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Low-density instabilities in relativistic asymmetric matter of compact stars
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Dynamical instability modes of low-density asymmetric nuclear matter (ANM) neutralized by electrons as
found in supernova core and neutron star crust are studied in the framework of relativistic mean-field hadron
models with the inclusion of electron and photon fields. The dynamical and thermodynamical instability zones are
compared. It is shown that the Coulomb field quenches large structure formation but has little effect on medium and
small-size fluctuations that are, however, partially stabilized by the finite range of the nuclear forces. The electron
dynamics tends to restore the large-wavelength instabilities but is moderated by the high-electron Fermi energy.
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I. INTRODUCTION

The understanding of compact stars, supernova cores, and
neutron stars requires a multidisciplinary theoretical effort,
including astrophysics, nuclear and particle physics, and
thermodynamics. Stellar matter at low density is essentially
composed of neutrons, protons, electrons, and, possibly, when
their mean free path is short enough, neutrinos. This composite
matter is expected to undergo phase transitions associated to
the nuclear liquid-gas phase transition but strongly modified by
the Coulomb interaction and the presence of electrons [1–14].
Those phase transitions may affect the mechanical, thermal,
and transport properties of compact stars. An important
characteristic of the nuclear liquid-gas phase transition is the
role of isospin. Indeed, because nuclear matter is composed
of two different fluids, namely protons and neutrons, the
liquid gas phase transition can lead to an isospin distillation
phenomenon.

The role of isospin has been first discussed in the context
of nuclear matter phase transition in connection with the
fragmentation of hot nuclei. In Ref. [15], based on a lattice-gas
model, the authors have shown that the distillation effect
indeed influences the light fragment production. In Ref. [16] it
was shown that for a neutron-rich system undergoing a phase
transition, the fraction of light neutron rich isotopes (such as
tritium) compared with neutron poor ones (such as 3He) is
much larger than what would be expected looking only at the
isospin asymmetry (N/Z) of the source. This strong enhance-
ment of light neutron-rich particles has been interpreted as a
signature of the fractionation effect [16]. Hence, instabilities
and phase transitions of asymmetric nuclear matter (ANM)
are important quantities in the understanding of the physics
underlying isospin distillation and multifragmentation.

At low nuclear densities, mechanical and chemical modes
are coupled in such a way that the instability of the ANM
system appears as a unique mode being a mixture of baryon

density and concentration fluctuations [17]. The region of
instability, determined by the spinodal curve, depends on
the relativistic model used and on its parametrization and
shrinks considerably with the increase of the temperature
[18] within a mean-field approximation. Including finite size
effects and the Coulomb interaction within a Thomas-Fermi
finite temperature approach [19] reduces drastically the critical
temperature.

To describe compact-star matter, the electrons must be
introduced. They neutralize the proton charge and thus
suppress the diverging Coulomb contribution to the energy. In
such a context, the Coulomb interaction is only sensitive to the
charge correlation. Calculations going beyond mean-field and
including correlations seem to indicate that, in compact-star
matter the critical temperature will increase because of the
larger energy gap between a pure phase and mixed phase
[20]. Not only the equation of state of stellar matter has to
be understood, but also the neutrino mean free path in the
medium has to be well described. It has been shown that the
neutrino opacity is affected by nucleon-nucleon interactions
because of coherent scattering off density fluctuations [21].
Both single particle and collective contribution have to be taken
into account. It is, therefore, important to have a through out
understanding of the collective modes in asymmetric nuclear
matter to predict the behavior of neutrinos.

In a previous work [22] we have studied the longitudinal
nuclear and mesonic collective modes arising from small
oscillations around a stationary state in nuclear matter. This
investigation was performed in the framework of a relativistic
mean-field hadronic model within the Vlasov formalism. In the
present work we investigate the influence of the electromag-
netic interaction and of the presence of electrons on the unsta-
ble modes and compare the dynamical instability region with
the thermodynamical one. We study in some details the role
of isospin and the modification of the distillation phenomenon
because of the presence of the Coulomb field and electrons.
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Relativistic phenomenological models have been exten-
sively used in the description of nuclear and stellar properties.
For densities up to nuclear saturation density they predict
similar results for the equation of state of nuclear matter
and ground-state properties of nuclei. However, differences
may occur at large densities and/or finite temperatures. They
should, therefore, be tested on a larger interval of densities and
temperatures to have predictive power.

