ {
MTuTts

µ ,MLow
µ ,M (1)

µ (K−1; e),Mmag
µ (e),

Mmag
µ (κ),Mex

µ (K0; e),M (3)
µ (e),M (3)

µ (κ),

MTuTts
(1)µ ,MTuTts

(2)µ ,MTuTts
(3)µ ,MTuTts

(4)µ

}
. (32)

It is easily verified that each amplitude in Mµ separately
satisfies the gauge condition MµKµ = 0. In other words, Mµ

represents a set of conserved currents. Because the gauge
condition is satisfied, the following relation can be established
for each amplitude in Mµ:∑

pol

[(εµMµ)†(ενMν)] = −M†
µMµ ≡ −|Mµ|2. (33)

Here, εµ is the photon polarization vector and
∑

signifies
the summation over polarization. Thus, we have shown that
the cross section calculated from the amplitude Mµ is directly
proportional to |Mµ|2 ≡ M†

µMµ. We can also find that the am-
plitudes {MTuTts

µ ,MLow
µ ,MTuTts

(1)µ ,MTuTts
(2)µ ,MTuTts

(3)µ ,MTuTts
(4)µ } have

been expanded in terms of the six basic ampli-
tudes {M (1)

µ (K−1; e),Mmag
µ (e),Mmag

µ (κ),Mex
µ (K0; e),M (3)

µ (e),
M (3)

µ (κ)}. These latter six basic amplitudes play an important
role in the analysis of our results, as discussed in the following
section.

III. RESULTS AND DISCUSSION

We have utilized the MTuTts
µ [Eq. (13)] and MLow

µ

[Eq. (25)] amplitudes to calculate coplanar NNγ cross sections
d3σ/d�1d�2dψγ as functions of the photon angle ψγ for sev-
eral laboratory nucleon bombarding energies above 150 MeV
and for laboratory scattering angles lying between 8◦ and
40◦. In each of these calculations, we used two different sets
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FIG. 1. Coplanar ppγ cross sections as a function of the photon
angle ψγ at (a) 157 MeV and (b) 280 MeV for the symmetric
proton scattering angle configuration θ1 = θ2 = 15◦. The solid curve
was calculated using MTuTts

µ with κp = 1.793; the dashed curve was
calculated using the same amplitude MTuTts

µ but with κp = 0; the
dotted curve was calculated using MLow

µ with κp = 1.793.

of values for the nucleon anomalous magnetic moments: (1)
corresponding to the physical values of κp = 1.793 and κn =
−1.913 and (2) corresponding to zero anomalous magnetic
moment contributions κp = κn = 0. Results for these two sets
of anomalous magnetic moment values were compared to
investigate anomalous magnetic moment effects. Moreover,
in our investigation of the contribution from M (3)

µ (K1) and
the comparison between nnγ and ppγ , we have also used
four additional amplitudes, MTuTts

(1)µ ,MTuTts
(2)µ ,MTuTts

(3)µ , and MTuTts
(4)µ

[Eqs. (27)–(30)] in calculating ppγ cross sections. To evaluate
Fe

α (qij
c.m., θ

ij
c.m.), we used the pp and np phase shifts and mixing

parameters from the Nijmegen partial-wave analysis [9,10].
For the nn system, the phase shifts were assumed to be equal
to the corresponding pp ones, with the Coulomb interaction
set to zero.
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ψ
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2 ra
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o
-25
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(a)

(b)

FIG. 2. Same as Fig. 1, but for θ1 = θ2 = 25◦.

A. ppγ

In Figs. 1–4, we present coplanar ppγ cross sections at
157 MeV [Figs. 1(a)–4(a)] and 280 MeV [Figs. 1(b)–4(b)]
for four symmetric proton scattering angle pairs, θ1 = θ2 =
15◦, 25◦, 35◦, and 40◦. In each of these figures, we show
three different curves: The solid curve corresponds to a cross
section calculated using the MTuTts

µ amplitude with the value
of κp = 1.793; the dotted curve corresponds to a cross section
calculated using the MLow

µ amplitude also with the value of
κp = 1.793; the dashed curve corresponds to a cross section
calculated using the MTuTts

µ amplitude but with the value
of κp = 0. Figures 1–4 are arranged according to the size
of the scattering angle θ (θ = θ1 = θ2 = 15◦, 25◦, 25◦, 40◦)
and the magnitude of the bombarding energy Ei (157
and 280 MeV). Several interesting features of these re-
sults and their physical implications can be summarized
as follows:

(i) First we highlight some important points regarding the
curves. (a) Both the solid curve and the dotted curve
depend upon the contribution from the proton charge, the
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FIG. 3. Same as Fig. 1, but for θ1 = θ2 = 35◦. The data at
157 MeV are from Ref. [11].

Dirac magnetic moment of the proton, and the proton
anomalous magnetic moment κp, while the dashed curve
depends only upon the contributions from the proton
charge and the Dirac magnetic moment of the proton
(κp having been set to zero in the calculation). (b) The
ppγ cross section σppγ has the soft-photon expansion

σppγ = A/K + B + CK + · · ·
� A/K + B

≡ σ SPA
ppγ ,

where σ SPA
ppγ is the soft-photon approximation. The co-

efficient A depends on the charge contribution and B
depends on the contributions from the charge, the Dirac
moment, and κp. The leading term of the soft-photon
approximation is A/K . However, because there are two
identical protons in the scattering process, certain cancel-
lation occurs within the leading term. It is this cancellation
which greatly reduces the contribution to σ SPA

ppγ from the
leading term when the soft-photon approximation is used
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o
-40
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FIG. 4. Same as Fig. 1, but for θ1 = θ2 = 40◦.

to represent the ppγ cross section. In this case, the B term
is more important than the A/K term for the hard-photon
case. In fact, the 1/K dependence of the leading term
means that the cross section diverges when K tends to
zero in the soft-photon limit. It is well known that K will
correspond to a hard photon for small scattering angle
θ , whereas K will correspond to a soft photon for large
angle θ . Moreover, the statement “K tends to zero in
the soft-photon limit” is equivalent to the statement “θ
tends to 45◦ in the elastic limit.” With these caveats, we
can understand why cross sections corresponding to the
dashed curves are small for small angles θ and why these
cross sections increase as θ increases. In fact, the leading
term dominates the cross section for the case with θ = 40◦
(near the elastic limit). (c) Without the contribution from
κp the cross section will have a standard quadrupole
distribution. The dashed curves shown in Figs. 1–4 are
typical examples. A significant contribution from κp

can modify the angular distribution from the quadrupole
shape, as one can see from the solid and dotted curves
shown in Figs. 1 and 2.
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(ii) The primary purpose of this investigation is to understand
the effect of the anomalous magnetic moment κp. If we
compare the solid curve with the dashed curve in each of
the eight panels shown in Figs. 1–4, then we can see the
difference in cross section between these two calculations
as a function of θ and ψγ for Ei = 157 and 280 MeV.
Let us define �σmag(θ, ψγ ; Ei) to be the difference in the
ppγ cross section between the solid curve and the dashed
curve for a given set of kinematic variables (θ, ψγ ; Ei).
This �σmag(θ, ψγ ; Ei) tells one much about the effect
of κp. This can be seen from the following analysis. The
amplitude MTuTts

