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α-nucleus potentials, α-decay half-lives, and shell closures for superheavy nuclei
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Systematic α-nucleus folding potentials are used to analyze α-decay half-lives of superheavy nuclei.
Preformation factors of about several percent are found for all nuclei under study. The systematic behavior
of the preformation factors and the volume integrals of the potentials allows predictions of α-decay energies
and half-lives for unknown nuclei. Shell closures can be determined from measured α-decay energies using the
discontinuity of the volume integral at shell closures. For the first time a double shell closure is predicted for
Zmagic = 132, Nmagic = 194, and Amagic = 326 from the systematics of folding potentials. The calculated α-decay
half-lives remain far below 1 ns for superheavy nuclei with double shell closure and masses A > 300 independent
of the precise knowledge of the magic proton and neutron numbers.
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The α decay of superheavy nuclei has been studied
intensively in the past few years [1–10]. In many papers a
simple two-body model was applied [11], and in most papers
a potential was derived that was able to fit the measured
α-decay half-lives of the analyzed nuclei. However, most of the
studies (with the exception of [2]) did not attempt to use these
potentials for the description of other experimental quantities
such as, for example, α scattering cross sections or (n, α) or
fusion reaction cross sections.

Therefore, an alternative approach was followed in
Ref. [12], where the simple two-body model was combined
with systematic α-nucleus folding potentials that are able
to describe various properties, and the ratio between the
calculated half-life T calc

1/2,α and the experimental half-life T
exp

1/2,α

was interpreted as preformation factor P of the α particle in
the decaying nucleus. In addition to the systematic behavior
of the volume integrals of the folding potentials, preformation
factors of the order of a few percent were found for a large
number of nuclei [12,13].

Only for very few light nuclei have some levels been found
where a simple two-body model can exactly reproduce the
experimental half-lives or widths (e.g., for 6Li = 2H ⊗ α [14]
or for 8Be = α ⊗ α [12,15]). Already for 20Ne = 16O ⊗ α the
calculated widths are somewhat larger than the experimentally
observed ones [16]. Any simple two-body model with a
realistic potential must provide half-lives identical or shorter
than the experimental value, because the two-body model
assumes a pure α cluster wave function by definition, whereas
any realistic wave function is given by the sum over many
different configurations. Thus, preformations of a few percent
are a quite natural finding for superheavy nuclei.

The following ingredients were used in this Rapid Com-
munication. The α-nucleus potential was calculated from
a double-folding procedure with an effective interaction
[12,17,18]. The nuclear densities were taken from [19] for
the α particle and derived from the two-parameter Fermi
distributions for 232Th and 238U in Ref. [19] with properly
scaled radius parameter r ∼ A

1/3
T . The total potential is given
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by the sum of the nuclear potential VN (r) and the Coulomb
potential VC(r):

V (r) = VN (r) + VC(r) = λVF (r) + VC(r). (1)

The Coulomb potential is taken in the usual form of a
homogeneously charged sphere, where the Coulomb radius
RC has been chosen identically with the rms radius of the
folding potential VF , and the folding potential VF is scaled
by a strength parameter λ, which is of the order of 1.0−1.3.
This leads to volume integrals of about JR ≈ 300 MeV fm3

for all nuclei under study and is in agreement with systematic
α-nucleus potentials derived from elastic scattering [20–26].
(Note that, as usual, the negative sign of JR is omitted in
this work.) Bound-state properties of 212Po = 208Pb ⊗ α have
been analyzed successfully using the same potential [27].
The centrifugal potential has been omitted for L = 0 decays.
The following study is restricted to even-even nuclei because
the additional centrifugal barrier may influence the α-decay
half-life for decays with L �= 0.

The quotations of the volume integral JR and the potential
strength parameter λ are practically equivalent for this paper.
If one wants to compare this work to folding potentials with a
different nucleon-nucleon interaction or even to potentials with
a different parametrization (e.g., Woods-Saxon potentials), the
volume integral JR has to be used. Therefore the following
discussion is restricted to volume integrals. Nevertheless, most
figures provide both quantities JR and λ.