In Sec. II we formulate the Vlasov equation formalism for
nuclear neutral matter, including electrons and the electromag-
netic field. In Sec. III the dispersion relation is displayed and
in Sec. IV a brief review of the thermodynamical unstable
region is given. In Sec. V the numerical results are shown
and discussed. Finally, in the last section the most important
conclusions are drawn.

II. THE VLASOV EQUATION FORMALISM

We consider a system of baryons, with mass M interacting
with and through an isoscalar-scalar field φ with mass ms ,
an isoscalar-vector field V µ with mass mv , and an isovector-
vector field bµ with mass mρ . We also include a system of
electrons with mass me. Protons and electrons interact through

the electromagnetic field Aµ. The Lagrangian density reads
as follows:

L = ψ̄

[
γµ

(
i∂µ−gvV

µ−gρ

2
τ ·bµ−eAµ 1+τ3

2

)
− (M − gsφ)

]
ψ

+ 1

2

(
∂µφ∂µφ − m2

s φ
2) − 1

3!
κφ3 − 1

4!
λφ4

− 1

4
	µν	

µν + 1

2
m2

vVµV µ − 1

4
Bµν · Bµν + 1

2
m2

ρbµ · bµ

− 1

4
FµνF

µν + ψ̄e[γµ(i∂µ + eAµ) − me]ψe, (1)

where 	µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − gρ(bµ× bν),
and Fµν = ∂µAν − ∂νAµ. The model comprises the following
parameters: Three coupling constants gs, gv , and gρ of the
mesons to the nucleons, the nucleon mass M, the electron mass
me, the masses of the mesons ms,mv,mρ , the electromagnetic
coupling constant e = √

4π/137, and the self-interacting
coupling constants κ and λ. We have used the set of constants
identified as NL3 taken from Ref. [23]. For this case, the
saturation density that we refer as ρ0 is 0.148 fm−3.

We denote by f (r, p, t) = diag(fp, fn, fe) the one-body
phase-space distribution function in isospin space and by

h =




√
(p − Vp)2 + (M − gsφ)2 + V0p 0 0

0
√

(p − Vn)2 + (M − gsφ)2 + V0n 0

0 0
√

(p + eA)2 + m2
e − eA0


 (2)

the one-body Hamiltonian, where

V0i = gvV0 + gρ

2
τib0 + eA0

1 + τi

2
,

V i = gvV + gρ

2
τib + eA

1 + τi

2
, i = p, n

τi = 1 (protons) or −1 (neutrons).
The time evolution of the distribution function is described

by the Vlasov equation

∂fi

∂t
+ {fi, hi} = 0, i = p, n, e, (3)

where {, } denotes the Poisson brackets. It has been argued in
Refs. [24,25] that Eq. (3) expresses the conservation of the
number of particles in phase space and is, therefore, covariant.
Antiparticles should certainly be taken into account at finite
temperature. However, at a given temperature, the dynamics
described by the Vlasov equation do not change the number of
particles or antiparticles in this semiclassical approach. From
Hamilton’s equations we derive the equations describing the
time evolution of the fields φ, V µ,Aµ and the third component
of the ρ field b

µ

3 = (b0, b) [22].
At zero temperature and for particles obeying Fermi-Dirac

statistics, the value of the distribution function is either 1
or 0, because the single-particle state is either occupied by
one particle or empty. The state that minimizes the energy
of asymmetric nuclear matter is characterized by the Fermi

momenta PFi, i = p, n, PFe = PFp and is described by the
distribution function

f0(r, p) = diag
[
�

(
P 2

Fp−p2
)
,�

(
P 2

Fn − p2
)
,�

(
P 2

Fe − p2
)]
(4)

and by the constant mesonic fields that obey the following
equations: m2

s φ0 + κ
2 φ2

0 + λ
6 φ3

0 = gsρ
(0)
s , m2

v V
(0)

0 = gvj
(0)
0 ,

V
(0)
i = 0, m2

ρ b
(0)
0 = gρ

2 j
(0)
3,0, b

(0)
i = 0, A

(0)
0 = 0, and A

(0)
i = 0.