µ , defined by Eq. (24), can also be written
in the form

MTuTts
µ = MTuTts

(4)µ + MTuTts
(5)µ , (34)

where MTuTts
(4)µ is given by Eq. (30) and MTuTts

(5)µ can be
expressed as

MTuTts
(5)µ ≡ (

MTuTts
µ

)
κp=0

= M (1)
µ (K−1; e) + Mmag

µ (e) + Mex
µ (K0; e)

+ M3
µ(e) + [Oµ(K2)]κp=0. (35)

Equation (34) leads to∣∣MTuTts
µ

∣∣2 = ∣∣MTuTts
(5)µ

∣∣2 + �mag, (36)

where

�mag = ∣∣MTuTts
(4)µ

∣∣2 + (
MTuTts

(4)µ

)† (
M

TuTtsµ
(5)

)
+ (

MTuTts
(5)µ

)† (
M

TuTtsµ
(4)

)
. (37)

Because the solid curve is directly proportional to
|MTuTts

µ |2 and the dashed curve is directly proportional to
|MTuTts

(5)µ |2,�σmag(θ, ψγ ; Ei) must be directly proportional
to �mag. We emphasize two important cases: (a) For the
case with small scattering angles (θ � 25◦), the contribu-
tion from |MTuTts

(5)µ |2 (the dashed curve) is generally small

while the �mag term is much greater than the |MTuTts
(5)µ |2

term. Moreover, the major contribution to the �mag term
comes from the amplitude MTuTts

(4)µ , which is proportional
to κp. Therefore, the amplitude MTuTts

(4)µ determines most
of �mag (or |MTuTts

µ |2), and hence the contribution from
κp will dominate the ppγ cross section in this case.
(b) For the case with θ approaching 45◦ (the elastic limit),
M (1)

µ (K−1; e) in the expression for MTuTts
(5)µ will become the

dominant amplitude. In this case, |MTuTts
(5)µ |2 will be much

greater than �mag, and �σmag(θ, ψγ ; Ei) will become
very small. Hence, the κp contribution will be reduced
to a negligible one. In short, the contribution of κp will
reach its maximum (have its most significant effect) when
θ tends to zero, and it will reach its minimum (having
an essentially negligible effect) as θ approaches 45◦. In
addition, we observe that �σmag(θ, ψγ ; Ei) varies as a
function of Ei , which implies that the effect of κp also
depends upon Ei . However, the κp effect is clearly a more
sensitive function of θ than of Ei .

(iii) Understanding the cross-section difference between the
calculation using the MTuTts

µ amplitude and that using

the MLow
µ amplitude is another important goal of this

investigation. The analytic expression for the relationship
between the two amplitudes is given by Eq. (24). In order
to quantitatively explore the difference between the two
cross sections, let us define �σamp(θ, ψγ ; Ei) to be the
difference in cross section between the solid curve and
the dotted curve as a function of θ and ψγ for Ei = 157
and 280 MeV. From Eq. (24) we obtain the following
relationship between |MTuTts

µ |2 and |MLow
µ |2 for ppγ :∣∣MTuTts

µ

∣∣2 = ∣∣MLow
µ

∣∣2 + �amp, (38)

where

�amp = (
MLow

µ

)†
[M (3)µ(K1) + Oµ(K2)]

+ [
M (3)

µ (K1) + Oµ(K2)
]†

MLowµ

+ ∣∣M (3)
µ (K1) + Oµ(K2)

∣∣2
. (39)

It should be clear that the solid curve is directly pro-
portional to |MTuTts

µ |2, that the dotted curve is directly
proportional to |MLow

µ |2, and that �σamp(θ, ψγ ; Ei) is
directly proportional to �amp. For small θ (θ � 25◦),
�σamp(θ, ψγ ; Ei) exhibits a minimum for angles ψγ in
the region 65◦ � ψγ � 90◦, depending upon the specific
values of θ and Ei . Around this minimum, the value of
�σamp(θ, ψγ ; Ei) is nearly zero. This means that �amp

must also be nearly zero around the minimum, and we
have ∣∣MTuTts

µ

∣∣2 � ∣∣MLow
µ

∣∣2
. (40)

Equation (40) implies that

MTuTts
µ � MLow

µ . (41)

Therefore, the contribution from M (3)
µ (K1) and higher-

order terms Oµ(K2) is negligible around the minimum,
which is nearly zero. �σamp(θ, ψγ ; Ei) increases from
the minimum to two separate maxima, a large one at
ψγ = 180◦ and a smaller one at ψγ = 0◦. The magnitude
of each maximum depends upon both θ and Ei . The
magnitudes increase as θ decreases and increase as Ei

increases. Equation (39) suggests that the values of
�σamp(θ, ψγ ; Ei) arise primarily from the contribution of
M (3)

µ (K1) and Oµ(K2). As will be demonstrated in Fig. 5,
the important contribution comes from the amplitude
M (3)

µ (K1) for most photon angles ψγ . The contribution
from higher-order terms Oµ(K2) may be significant for
ψγ near 0◦ and 180◦ in some cases. Therefore, our
results imply that the contribution from M (3)

µ (K1; κp)
is significant for those ppγ cases with small scattering
angles (θ � 25◦). These findings explain why the Low
amplitude, which does not include M (3)

µ (K1; κp) and
Oµ(K2), fails to describe much of the KVI data [12].
On the other hand, for those cases with a large scattering
angle θ close to the elastic limit (θ � 40◦), the value
of �σamp(θ, ψγ ; Ei) is negligibly small for the entire
range of ψγ . Thus, the MTuTts

µ and MLow
µ amplitudes

are approximately equivalent in that region, and the
two amplitudes predict quantitatively similar ppγ cross
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FIG. 5. Coplanar ppγ cross sections as a function of the photon
angle ψγ at (a) 190 MeV for the proton scattering angles (θ1, θ2) =
(8◦, 19◦); data from Ref. [12]; (b) at 280 MeV for (θ1, θ2) =
(12.4◦, 12◦); data from Ref. [13]. The five curves were calculated
using the amplitudes shown in the symbols key.

sections. This implies that M (3)
µ (K1; κp) and all higher-

order amplitudes are completely negligible for ppγ with
scattering angles θ � 40◦.