The α-decay width �α is given by the following formula
[11]:

�α = PF
h̄2

4µ
exp

[
−2

∫ r3

r2

k(r)dr

]
, (2)

with preformation factor P, normalization factor

F

∫ r2

r1

dr

k(r)
= 1 (3)

and wave number

k(r) =
√

2µ

h̄2 |E − V (r)|. (4)
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µ is the reduced mass and E is the decay energy of the
α decay, which was taken from the computer files based on
the mass table of Ref. [28] or from Table 1 of Ref. [1]. The
ri are the classical turning points. For 0+ → 0+s-wave decay
the inner turning point is at r1 = 0. r2 varies around 9 fm,
and r3 varies strongly depending on the energy. The decay
width �α is related to the half-life by the well-known relation
�α = h̄ ln 2/T1/2,α . Following Eq. (2), the preformation factor
may also be obtained as

P = T calc
1/2,α

T
exp

1/2,α

, (5)

where �α or T calc
1/2,α are calculated from Eq. (2) with P = 1. For

completeness, the here predicted half-life for unknown nuclei
will be defined here as T

pre
1/2,α = T calc

1/2,α/P .
The potential strength parameter λ was adjusted to the

energy of the α particle in the α emitter (A + 4) = A ⊗ α.
The number of nodes of the bound-state wave function was
taken from the Wildermuth condition

Q = 2N + L =
4∑

i=1

(2ni + li) =
4∑

i=1

qi, (6)

where Q is the number of oscillator quanta, N is the number of
nodes, L is the relative angular momentum of the α-core wave
function, and qi = 2ni + li are the corresponding quantum
numbers of the nucleons in the α cluster. A value of q = 5
was taken for 82 < Z,N � 126 and q = 6 for N > 126,
where Z and N are the proton and neutron number of the
daughter nucleus. This definition of Q deviates slightly from
the semiclassical Bohr-Sommerfeld quantum number G as
mostly used. One finds G ≈ 22.5 for all nuclei with Q = 22.

Various attempts have been made to determine the prefor-
mation factors P experimentally or theoretically [29–31]. The
usage of a simple two-body wave function in connection with
the Wildermuth condition [Eq. (6)] is obviously a quite simple
approximation for the description of the complex many-body
wave function of a superheavy nucleus that was analyzed,
for example, in Refs. [32–36]. Nevertheless, the preformation
factor defined as the ratio P = T calc

1/2,α /T exp
1/2,α in Eq. (5) may be

understood as an effective preformation factor. The obtained
values for P do only show small variations and can thus be used
for the prediction of half-lives of unknown superheavy nuclei
in a consistent way. A full discussion of preformation factors
is beyond the scope of the present Rapid Communication.

The resulting preformation factors P for even-even nuclei
are shown in Fig. 1. An average value of P ≈ 8% is found.
Almost all results lie within a bar of uncertainty of a factor
of 3. This uncertainty is identical to the results of Refs. [1,2].
However, the values for P are much smaller in this work (see
previous discussion). A table of the results will be given in a
forthcoming paper.

There are two different ways in this simple two-body
model to obtain larger α-decay half-lives T calc

1/2,α and thus larger
preformation factors P as derived from Eq. (5). First, very
narrow potentials can be used. In this case the attractive
nuclear potential becomes negligible in the region of the
Coulomb barrier, thus effectively increasing the barrier and
increasing the α-decay half-life. This idea was followed, for
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FIG. 1. The preformation factors P for several superheavy
α emitters. The horizontal lines indicate an average value of P ≈ 8%
(full line) and typical uncertainties of a factor of 3 (dotted lines).