Collective modes in the present approach correspond to
small oscillations around the equilibrium state, and they are
described by the linearized equations of motion. We take for
the fields

f = f0 + δf, φ = φ0 + δφ, V0 = V
(0)

0 + δV0,

Vi = δVi, b0 = b
(0)
0 + δb0, bi = δbi,

A0 = δA0, Ai = δAi.

(5)

As in Ref. [26] we introduce a generating function S(r, p, t) =
diag

(
Sp, Sn, Se

)
, defined in isospin space such that the

variation of the distribution function is

δfi = {Si, f0i} = −{Si, p
2}δ(P 2

Fi − p2). (6)

In terms of this generating function, the linearized Vlasov
equations for δfi are equivalent to the following time evolution
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equations

∂Se

∂t
+ {Se, h0e} = δhe = −e

[
δA0 − p · δA

ε0e

]
, (7)

∂Si

∂t
+ {Si, h0i} = δhi = −gsδφ

M∗

ε0

+ δV0i − p · δV i

ε0
, i = p, n, (8)

where δV0i = gvδV0 + τi
gρ

2 δb0 + e 1+τi

2 δA0 and δV i =
gvδV + τi

gρ

2 δb + e 1+τi

2 δA, which has to be satisfied only for
p = PFi . In Eq. (7) ε0e = √

p2 + m2
e and in Eq. (8)

h0i =
√

p2 + M∗2 + V (0)
0i = ε0 + V (0)

0i . (9)

The linearized equations of the fields are obtained using the
procedure already presented in Ref. [22]. The longitudinal
modes, with momentum k and frequency ω are well described
by the ansatz




Sj (r, p, t)
δφ

δB0

δBi


 =



Sj

ω(cosθ )
δφω

δB0
ω

δBi
ω


 ei(ωt−k·r),

where j = e, p, n, B = V, b,A represents the vector-meson
fields and θ is the angle between p and k. For these modes, we
get δV x

ω = δV
y
ω = 0 , δbx

ω = δb
y
ω = 0 , and δAx

ω = δA
y
ω = 0 .

It is worth pointing out that the present formalism was
first applied to determine the collective modes in symmetric
nuclear matter at both zero and finite temperature in Ref. [26],
where it was shown that the Landau-Vlasov formalism was
equivalent to the Green function formalism developed in
Ref. [27], giving similar results. In Ref. [28], the formalism
of Refs. [27] and [29] was extended to asymmetric hadronic
matter. In the last article the inclusion of electrons was also
considered. These two articles deal with neutrino interaction in
hot dense uniform hadronic matter, including electromagnetic
interaction. However, the low-density inhomogeneous matter,
which is the main point of our article, has not been discussed.

III. DISPERSION RELATION

Equations (7) and (8) are written in terms of the amplitudes
Aωi related to the transition densities by

δρi = 3

2

k

PFi

ρ0iAωi . (10)

We get




1 − (−C
pp
s + C

pp
v + C

pp
ρ + C

pp

A

)
L(sp)

(
C

pn
s − C

pn
v + C

pn
ρ

)
L(sp) C

pe

A L(sp)(
C

np
s − C

np
v + C

np
ρ

)
L(sn) 1 − (−Cnn

s + Cnn
v + Cnn

ρ

)
L(sn) 0

C
ep

A L(se) 0 1 − Cee
A L(se)





Aωp

Aωn

Aωe


 = 0, (11)

with Aωi = ∫ 1
−1 xSωi(x)dx and L(si) related to the Lindhard

function � by

L(si) = 2�(si) = 2 − si ln

(
si + 1

si − 1

)
, (12)

with si = ω/ωoi = ω/(kVFi), VFi
= PFi

/εFi
being the Fermi

velocity of particle i. We also have

Cij
s = 1

2π2

M∗2g2
s

ω2 − ω2
s

1

PFi

PFjVFj ,

Cij
v = 1

2π2

g2
v

ω2 − ω2
v

(
1 − ω2

k2

)
P 2

Fj

VFi

,

Cij
ρ = 1

2π2

g2
ρ

4
(
ω2 − ω2

ρ

)
(

1 − ω2

k2

)
P 2

Fj

VFi

,

C
ij

A = − e2

2π2

1

k2

P 2
Fj

VFi

,

where εFi =
√

P 2
Fi + M∗2, i = p, n and ω2

s = k2 + m2
s,eff,

ω2
v = k2 + m2

v, ω
2
ρ = k2 + m2

ρ , with m2
s,eff = m2

s + κφ0 +
λ
2 φ2

0 + g2
s (dρ0

s /dM∗). From Eq. (11) we get the following

dispersion relation[
1 + Cee

A L(se)
]
[1 + L(sp)Fpp + L(sn)Fnn

+ L(sp)L(sn)(FppFnn − FpnF np)]