(iv) The observant reader will see that all three curves have
a minimum located at about the same value of ψγ in
the region 65◦ � ψγ � 90◦. The solid and dotted curves
give about the same cross sections in the vicinity of
this minimum (i.e., �σamp(θ, ψγ ; Ei) � 0 around the
minimum). As noted above, this implies that the contribu-
tion from the amplitude M (3)

µ (K1; κp) (and higher-order
amplitudes) is negligible in this region. In contrast, the
dashed curve has an almost negligible cross section
around this minimum. This implies that the contribution
from the amplitude MTuTts

(5)µ is extremely small (essentially
negligible). Therefore, comparing the solid curve (or the
dotted curve) with the dashed curve, we can demonstrate
that the contribution from the amplitude M

mag
µ (κp) [see

Eq. (25)] should dominate the ppγ cross sections in the
vicinity of the minimum.

In Fig. 5, we present coplanar ppγ cross sections at
190 MeV for proton angles (θ1, θ2) = (8◦, 19◦) [Fig. 5(a)]
and at 280 MeV for (θ1, θ2) = (12.4◦, 12◦) [Fig. 5(b)].
The five different curves in these two figures correspond
to calculations using the amplitudes MTuTts

µ , MTuTts
(1)µ ,

MTuTts
(2)µ , MTuTts

(3)µ , and MLow
µ (see symbols key in figure).

These calculations illustrate several interesting and im-
portant results. We discuss some of them here.
(a) A primary purpose of these calculations is to

investigate the contributions of the amplitudes
M (3)

µ (K1),M (3)
µ (e), and M (3)

µ (κp). The most direct
way to investigate the effect of the amplitude
M (3)

µ (K1) is to compare the dashed curves generated
using the amplitude MTuTts

(1)µ with the dotted curves
generated using the amplitude MLow

µ . To understand
this point, consider the following equation:

MTuTts
(1)µ = MLow

µ + M (3)
µ (K1), (42)

which leads to∣∣MTuTts
(1)µ

∣∣2 = ∣∣MLow
µ

∣∣2 + �1, (43)

where

�1 = (
MLow

µ

)†
M (3)µ(K1)

+ [M (3)µ(K1)]†MLow
µ + ∣∣M (3)

µ (K1)
∣∣2

. (44)

Equation (43) shows that the difference between the
dashed and dotted curves is directly proportional to
�1, which depends upon M (3)

µ (K1), as exhibited in
Eq. (44). The results shown in Fig. 5 demonstrate
that the contribution from M (3)

µ (K1) is indeed quite
significant in ppγ , because a large difference can be
observed in Fig. 5 between the dashed and dotted
curves for most photon angles ψγ .

(b) If we compare the solid curve generated using the
amplitude MTuTts

µ with the dashed curve, we can see
the contribution from the higher-order terms Oµ(K2).
At 280 MeV, for example, the two curves are almost
coincident in the region 40◦ � ψγ � 140◦, implying
that the Oµ(K2) contribution is negligibly small.
However, the contribution from the Oµ(K2) terms
becomes large for ψγ near 0◦ and 180◦. In fact,
at ψγ = 180◦, the difference between the dashed
and dotted curves is essentially half the difference
between the solid and dotted curves. This shows that
the Oµ(K2) contribution is not negligible for certain
ψγ in some cases. This analysis is based upon the
following relationship between MTuTts

µ (solid curve)
and MTuTts

(1)µ (dashed curve):

MTuTts
µ = MTuTts

(1)µ + Oµ(K2), (45)

which implies that∣∣MTuTts
µ

∣∣2 = ∣∣MTuTts
(1)µ

∣∣2 + �2, (46)

where

�2 = (
MTuTts

(1)µ

)†
Oµ(K2)

+ [Oµ(K2)]†MTuTts
(1)µ + |Oµ(K2)|2. (47)
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Because the solid curve is directly proportional to
|MTuTts

µ |2 and the dashed curve is directly propor-
tional to |MTuTts

(1)µ |2, the difference between the two
must be directly proportional to �2.

(c) If we use Eq. (28) and apply the same analy-
sis, then we can investigate the contribution from
M (3)

µ (κp) by comparing the dashed-double-dotted
curve generated using the amplitude MTuTts

(2)µ with
the dotted curve corresponding to MLow

µ . Similarly,
if we use Eq. (29) and apply the same analysis,
then we can investigate the M (3)

µ (e) contribution by
comparing the dashed-dotted curve generated using
the amplitude MTuTts

(3)µ with the dotted curve. We
should point out that the amplitude M (3)

µ (K1) is the
sum of the amplitudes M (3)

µ (e) and M (3)
µ (κp) [see

Eq. (25)]. The amplitude M (3)
µ (e) is a function of the

proton’s Dirac magnetic moment, whereas M (3)
µ (κp)

is a function of the proton’s anomalous magnetic
moment. As shown in Fig. 5 for both the 190 and
280 MeV cases, the dashed-double-dotted curve is
quantitatively similar to the dashed-dotted curve. This
means that the Dirac-moment-dependent amplitude,
M (3)

µ (e), and the anomalous-moment-dependent am-
plitude, M (3)

µ (κp), contribute almost equally to the
ppγ cross section.

In Figs. 6–8 we present coplanar ppγ cross sections,
calculated using MTuTts

µ and MLow
µ , as a function of the photon

angle ψγ . In Fig. 6, we compare them with data at 190 MeV for
proton angles (θ1, θ2) = (16◦, 19◦); in Fig. 7, we do the same
for (θ1, θ2) = (8◦, 16◦); and in Fig. 8, at 280 MeV for proton
angles (θ1, θ2) = (12.4◦, 28◦). The data in Figs. 6 and 7 are
from the KVI experiment [12]; in Fig. 8, from the TRIUMF
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FIG. 6. Coplanar ppγ cross sections as a function of the photon
angle ψγ at 190 MeV for the proton scattering angles (θ1, θ2) =
(16◦, 19◦). Solid and dashed curves were calculated using the
amplitude MTuTts

µ with κp = 1.793 and κp = 0, respectively. Dotted
curve was calculated using MLow

µ with κp = 1.793. Data are from
Ref. [12].
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FIG. 7. Same as Fig. 6, but for (θ1, θ2) = (8◦, 16◦).

experiment [13]. The solid curves correspond to κp = 1.793,
while the dashed curves correspond to κp = 0. Both curves
were calculated using the MTuTts

µ amplitude. The dotted curves
were calculated using the MLow

µ amplitude with κp = 1.793.
A comparison of the solid curves with the dashed curves
demonstrates clearly that the κp contribution dominates the
ppγ cross sections over the entire range of ψγ . Because the
contribution from M3

µ(K1) and higher-order terms Oµ(K2)
can be important in ppγ , the MLow

µ amplitude [which does not
include M3

µ(K1) and Oµ(K2)] fails to describe much of the
KVI data.