example, in Ref. [10], and the differences to the systematic
folding potential in the present work are illustrated in Fig. 1 of
Ref. [12]. A very narrow potential as used in Ref. [10] is prob-
ably unable to describe quantities other than the α-decay half-
life. Second, a smaller quantum number (G or Q) can be used.
This idea was followed in Ref. [1]. In this case the attractive nu-
clear potential is reduced at all radii, thus again effectively in-
creasing the Coulomb barrier and the α-decay half-life. Many
quantities are mainly sensitive to the tail of the wave functions
at large radii outside the nuclear potential, which leads to
discrete ambiguities for the volume integral JR of α-nucleus
potentials (the so-called family problem). However, it has been
found in the past few years that systematic α-nucleus folding
potentials have volume integrals JR around 300 MeV fm3 [20–
26] compatible with the quantum number Q used in the present
work and incompatible with the smaller G used in Ref. [1].

In principle, the application of a semiclassical model
is not necessary for the calculation of α-decay half-lives
or widths. From the potential in Eq. (1) one can directly
calculate the wave function and the width of the decaying
state. However, in practice this is difficult because of the low
energies and extremely small widths of the states. For 212Po =
208Pb ⊗ α such a fully quantum-mechanical calculation is
possible at the limits of numerical stability. Figure 2 shows
the scattering phase shift δL for the L = 0 partial wave as a
function of energy, which is given by E = E0 + i × �E with
E0 = 8.954088523002 MeV and �E = 2 × 10−15 MeV. The
points are the results of a phase-shift calculation; the line is a
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FIG. 2. Phase shift δL for the L = 0 partial wave for the system
212Po = 208Pb ⊗ α. The derived width from Eq. (7) is � = 3.52 ×
10−14 MeV. Note the extremely small step size of the calculation of
�E = 2.0 × 10−15 MeV.
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fit to the points using the formula for narrow resonances

δL(E) = arctan
�

2(E − ER)
, (7)

with ER = 8.9541 MeV and � = 3.52 × 10−8 eV, which
translates to T calc

1/2,α = 13.0 ns. The semiclassical approxima-
tion yields T calc

1/2,α = 8.7 ns, which is about 30% lower than
the precise quantum-mechanical value. A similar result is
obtained for the decay of 8Be, where one finds �α = 6.7 eV
for the quantum-mechanical calculation and �α = 10.5 eV
for the semiclassical approximation. As already pointed out,
the preformation factors are close to unity for 8Be with
P = 100% (65%) for the quantum-mechanical (semiclassical)
calculation and of the order of a few percent for 212Po with
P = 4.3% (2.9%). These results confirm the applicability of
the semiclassical model within uncertainties of about 30%.

It is interesting to use the systematic folding potentials
for the prediction of properties of unknown superheavy nuclei
such as α-decay energies, α-decay half-lives, and shell closures
above N,Z = 126. The basic building block is the smooth
behavior of the strength parameter λ of the folding potential
and the resulting volume integrals JR (see Fig. 3 of this work
and Table I of Ref. [12]).

Within one major shell, one finds variations of JR from
about JR ≈ 335 MeV fm3 at the lower end of a shell to about
JR ≈ 280 MeV fm3 at the upper end of a shell. Between neigh-
boring nuclei the variation in JR is below �JR < 5 MeV fm3.
This allows first the determination of α-decay energies for
unknown nuclei. As an example, one finds for the decay of
298120 →294118 a volume integral of JR ≈ 296 MeV fm3,
corresponding to λ = 1.138. This leads to a decay energy
of E = 12.87 MeV. The α-decay half-life can be estimated
using the given energy and an average preformation factor of
P ≈ 8%, leading to T

pre
1/2,α ≈ 8 µs. Whereas the uncertainties

for the volume integral JR and the derived α-decay energy are
small, the uncertainty of the α-decay half-life is strong because
of the exponential energy dependence. For a potential strength
enhanced (reduced) by 2% one finds the α-decay energy E =
10.70 MeV (E = 14.98 MeV) and T

pre
1/2,α = 0.97 s (T pre

1/2,α =
1.6 ns) again using P = 8%. A variation of the potential
strength of 1% corresponds to a variation of the α-decay energy
of about 1 MeV, which is comparable to the uncertainties
of mass formulas [37]. As usual, the reliability of such an
extrapolation decreases for nuclei with masses far above
the heaviest known nuclei. However, the uncertainties for
closed-shell nuclei remain small because of the well-defined
volume integral JR for such nuclei, which can be studied at
the shell closures at N = 82, Z = 82, and N = 126.