− C
ep

A C
pe

A L(se)L(sp)[1 + L(sn)Fnn] = 0, (13)

with F ij = (Cij
s − C

ij
v − τiτj C

ij
ρ ).

At low densities, corresponding to a negative value of
the compressibility, the system presents unstable modes
characterized by an imaginary frequency. To obtain these
modes, one has to replace s with iβ in Eq. (12). In this case,
the Lindhard functions become

L(iβ) = 1 − β tan−1(1/β). (14)

IV. THERMODYNAMICAL INSTABILITIES

In the present work, we have taken into account the effect
of electrons on the instability zone of neutral matter. We have
considered two different situations: The Coulomb interaction
is switched on or switched off. We also look at two types of
instabilities: Dynamical and thermodynamical instabilities. In
the first case the spinodal section corresponds to the occurrence
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of unstable modes, i.e., to imaginary solutions of the dispersion
relations. This spinodal region thus depends on the momentum
transfer k. One can then define the envelope of the spinodal
region for all k as the dynamical instability region.

In the thermodynamical case, the spinodal is obtained
following the prescription given in Ref. [17], which is related
to the minimization of the free energy because we can
consider the volume and temperature constant. This stability
condition imposes that the free-energy density F is a convex
function of the densities [17,30,31]. Because star matter should
be globally uncharged only two densities are independent
thermodynamical variables ρn and ρ ′ = ρp = ρe. In the mean-
field approach the free energy is the sum of the nuclear (FN )
and of the electron (Fe) free energies:

F(ρn, ρ
′)= FN (ρn, ρp = ρ ′) + Fe(ρe = ρ ′).

The two densities ρn and ρ ′ are thus associated to two
chemical potentials µn = ∂FN/∂ρn and µ = µp + µe with

µp = ∂FN/∂ρp and µe =
√

m2
e + P 2

Fe. In fact, if the electrons
compensate for the protons charge, we have ρp = P 3

Fp/3π2 =
ρe = P 3

Fe/3π2, which implies that PFp = PFe. The free
energy curvature matrix is then

C =




∂µn

∂ρn

∂µn

∂ρp

∂µp

∂ρn

∂µp

∂ρp

+ ∂µe

∂ρe


 , (15)

and the stability condition requires that this matrix is positive.
This is equivalent to imposing

Tr(C) > 0, (16)

Det(C) > 0. (17)

The eigenvalues of the stability matrix are given by

λ± = 1
2 [Tr(C) ±

√
Tr(C)2 − 4Det(C)], (18)

and the eigenvectors δρ± by

δρ±

δρ±
n

=
λ± − ∂µn

∂ρn

∂µn

∂ρp

.

The stability condition requires that the two eigenvalues are
positive. When one curvature turns negative the system is
thermodynamically unstable and can decrease its free energy
by going in the instability direction. In the nuclear case, the
largest eigenvalue is always positive but the other may become
negative defining the thermodynamical spinodal.

V. NUMERICAL RESULTS AND DISCUSSIONS

In Fig. 1 we plot the instability zones for different situations:
Standard nuclear matter with no inclusion of electrons (light
gray region), thermodynamical spinodal with electrons (dark
gray region), and the envelope of the dynamical instability
regions for a finite k when the Coulomb interaction is included
(medium gray region). In this last case, we plot the spinodal

ρn

ρ p
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spinodal
instability zone with electrons

2
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FIG. 1. The thermodynamical instability region without (light
gray) and with (dark gray) electrons is represented. The envelope of
the dynamical instability region is defined by the medium gray region.
Dynamical spinodal sections for different momenta transfer k are
represented by a thick (thin) line for k <∼ 80 MeV/c (k > 80 MeV/c).
Momenta transfers are given in MeV/nucleon.

for different values of the momentum transfer k (thick and
thin lines). The limiting envelope corresponds to momenta
∼70−80 MeV/nucleon.