As pointed out in the Introduction, the anomalous magnetic
moment effect in ppγ has been previously studied using the
nonrelativistic potential model approach [1]. These studies
observed that the contribution from the proton magnetic
moment is significant in ppγ . For example, the most explicit
demonstration of large magnetic moment effects can be seen in
Fig. 8 of the paper by Brown, Anthony, and Franklin [1]. This
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FIG. 8. Same as Fig. 6, but at 280 MeV and for (θ1, θ2) =
(12.4◦, 28◦). Data are from Ref. [13].
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figure, which compares their calculation with the TRIUMF
data, shows clearly that the contribution from the proton
magnetic moment dominates the ppγ cross section. However,
an important relativistic spin correction (RSC) [14–16] was
omitted in their calculation. This RSC contribution was found
to be the primary relativistic correction to the magnetic term
that dominates those cases involving small proton scattering
angles. The large RSC effect has been reported by several
groups: Workman and Fearing [17], Celenza et al. [18], and
Herrmann and Nakayama [19]. Because of the importance of
relativistic effects, we have used in our investigation a fully
relativistic and gauge invariant approach.

B. npγ

The npγ process has been systematically investigated using
amplitudes MTuTts

µ ,MLow
µ , and M (1)

µ (K−1; e). We investigated
(i) the similarities and differences of MTuTts

µ and MLow
µ ,

(ii) the effect of the anomalous magnetic moments κp and
κn, and (iii) the meson-exchange current effect. Because
the neutron and proton have unequal charges (en = 0, ep =
e) and anomalous magnetic moments (κn = −1.913, κp =
1.793), the emission mechanisms governing the ppγ and npγ

processes are quite different.

(i) In Fig. 9, we present coplanar cross sections calculated
using MTuTts

µ and MLow
µ as a function of photon angle ψγ

at 200 MeV for (θn, θp) = (12◦, 12◦), as a typical example
of npγ kinematics. The solid curve was calculated using
MTuTts

µ , while the dotted curve was calculated using MLow
µ .

In both cases, the physical values of the anomalous
magnetic moments were used as input. If we compare
the solid and dotted curves, then we observe that the
two amplitudes predict quantitatively similar npγ cross
sections for almost all ψγ angles. In other words, we find∣∣MTuTts

µ

∣∣2 � ∣∣MLow
µ

∣∣2
. (48)
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FIG. 9. Coplanar npγ cross sections as a function of the photon
angle ψγ at 200 MeV for the nucleon scattering angles (θn, θp) =
(12◦, 12◦). Solid and dotted curves were calculated using the
amplitude MTuTts

µ and MLow
µ , respectively. The anomalous magnetic

moments for these calculations were κp = 1.793 and κn = −1.913.

Using the soft-photon expansion given in Eq. (24),
the relationship between |MTuTts

µ |2 and |MLow
µ |2 can be

expressed as∣∣MTuTts
µ

∣∣2 = ∣∣MLow
µ

∣∣2 + �3, (49)

where

�3 = (
MLow

µ

)†
[M (3)µ(K1) + Oµ(K2)]

+ [
M (3)

µ (K1) + Oµ(K2)
]†

MLowµ

+ ∣∣M (3)
µ (K1) + Oµ(K2)

∣∣2
. (50)

Because the solid curve is directly proportional to
|MTuTts

µ |2 while the dotted curve is directly proportional to
|MLow

µ |2, the difference between the two must be directly
proportional to �3. The fact that the solid and dotted
curves are consistently close to one another for most ψγ

strongly suggests that the �3 contribution is rather small.
Thus, the expansion of MTuTts

µ given by Eq. (24) converges
rapidly, and the higher-order terms [M (3)

µ (K1) + Oµ(K2)]
should produce insignificant effects in the cross section.
That is, we find

MTuTts
µ � MLow

µ (51)

for the npγ process in the kinematics investigated.
(ii) In Figs. 10–16, we exhibit coplanar npγ cross sections

as a function of ψγ at 225 MeV for symmetric an-
gle pairs (θn, θp) = (32◦, 32◦), (28◦, 28◦), (20◦, 20◦), and
(12◦, 12◦) along with asymmetric angle pairs (θn, θp) =
(32◦, 12◦), (32◦, 20◦), and (12◦, 24◦). In these figures, the
solid curves were calculated using the amplitude MTuTts

µ

given by Eq. (13) with κp = 1.793 and κn = −1.913 as
the anomalous magnetic moment values. The dashed-
dotted curves were also calculated with MTuTts

µ but with
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FIG. 10. Coplanar npγ cross sections as a function of the photon
angle ψγ at 225 MeV for the nucleon scattering angles (θn, θp) =
(32◦, 32◦). Solid curve was calculated using the amplitude MTuTts

µ

with κp = 1.793 and κn = −1.913. Dashed-dotted curve was also
calculated using MTuTts

µ but with κp = κn = 0. Dotted curve was
calculated using only the leading amplitude M (1)

µ (K−1; e) [defined
by Eq. (25) with e1 = 0 and e2 = 1].
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FIG. 11. Same as Fig. 10, but for (θn, θp) = (28◦, 28◦).

κp = κn = 0. The dotted curves were calculated using
only the amplitude M (1)

µ (K−1; e) as specified by Eq. (25)
with e1 = 0 and e2 = 1. If we compare the solid curve
with the dashed-dotted curve, we can ascertain that the
anomalous magnetic moment contribution in each figure
is negligibly small over the entire range of ψγ , in contrast
with the ppγ process where the contribution from such
effects dominates the cross section over the entire range of
ψγ . Therefore, the results from this investigation confirm
an important finding of Ref. [3], that the anomalous
magnetic moments (κp and κn) play an insignificant role
in the npγ process for the kinematics investigated.

To understand the implication of our results, we
apply a similar analysis to that used in (i). Without
repeating the arguments, comparison of the solid curve
with the dashed-dotted curve in each of the seven figures
establishes that∣∣MTuTts

µ

∣∣2 � ∣∣(MTuTts
µ

)
κp=κn=0

∣∣2
, (52)
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FIG. 12. Same as Fig. 10, but for (θn, θp) = (20◦, 20◦).
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FIG. 13. Same as Fig. 10, but for (θn, θp) = (12◦, 12◦).

which implies that

MTuTts
µ � (

MTuTts
µ

)
κp=κn=0. (53)

The amplitude MLow
µ can be expressed as

MLow
µ = M (1)

µ (K−1; e) + Mmag
µ (e)

+Mmag
µ (κ) + Mex

µ (K0; e). (54)

Making use of Eq. (51) and the fact that[
Mmag

µ (κ)
]
κp=κn=0

= 0, (55)

one can obtain

MTuTts
µ � (MTuTts

µ )κp=κn=0

� (MLow
µ )κp=κn=0

� M (1)
µ (K−1; e) + Mmag

µ (e) + Mex
µ (K0; e). (56)

Equation (56) shows that the amplitude MTuTts
µ is ap-

proximately equal to the sum of the three amplitudes
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FIG. 14. Same as Fig. 10, but for (θn, θp) = (32◦, 12◦).
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FIG. 15. Same as Fig. 10, but for (θn, θp) = (32◦, 20◦).

M (1)
µ (K−1; e),Mmag

µ (e), and Mex
µ (K0; e). It is worthwhile

to understand which of these three amplitudes makes the
most important contribution.