Shell closures can be seen as discontinuities in the volume
integrals (see Figs. 3 and 4). Whereas the variation between
neighboring nuclei remains below �JR < 5 MeV fm3, at shell
closures one finds a strong increase of JR that is directly
related to the increase of the quantum number Q. Because
shell closures are not known a priori for superheavy nuclei,
Fig. 4 analyzes the volume integrals around the shell closure
at N = 82 for Xe, Ba, Ce, and Nd isotopes. Below N = 82,
the wave functions are characterized by Q = 16 (full black
symbols), and the volume integrals are slightly above JR =
280 MeV fm3. Above N = 82 one finds volume integrals
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FIG. 3. Volume integrals JR for superheavy nuclei as a function
of ZD (upper), ND (middle), and AD (lower). Within a major shell
one finds a smooth decrease of JR with a minimum value around
JR ≈ 280 MeV fm3. From the fits to the data points one can directly
see that JR drops below 280 MeV fm3 at Z ≈ 130, N ≈ 192, and A ≈
322, leading to the magic numbers Zmagic = 132, Nmagic = 194, and
Amagic = 326. The open circles are extrapolations for 294118 and the
lower limit of JR > 279 MeV fm3 close to the next closed shells (see
text). The open squares are nuclei with Q = 18 (208Pb = 204Hg ⊗ α )
and Q = 20 (210Pb = 206Hg ⊗ α, 210Po = 206Pb ⊗ α).

around 310 MeV fm3 for wave functions with Q = 18 (open
symbols; see also Ref. [12]). The small gray symbols are
calculated above the shell closure at N = 82 without an
increase of the quantum number Q. Here one finds low volume
integrals significantly below JR = 280 MeV fm3 that differ by
more than �JR = 10 MeV fm3 from the neighboring values.
The behavior of the potential strength parameter λ is similar
to that of JR (see Fig. 4).

A similar behavior is found at the shell closures at Z = 82
and N = 126 around 208Pb. Compared to neighboring values,
the volume integrals JR are reduced by more than �JR =
10 MeV fm3 if one neglects the increase of the quantum
number Q, and the absolute values of the volume integrals
drop below JR = 280 MeV fm3. Consequently, changes in JR

by about 10 MeV fm3 or values of JR significantly below
280 MeV fm3 are clear indications for the crossing of a major
shell. Because the determination of the volume integral JR

requires only the knowledge of the α-decay energy, the
measurement of one single quantity may be sufficient for the
determination of a double closure: As soon as JR drops below
280 MeV fm3, magic neutron or proton numbers have been
crossed!
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FIG. 4. Potential strength parameter λ (upper) and volume inte-
grals JR (lower) around the shell closure N = 82 for 130−136Xe ⊗ α

(diamonds), 132−142Ba ⊗ α (circles), 134−144Ce ⊗ α (triangles), and
140−146Nd ⊗ α (squares) isotopes. One can clearly see the disconti-
nuity at the shell closure N = 82 (see text).

This systematic behavior of α-nucleus potentials allows
further a prediction of magic numbers in a yet unknown mass
region above A > 300. The smooth energy dependence of the
volume integrals JR in Fig. 3 is fitted using a second-order
polynomial for all nuclei with Q = 22 (full lines in Fig. 3).
JR drops below 280 MeV fm3 at Z = 130, N = 192, and
A = 322, which means that the nucleus 326132 = 322130 ⊗ α

is the heaviest nucleus that can be described using a potential
with JR > 280 MeV fm3 and Q = 22. Increasing Z or N leads
to JR below its lower limit, and thus the magic numbers
Zmagic = 132 ± 4, Nmagic = 194 ± 4, and Amagic = 326 ± 6
can be derived from Fig. 3.