Focusing first on the thermodynamical instabilities, Fig. 1
shows that the presence of the electrons contributes to reduce
the size of the instability region. The strong incompressibility
of the degenerated relativistic electron gas is stabilizing the
nuclear instability against density fluctuations because at
the thermodynamical limit the proton and electron densities
should be exactly equal to ensure electric neutrality. This can-
cellation is so strong that only a small instability region is left.
However, the presence of an unstable region in this case is
certainly model dependent. Although the TM1 parametrization
of NLWM [32] also has a similar unstable region, in the
mean-field relativistic model with density-dependent coupling
parameters [33] there is no thermodynamical unstable region
once electrons are included.

Considering finite k density modulation, one is not forced to
keep the electroneutrality locally so that electron and protons
can fluctuate independently leading to a larger instability
region. However, the inclusion of the proton-electron infinite
range coupling forces the proton and electron fluctuations
to be in phase at the infinite wavelength limit. The k = 0
limit of the dynamical instability thus leads to the small
thermodynamical instability region. One observes that the
influence of the electrons decreases, as k increases up to k <∼
70−80 MeV/nucleon (thick lines). This is expected because
the Coulomb contribution varies with the inverse of the
momentum square, becoming weaker at large k. For higher
values of k, this effect becomes negligible and we recover
the behavior already observed in Ref. [22], i.e., the instability
region decreases with the increase in the momentum transfer
(thin lines). This is in fact coming from the finite range of
the nuclear interaction that reduces the binding of the matter
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ρ=0.15 ρ0 ρ=0.25 ρ0 ρ=0.45 ρ0

(ω
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)2
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FIG. 2. The ratios (ω/k)2 are given for yp = 0.1, 0.3, and 0.5 and three densities (0.15ρ0, 0.25ρ0, 0.45ρ0). Thick (thin) lines correspond to
results with (without) electrons. The dotted gray curve in the first graph, ρ = 0.15ρ0, was obtained considering the electrons blocked, δρe = 0.

with a k2 term and leads to a reduction of the spinodal region
at large k. It should be noticed that although the spinodal
region is strongly asymmetric at small k because of the electron
stabilizing effect, it becomes almost symmetric at large k with
the reduction of the coupling with electrons.

In Fig. 2 we plot the ratio (ω/k)2 for yp = 0.1, 0.3,
and 0.5 and three different densities representative of three
different regions of the instability zone: 0.45 ρ0 is close to
the borderline, 0.15 ρ0 tests the small k region, and 0.25 ρ0

is a standard middle instability zone value. For comparison
we present both the nuclear matter results (thin line) and the
electron-neutralized nuclear matter results (thick line). The
nuclear matter case presents the standard phenomenology:
At low k, ω/k converges toward a well-defined imaginary
velocity of sound, whereas at large k the finite range of
the nuclear force reduces the instability. The introduction
of electrons and Coulomb force has several consequences.
As already seen, for small k the unstable mode disappears,
except for the lowest density value if yp > 0.22. However,
even for this density the behavior of the ratio ω/k differs
from the nonelectron case: Although in the last case we get
(imaginary) sound velocities for k = 0 corresponding to a
linear dependence of ω on k, in the first case ω(k) has a
more complex k dependence and (ω/k)2 converges toward
a very small value (ω/k)2 ∼ 10−6 − 10−5. This quenching
of the instability is directly due to the 1/k2 divergence of
the Coulomb energy. If the electrons would be blocked this
divergence would directly lead to a systematic suppression
of the instability at low k. This is clearly shown in Fig. 2
by the dotted curve plotted for ρ = 0.15ρ0 and obtained
with yp = 0.5. The observed region of densities in which the
instability survives even at the thermodynamical limit k −→ 0
shows that the nuclear instability is strong enough to drag the
electron. Because of the high electron compressibility this
is possible only at low electron (and so proton) density and
small isospin asymmetry. In the large k limit the effect of
the Coulomb interaction goes to zero so that the instability
converges toward the nuclear matter results. The quenching of
high k instability is thus due to the finite range of the nuclear
attractive force.