(iii) In order to estimate the size of the contribution coming
from M (1)

µ (K−1; e), we calculated the npγ cross section
using only that amplitude. The dotted curves in Figs. 10–
16 illustrate some of the results of our calculations. In
general, the contribution from M (1)

µ (K−1; e) is small,
although not negligible, for small scattering angles (θn

and θp). The contribution increases as the scattering
angles approach the elastic limit.

The amplitude M
mag
µ (e), which is part of the mag-

netic amplitude, involves only the contribution from
the Dirac magnetic moments. Although we have not
directly investigated the contribution from this amplitude,
we do not anticipate that it will make any significant
contribution because: (a) the contribution coming from
the other component of the magnetic amplitude, Mmag

µ (κ),
which depends upon the anomalous magnetic moments
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FIG. 16. Same as Fig. 10, but for (θn, θp) = (12◦, 24◦).
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FIG. 17. Coplanar npγ cross sections as a function of the photon
angle ψγ at 225 MeV for the nucleon scattering angles (θn, θp) =
(32◦, 32◦). The six curves were calculated using the amplitude MTuTts

µ

with the same value of κp = 1.793, but with different values of κn as
indicated in the figure.

κn and κp, was demonstrated to be negligibly small,
and (b) we assume that the amplitude M

mag
µ (κ) and

the amplitude M
mag
µ (e) (the Dirac-moment-dependent

amplitude) contribute about equally to the npγ cross
section, just as is the case for the ppγ process.

It is reasonable to conclude that the amplitude
Mex

µ (K0; e), the exchange current amplitude, dominates
the npγ cross section if the scattering angles are small i.e.,
not approaching the elastic limit). That the exchange cur-
rent contribution in npγ is important is not an unknown
fact [20–22]. Here, we have provided a confirmation of
the effect by using a relativistic soft-photon approach.

(iv) In an effort to understand why the contribution of the
anomalous magnetic moments (κp and κn) are relatively
insignificant in npγ , we calculated npγ cross sections
for the physical value of κp = 1.793 but treated κn as a
parameter. As shown in Fig. 17, we used the amplitude
MTuTts

µ to calculate cross sections for five different values
of κn (= −1.79,−1.00, 0, 1.00, and 1.79). If we compare
the solid curve (corresponding to κp = κn = 0) with
the five other curves (note that the dashed-dotted curve
corresponds to κn = 0 and κp = 1.793), we observe that
the dashed curve is the one that is consistently closest to
the solid curve. This demonstrates that the anomalous
magnetic moment effects would not be negligible if
the values of κn differed from its physical value of
−1.913. In other words, the insignificant anomalous
magnetic moment effect in the npγ process may be
due to a cancellation between the contribution from the
anomalous magnetic moment of the proton and that of
the neutron.

C. nnγ

In Figs. 18(a) and 18(b), we present coplanar nnγ cross
sections at 190 MeV for neutron angles (θ1, θ2) = (8◦, 19◦)
and at 280 MeV for (θ1, θ2) = (12.4◦, 12◦). These nnγ cross
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FIG. 18. Comparison of coplanar nnγ cross sections calculated
using the MTuTts

µ (nnγ ) amplitude (solid curve) with ppγ cross
sections calculated using four different amplitudes: MTuTts

µ (dashed-
double-dotted curve), MLow

µ (dotted curve), MTuTts
(4)µ ≡ MTuTts

µ (e = 0)
(dashed curve), and MTuTts

µ (κp = 0) (dashed-dotted curve). All cross
sections are expressed as a function of the photon angle ψγ at
(a) 190 MeV for the neutron (proton) scattering angles (θ1, θ2) =
(8◦, 19◦), and (b) 280 MeV for (θ1, θ2) = (12.4◦, 12◦).

sections (solid curve) were calculated using the amplitude
MTuTts

µ (nnγ ) given by Eq. (13) with κn = −1.913, and they
are compared with coplanar ppγ cross sections calculated
using four different amplitudes: MTuTts

µ (dashed-double-dotted
curve), MLow

µ (dotted curve), MTuTts
(4)µ (dashed curve), and

MTuTts
µ (κp = 0) (dashed-dotted curve). We will focus attention

on the comparison between the solid and dashed curves,
because of the following interesting feature. These two curves
bear a striking similarity over the entire range of ψγ ; the solid
curve is slightly higher than the dashed curve. This feature can
be understood if we compare Eq. (31) with (30). From these
two equations we obtain∣∣MTuTts

µ (nnγ )
∣∣2 = ∣∣Mmag

µ (κn) + M (3)
µ (κn)

∣∣2 + �n(κn), (57)

and ∣∣MTuTts
(4)µ

∣∣2 = ∣∣Mmag
µ (κp) + M (3)

µ (κp)
∣∣2 + �p(κp), (58)

where

�n(κn) = [
Mmag

µ (κn) + M (3)
µ (κn)

]†
O(n)µ(K2)

+ [O(n)µ(K2)]†
[
Mmag

µ (κn) + M (3)
µ (κn)

]
+ ∣∣O(n)

µ (K2)
∣∣2

, (59)

and

�p(κp) = [
Mmag

µ (κp) + M (3)
µ (κp)

]†
O(p)µ(K2)

+ [O(p)µ(K2)]†
[
Mmag

µ (κp) + M (3)
µ (κp)

]
+ ∣∣O(p)

µ (K2)
∣∣2

. (60)

Although �n(κn) is small compared with |Mmag
µ (κn) +

M (3)
µ (κn)|2, it may not be negligible for some values of ψγ .

Similarly, �p(κp) is also small compared with |Mmag
µ (κp) +

M (3)
µ (κp)|2, but it may not be negligible for some values of ψγ .

Equation (57) shows that the nnγ cross section calculated us-
ing MTuTts

µ (nnγ ) will be approximately proportional to |κn|2 �
3.66, whereas Eq. (58) shows that the ppγ cross section
calculated using the amplitude MTuTts

(4)µ will be approximately
proportional to κ2

p � 3.21. Obviously, |κn|2 is slightly larger
than κ2

p. Another difference between the nnγ cross section and
the ppγ cross section is that they are calculated using different
phase shifts. The phase shifts for the nn system include no
Coulomb charge scattering effect, because the neutron has
zero charge; whereas the phase shifts for the pp system
involve Coulomb charge scattering. When the contribution
from the Coulomb charge scattering effect is not significant,
then the difference between the nnγ cross section calculated
using MTuTts

µ (nnγ ) and the ppγ cross section calculated using
MTuTts

(4)µ will be primarily due to the difference between |κn|2
and κ2

p. This is, in fact, the situation for the results shown in
Figs. 18(a) and 18(b).