The α-decay half-life of the doublymagic nucleus with
Zmagic = 132, Nmagic = 194, and Amagic = 326 can be calcu-
lated using the volume integral JR = 279.2 MeV fm3 (taken
from 208Pb = 204Hg ⊗ α). One finds the energy E =
18.26 MeV and the corresponding half-life T calc

1/2,α = 1.16 ×
10−12 s with P = 1. Again by using P = 8%, a realistic
prediction of the half-life is T

pre
1/2,α = 1.5 × 10−11 s. Including

the uncertainty of P, the half-life remains below 10−10 s. The
uncertainty of the volume integral JR at closed shells is smaller
than 1%. Increasing JR by 1% reduces the α-decay energy by
about 1 MeV and increases the α-decay half-life by about a
factor of 20. In any case, the half-life remains below 1 ns.

The lower limit of JR has also been applied for the
calculation of the half-life of 310126 →306124 with the widely
discussed shell closures at Z = 126 and N = 184 (e.g. [38,
39]); but also other magic numbers have been discussed (e.g.
[40]). Here one obtains the α-decay energy E = 18.82 MeV
and the corresponding α-decay half-life T calc

1/2,α = 2.1 × 10−14 s
(P = 1). The realistic prediction using P = 8% is T

pre
1/2,α =

2.6 × 10−13 s, and including all uncertainties the half-life
remains far below 10−11 s. These calculations indicate clearly
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FIG. 5. Potential strength parameter λ (upper) and volume inte-
grals JR (lower) vs decay energy E for superheavy nuclei. Known
nuclei are shown as full circles. The extrapolated doublymagic
nucleus with Zmagic = 132, Nmagic = 194, and Amagic = 326 is shown
as an open circle. The open squares are nuclei with Q = 18 and
Q = 20 (see also Fig. 3).

that one cannot expect that any superheavy nucleus above
A > 300 with magic proton and neutron numbers (whatever
these numbers are) has a half-life significantly above 1 ns.

Because of the significant variation of the decay energy E
from about 4 MeV to about 12 MeV for known superheavy
nuclei and up to about 20 MeV for the predicted but yet
unknown doublymagic superheavy nuclei one may expect a
correlation between the potential strength parameter λ or the
volume integral JR and the decay energy E. This relation is
analyzed in Fig. 5 for superheavy nuclei and in Fig. 6 for nuclei
around N = 82.

Figure 5 seems to indicate that larger decay energies E
are correlated to smaller volume integrals JR . However, the
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FIG. 6. Potential strength parameter λ (upper) and volume inte-
grals JR (lower) vs decay energy E around the shell closure N = 82
for 130−136Xe ⊗ α (diamonds), 132−142Ba ⊗ α (circles), 134−144Ce ⊗ α

(triangles), and 140−146Nd ⊗ α (squares) isotopes (see text; for
description of symbols see Fig. 4).
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underlying reason for this energy dependence of JR is the
smooth variation of JR within a major shell (see previous
discussion). At very small energies one finds again a small
volume integral of JR ≈ 280 MeV fm3 for 208Pb = 204Hg ⊗ α.
As can also be seen from Fig. 6, the volume integrals do
not depend on the energy E: Above N = 82 one finds JR ≈
310 MeV fm3 for bound (E < 0) and unbound (E > 0) nuclei,
and below N = 82 one finds JR ≈ 280 MeV fm3, again for
bound and unbound nuclei.

In conclusion, systematic folding potentials can be used
for the calculation of α-decay half-lives of superheavy nuclei.
Additionally, the systematic behavior of the volume integrals
allows predictions of α-decay energies and half-lives of yet
unknown nuclei. The magic numbers Zmagic = 132, Nmagic =
194, and Amagic = 326 have been derived from the discontinu-
ities of the volume integrals at shell closures. There is strong
evidence that α-decay half-lives remain far below 1 ns even
for doublymagic superheavy nuclei above A > 300.
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