Because the neutron has no charge, the amplitude
MTuTts

µ (nnγ ) for the nnγ process does not involve am-
plitudes M (1)

µ (K−1; e),Mmag
µ (e),Mex

µ (K0; e), and M (3)
µ (e). In

other words, as shown in Eq. (31), MTuTts
µ (nnγ ) can only

depend upon the anomalous magnetic moment of the neutron.
Moreover, the Low amplitude has a rather simple expression,

MLow
µ (nnγ ) = Mmag

µ (κn). (61)

By using Eq. (61), Eq. (31) can be written as

MTuTts
µ (nnγ ) = MLow

µ (nnγ ) + M (3)
µ (κn) + O(n)

µ (κ2). (62)

Equation (62) then yields∣∣MTuTts
µ (nnγ )

∣∣2 = ∣∣MLow
µ (nnγ )

∣∣2 + �4, (63)

where

�4 = [
MLow

µ (nnγ )
]†

[M (3)µ(κn) + O(n)µ(K2)]

+ [
M (3)

µ (κn) + O(n)
µ (K2)

]†
MLowµ(nnγ )

+ ∣∣M (3)
µ (κn) + O(n)

µ (K2)
∣∣2

. (64)
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FIG. 19. Coplanar nnγ cross sections as a function of the photon
angle ψγ at (a) 190 MeV for the neutron scattering angles (θ1, θ2) =
(8◦, 19◦) and (b) 280 MeV for (θ1, θ2) = (12.4◦, 12◦). Using the value
of κn = −1.913, the solid and dotted curves were calculated from
MTuTts

µ (nnγ ) and MLow
µ (nnγ ), respectively.

Equations (63) and (64) show that if we use amplitudes
MTuTts

µ (nnγ ) and MLow
µ (nnγ ) to calculate nnγ cross sections,

then the contribution from M (3)
µ (κn) and O(n)

µ (K2) can be
investigated. In Figs. 19(a) and 19(b), we present coplanar
nnγ cross sections at 190 MeV for (θ1, θ2) = (8◦, 19◦) and
at 280 MeV for (θ1, θ2) = (12.4◦, 12◦). The solid curves were
generated using the amplitude MTuTts

µ (nnγ ) given by Eq. (13)
[or Eq. (62)] with κn = −1.913, while the dotted curves
were generated using the amplitude MLow

µ (nnγ ) given by
Eq. (61) using the same value of κn. From Eq. (63), it is
clear that the difference between the solid and dotted curves
is directly proportional to �4. Figures 19(a) and 19(b) clearly
demonstrate that the contribution from �4 can be significant
for most photon angles ψγ , especially for the case of 280 MeV
near ψγ = 0◦ and 180◦. This implies that the contribution from
M (3)

µ (κn) and O(n)
µ (κ2) is indeed important for the nnγ process

in the kinematic region investigated. Moreover, this explains

why the amplitude MTuTts
µ (nnγ ) should be used to describe the

nnγ process.

IV. CONCLUSIONS

In brief, we have systematically investigated nucleon-
nucleon bremsstrahlung processes using the two-u-two-t spe-
cial amplitude MTuTts

µ and the Low amplitude MLow
µ . With the

help of the special soft-photon expansion given by Eq. (24), we
have analyzed the relationship between MTuTts

µ and MLow
µ both

analytically and numerically. The essential difference between
these two amplitudes is that MTuTts

µ includes an amplitude
M (3)

µ (K1) which is of order K. For both ppγ and npγ pro-
cesses, the additional amplitude M (3)

µ (K1) involves the Dirac-
moment-dependent amplitude M (3)

µ (e) and the anomalous-
moment-dependent amplitude M (3)

µ (κ). However, for the nnγ

process, M (3)
µ (K1) depends only upon the anomalous-moment-

dependent amplitude M (3)
µ (κ). We have demonstrated that the

contribution of M (3)
µ (K1) can be significant in ppγ and nnγ for

the kinematics investigated, even though such a contribution
was found to be essentially negligible in npγ . Moreover, our
calculation shows that M (3)

µ (e) and M (3)
µ (κ) contribute almost

equally to the ppγ cross section.
The primary focus of this work has been the investigation

of the κp and κn contributions to the ppγ, npγ , and nnγ

processes. For the ppγ process at small scattering angles
(θ1 < 25◦, θ2 < 25◦) at Ei � 150 MeV, the κp contribution
dominates the ppγ cross-section over the entire range of
ψγ . In fact, the contribution is sufficiently important that the
amplitude M (3)

µ (K) cannot be neglected in ppγ cross-section
calculations. Therefore, in the description of the ppγ cross-
section data, the MTuTts

µ amplitude is a better approximation
than is the MLow

µ amplitude. In contrast, for the same ppγ

process with scattering angles approaching the elastic limit
(θ1 � 40◦, θ2 � 40◦), the κp contribution becomes negligibly
small, and the two κp-dependent amplitudes [Mmag

µ (κp) and
M (3)

µ (κp)] can be ignored. In this case, the amplitudes MTuTts
µ

and MLow
µ predict almost equal ppγ cross sections. For the

npγ process, because the anomalous magnetic moments κp

and κn play an insignificant role, the amplitudes M
mag
µ (κ) and

M (3)
µ (κ) are essentially negligible. Moreover, we have found

that the amplitude M (3)
µ (K1) [= M (3)

µ (e) + M (3)
µ (κ)] along with

the higher-order terms [Oµ(K2)] produce insignificant effects
in the npγ cross section. Thus, MTuTts

µ and MLow
µ are approx-

imately equivalent, and the two amplitudes predict quantita-
tively similar npγ cross sections. Our study reveals that the
insignificant anomalous magnetic moment effect may be due
to a cancellation between contributions from κp and κn. Our
investigation also demonstrates that the amplitude Mex

µ (K0; e),
which involves meson-exchange current contributions, dom-
inates the npγ cross sections. Results from an nnγ investi-
gation are reported for the first time. Because the M (3)

µ (κn)
amplitude contribution is significant, MTuTts

µ and MLow
µ predict

quite different nnγ cross sections. There is a striking similarity
between the nnγ cross section using the amplitude MTuTts

µ

and the ppγ cross section calculated using the MTuTts
(4)µ

amplitude. The reason for such a similarity was discussed.
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In conclusion, our findings have enhanced the under-
standing of the fundamental emission mechanism governing
the NNγ processes. Our results show that the amplitude
MTuTts

µ should be used to describe all three NNγ processes.
Nonetheless, a complete understanding of the NNγ processes
requires additional exploration of exchange current effects
and anomalous magnetic moment effects such as form factor
contributions from the NγN vertices.
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APPENDIX A: DERIVATION OF THE MTuTts
µ AMPLITUDE

FOR THE npγ AND nnγ PROCESSES

The MTuTts
µ amplitude differs from the MLow

µ amplitude.
The primary difference lies in the different on-shell kinematic
points at which the two amplitudes are evaluated. Therefore,
the procedure for deriving the two amplitudes differ to some
extent. In this Appendix, the derivation of the MTuTts

µ amplitude
for both npγ and nnγ processes is briefly outlined. Special
attention will be paid to the derivation of the internal amplitude,
because such a derivation is new. Moreover, the external
amplitude is unique and well known.

1. The MTuTts
µ amplitude for the npγ process

The external amplitude ME
µ is a sum of four different half-

off-shell amplitudes,

ME
µ = MP1

µ

(
u2, t2,�P1

) + M
P ′

1
µ

(
u1, t2,�P ′

1

)
+ MP2

µ

(
u1, t1,�P2

) + M
P ′

2
µ

(
u2, t1,�P ′

2

)
, (A1)

where

MP1
µ

(
u2, t2,�P1

) = e

5∑
α=1

Fe
α

(
u2, t2,�P1

)
ū(P ′

1)

× λα

1

P1/ − �K − m
n

µu(P1)Uα(2),

M
P ′

1
µ

(
u1, t2,�P ′

1

) = e

5∑
α=1

Fe
α

(
u1, t2,�P ′

1

)
ū(P ′

1)

× n
µ

1

P ′
1/ + �K − m

λαu(P1)Uα(2),

(A2)

MP2
µ

(
u1, t1,�P2

) = e

5∑
α=1

Fe
α

(
u1, t1,�P2

)
Uα(1)ū(P ′

2)

× λα 1

P2/ − �K − m
p

µu(P2),

M
P ′

2
µ

(
u2, t1,�P ′

2

) = e

5∑
α=1

Fe
α

(
u2, t1,�P ′

2

)
Uα(1)ū(P ′

2)

× p
µ

1

P ′
2/ + �K − m

λαu(P2),

and we have defined

Uα(j ) = ū(P ′
j )λαu(Pj ), (j = 1, 2)

p
µ = γµ − i

κp

2m
σµνK

ν,

n
µ = −i

κn

2m
σµνK

ν,

�P1 = (P1 − K)2 = m2 − 2P1 · K,

�P ′
1
= (P ′

1 + K)2 = m2 + 2P ′
1 · K,

�P2 = (P2 − K)2 = m2 − 2P2 · K,

�P ′
2
= (P ′

2 + K)2 = m2 + 2P ′
2 · K.

Four different off-shell kinematic conditions, which specify
the four amplitudes MPx

µ (Px = P1, P
′
1, P2, P

′
2), are given by

Eq. (16). In terms of the external amplitude ME
µ given by

Eq. (A1), the internal amplitude MI
µ can be obtained from the

gauge invariance condition(
ME

µ + MI
µ

)
Kµ = 0. (A3)

To derive the leading term of the amplitude MI
µ, which is

valid to the K0 order, one must impose on-shell conditions
which define on-shell points and then expand the amplitude
ME

µ about these on-shell points—the soft-photon expansion.
Because different prescriptions impose different on-shell
conditions, different versions of the internal amplitude MI

µ

can be obtained from Eq. (A3). The Low prescription, which
has been used to derive the Low amplitude, is a typical
example. This prescription imposes the single common on-
shell condition given by Eq. (21), which defines the single on-
shell point (ū, t̄ , m2) [or (s̄, t̄ , m2)], for all half-off-shell am-

plitudes MP1
µ (u2, t2,�P1 ),M

P ′
1

µ (u1, t2,�P ′
1
),MP2

µ (u1, t1,�P2 ),

and M
P ′

2
µ (u2, t1,�P ′

2
). If one expands all amplitudes MPx

µ (Px =
P1, P

′
1, P2, P

′
2) about the common on-shell point (ū, t̄ , m2),

then the internal amplitude MI
µ, valid to the K0 order, can

be constructed from Eq. (A3). The resulting Low amplitude
MLow

µ (= ME
µ + MI

µ, valid to the K0 order) will depend upon
the elastic scattering amplitude and its derivatives evaluated at
(ū, t̄ ) [or (s̄, t̄ )]. Such a Low amplitude for the npγ process
was first derived by Nyman [8]. Here, we will focus upon the
derivation of the amplitude MTuTts

µ . We follow the procedure
employed in Ref. [5], the difference being that we treat the
npγ case rather than the ppγ case.

In deriving the MTuTts
µ amplitude, one imposes the four on-

shell conditions given by Eq. (17), which define four different
on-shell points. Therefore, to obtain MI

µ from Eq. (A3), one
must expand components of the amplitude ME

µ given by
Eq. (A1) about the four separate on-shell points; that is,

(i) expand the amplitude MP1
µ (u2, t2,�P1 ) or Fe

α (u2, t2,�P1 )
about the on-shell point (u2, t2,m

2),
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(ii) expand the amplitude M
P ′

1
µ (u1, t2,�P ′

1
) or Fe

α (u1, t2,�P ′
1
)

about the on-shell point (u1, t2,m
2),

(iii) expand the amplitude MP2
µ (u1, t1,�P2 ) or Fe

α (u1, t1,�P2 )
about the on-shell point (u1, t1,m

2), and

(iv) expand the amplitude M
P ′

2
µ (u2, t1,�P ′

2
) or Fe

α (u2, t1,�P ′
2
)

about the on-shell point (u2, t1,m
2).

One obtains the following expansion (up to the K0 order):

ME
µ = e

5∑
α=1

{
ū(P ′

1)

[
Fe

α (u1, t2)

(
R

P ′
1

µ

P ′
1 · K

)
λα

− Fe
α (u2, t2)λα

(
RP1

µ

P1 · K

)]
u(P1)Uα(2)

+ Uα(1)ū(P ′
2)

[
Fe

α (u2, t1)

(
P ′

2µ + R
P ′

2
µ

P ′
2 · K

)
λα

− Fe
α (u1, t1)λα

(
P2µ + RP2

µ

P2 · K

)]

× u(P2) + DαµUα(1)Uα(2)

}
, (A4)

where

Dαµ = (2P2µ)

[
∂F e

α

(
u1, t1,�P2

)
∂�P2

]
�P2 =m2

+ (2P ′
2µ)

[
∂F e

α

(
u2, t1,�P ′

2

)
∂�P ′

2

]
�P ′

2
=m2

,

F e
α (u1, t2) ≡ Fe

α (u1, t2,m
2),

F e
α (u2, t2) ≡ Fe

α (u2, t2,m
2),

F e
α (u2, t1) ≡ Fe

α (u2, t1,m
2),

F e
α (u1, t1) ≡ Fe

α (u1, t1,m
2),

RQ1
µ = κn

8m
{[γµ, �K],Q/1}, (Q1 = P1, P

′
1)

RQ2
µ = 1

4
[γµ, �K] + κp

8m
{[γµ, �K],Q/2}, (Q2 = P2, P

′
2)

and we have used [A,B] ≡ AB − BA and {A,B} ≡ AB +
BA. Substituting Eq. (A4) into Eq. (A3), one finds

MI
µKµ = −ME

µ Kµ

= −e

5∑
α=1

[Iα + DαµKµ]Uα(1)Uα(2), (A5)

where

Iα = Fe
α (u2, t1) − Fe

α (u1, t1). (A6)

One can rewrite Iα in the following manner,

Iα = 1
2

{[
Fe

α (u2, t1) − Fe
α (u2, t2)

]
+ [

Fe
α (u1, t2) − Fe

α (u1, t1)
]

+ [
Fe

α (u2, t2) − Fe
α (u1, t2)

]
+ [

Fe
α (u2, t1) − Fe

α (u1, t1)
]}

. (A7)

Applying the mean-value theorem to Eq. (A7), one obtains

Iα = −(P2 − P ′
2) · K

∂Fe
α (u2, t

′
m)

∂t ′m

+ (P2 − P ′
2) · K

∂Fe
α (u1, tm)

∂tm

− (P1 − P ′
2) · K

∂Fe
α (um, t2)

∂um

− (P1 − P ′
2) · K

∂Fe
α (u′

m, t1)

∂u′
m

, (A8)

where tm and t ′m lie between t1 and t2, and um and u′
m lie

between u1 and u2. Inserting Eq. (A8) into Eq. (A5), one can
determine MI

µ to be

MI
µ = −e

5∑
α=1

[
−(P2 − P ′

2)µ
∂F e

α (u2, t
′
m)

∂t ′m

+ (P2 − P ′
2)µ

∂F e
α (u1, tm)

∂tm

− (P1 − P ′
2)µ

∂F e
α (um, t2)

∂um

− (P1 −P ′
2)µ

∂F e
α (u′

m, t1)

∂u′
m

+ Dαµ

]
Uα(1)Uα(2). (A9)

Again, using the mean-value theorem, one can replace the
derivatives of Fe

α with respect to t ′m, tm, um, and u′
m by the

finite differences of Eq. (A7) to obtain

MI
µ = − e

2

5∑
α=1

{
(P2 − P ′

2)µ
(P2 − P ′

2) · K

[
Fe

α (u2, t1) − Fe
α (u2, t2)

]
+ (P2 − P ′

2)µ
(P2 − P ′

2) · K

[
Fe

α (u1, t2) − Fe
α (u1, t1)

]
+ (P1 − P ′

2)µ
(P1 − P ′

2) · K

[
Fe

α (u2, t2) − Fe
α (u1, t2)

]
+ (P1 − P ′

2)µ
(P1 − P ′

2) · K

[
Fe

α (u2, t1) − Fe
α (u1, t1)

]
+ 2Dαµ

}
Uα(1)Uα(2) (A10)

= −e

5∑
α=1

[−V ′
µF e

α (u2, t2) + VµF e
α (u2, t1)

+ V ′
µF e

α (u1, t2) − VµF e
α (u1, t1)

+ Dαµ

]
Uα(1)Uα(2), (A11)

where

Vµ = (P1 − P ′
2)µ

2(P1 − P ′
2) · K

+ (P2 − P ′
2)µ

2(P2 − P ′
2) · K

, (A12)

V ′
µ = (P2 − P ′

2)µ
2(P2 − P ′

2) · K
− (P1 − P ′

2)µ
2(P1 − P ′

2) · K
. (A13)

The amplitude MTuTts
µ for the npγ process can be obtained by

combining the external amplitude ME
µ of Eq. (A4) with the
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internal amplitude MI
µ of Eq. (A11),

MT
µ = ME

µ + MI
µ = MTuTts

µ + O(K). (A14)

The explicit expression for MTuTts
µ is given by Eq. (13).

2. The amplitude MTuTts
µ for the nnγ process

The external amplitude ME
µ is a sum of four different half-

off-shell amplitudes,

ME
µ = MP1

µ

(
u2, t2,�P1

) + M
P ′

1
µ

(
u1, t2,�P ′

1

)
+ M̄P2

µ

(
u1, t1,�P2

) + M̄
P ′

2
µ

(
u2, t1,�P ′

2

)
, (A15)

where

MP1
µ

(
u2, t2,�P1

) = e

5∑
α=1

Fe
α

(
u2, t2,�P1

)
ū(P ′

1)

× λα

1

P1/ − �K − m
n

µu(P1)Uα(2),

M
P ′

1
µ

(
u1, t2,�P ′

1

) = e

5∑
α=1

Fe
α

(
u1, t2,�P ′

1

)
ū(P ′

1)

× n
µ

1

P ′
1/ + �K − m

λαu(P1)Uα(2),

(A16)

M̄P2
µ

(
u1, t1,�P2

) = e

5∑
α=1

Fe
α

(
u1, t1,�P2

)
Uα(1)ū(P ′

2)

× λα 1

P2/ − �K − m
n

µu(P2),

M̄
P ′

2
µ

(
u2, t1,�P ′

2

) = e

5∑
α=1

Fe
α

(
u2, t1,�P ′

2

)
Uα(1)ū(P ′

2)

× n
µ

1

P ′
2/ + �K − m

λαu(P2).

Some of the symbols used here were defined in Eq. (A2). It is
obvious that the four different off-shell kinematic conditions
[Eq. (16)] which specify the four amplitudes MPx

µ (Px = P1,

P ′
1, P2, P

′
2) should apply to all three NNγ processes.

If we impose the on-shell points (u2, t2,m
2), (u1, t2,m

2),
(u1, t1,m

2), and (u2, t1,m
2) upon the amplitudes MP1

µ (u2,

t2,�P1 ),M
P ′

1
µ (u1, t2,�P ′

1
),MP2

µ (u1, t1,�P2 ), and M
P ′

2
µ (u2, t1,

�P ′
2
), respectively, then the external amplitude ME

µ has the
following expansion up to the K0 order:

ME
µ = e

5∑
α=1

{
ū(P ′

1)

[
Fe

α (u1, t2)

(
R̄

P ′
1

µ

P ′
1 · K

)
λα

− Fe
α (u2, t2)λα

(
R̄P1

µ

P1 · K

)]
u(P1)Uα(2)

+ Uα(1)ū(P ′
2)

[
Fe

α (u2, t1)

(
R̄

P ′
2

µ

P ′
2 · K

)
λα

− Fe
α (u1, t1)λα

(
R̄P2

µ

P2 · K

)]
u(P2)

}
, (A17)

where

R̄Px = κn

8m
{[γµ, �K], P/x}, (Px = P1, P

′
1, P2, P

′
2).

Because the amplitudes MPx
µ (Px = P1, P

′
1, P2, P

′
2) are sepa-

rately gauge invariant, we have

ME
µ Kµ = 0. (A18)

From the gauge invariance condition, we also have

MI
µKµ = −ME

µ Kµ = 0.

The simplest choice for KI
µ is to take

MI
µ = 0 (A19)

and

MTuTts
µ = ME

µ ,

where ME
µ is given in Eq. (A17). This is why the expression

for the amplitude MTuTts
µ in Eq. (13) for the nnγ process has

the same form as the amplitude ME
µ given by Eq. (A17).
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