Being quenched at low and high k, the neutralized nuclear
matter dispersion relation thus presents a maximum. For a
given value of the total density, the most unstable mode
corresponding to the largest value of ω occurs at a value
of k that decreases only slightly with the proton fraction
yp, namely ∼10% from yp = 0.5 to yp = 0.1. For ρ =
0.15ρ0, 0.25ρ0, 0.45ρ0, we get this maximum respectively
at k ∼ 170, 150, and 100 MeV/nucleon.

It is also instructive to look at the instability direction to
understand the nature of unstable modes. In Fig. 3 the ratios

δρ
e

/δ
ρ p

δρ
n

/δ
ρ p

0

1

0  50  100  150  200  250  300

k (MeV/c)

2

3

4

5

6

7

8

0.5

0.3

0.1

 0.2

 0.4

 0.6

 0.8

1

0.5

0.1

0

FIG. 3. The ratios dρn/dρp (upper figure) and dρe/dρp (lower
figure) for yp = 0.1, 0.3, and 0.5 and ρ = 0.15ρ0. Thick (thin) lines
correspond to results with (without) electrons.
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δρn/δρp and δρe/δρp are shown for ρ = 0.15ρ0 and different
proton fractions, symmetric matter (yp = 0.5) and neutron-
rich matter (yp = 0.3 and yp = 0.1), including (thick lines)
and not including (thin lines) the Coulomb interaction.

Let us first focus on δρn/δρp (top part of the figure). For
comparison the proton fraction yp = 0.3 corresponds to a ratio
ρn/ρp = 2.333 and yp = 0.1 to ρn/ρp = 9. The asymmetric
nuclear matter results (thin lines) are almost independent of k.

They correspond to values lower then the actual ratio ρn/ρp

(see also Ref. [22]). Therefore, unstable modes produce more
symmetric dense matter (liquid) and more asymmetric gas.
This corresponds to the distillation effect: Nuclear matter in
the denser phase prefers to be closer to symmetric matter.
This effect is very clear in a mean-field calculation of droplets
formation in asymmetric nuclear matter [19].

Including Coulomb field changes this picture at low k and
the ratio δρn/δρp may get larger than ρn/ρp: Proton motion
becomes blocked by the Coulomb repulsion and increasing
proton fraction in the dense phase would cost more energy
than the gain coming from the nuclear symmetry energy.
This effect is so strong that the direction of the instability
crosses the constant proton fraction line, inverting the neutron
distillation phenomenon. When δρn/δρp becomes larger then
the actual asymmetry ρn/ρp the dense phase (clusters and
nuclei) becomes even more exotic than the initial matter
while the gas phase is enriched in protons. However, this
antidistillation effect occurs at k that are smaller than the
k values of the most unstable modes. Therefore, one may
expect that the dominating partitions will not show such an
abnormal isospin distillation. Only large clusters are expected
to present this exoticity enhancement. The actual effect on the
gas and on the cluster-size dependence of the proton fraction
requires a much more elaborated treatment and remains an
open question.

Let us now turn to the electron content of the unstable
modes (bottom part of Fig. 3). To reduce the Coulomb energy
the electrons are forced to move in phase with the protons;
however, because of their relativistic and fermionic nature this
motion has a strong kinetic price. Only at k = 0 protons and
electrons strictly move in phase to ensure the charge neutrality
as imposed by this thermodynamical limit: For k = 0, δρe/δρp

is 1. This electronic polarization occurs only for small k values
and tries to compensate the increase of the Coulomb energy
enlarging the instability zone.

Next we discuss the density dependence of the unstable
mode. We can fix the proton density, ρp = 0.01 fm−3 and vary
the neutron density, i.e., we move on a line parallel to the ρn

axis of Fig. 1. In Fig. 4 we give both ratios (ω/k)2 and δρn/δρp

for two values of k, 5 and 100 MeV/nucleon. The smallest
value, 5 MeV/nucleon, explores the small thermodynamical
unstable region between 0.005 fm−3 < ρn < 0.02 fm−3 or
total density 0.015 fm−3 < ρn < 0.03 fm−3. We point out that
values of ρn < 0.01 fm−3 correspond to proton-rich matter
and otherwise neutron-rich matter. As discussed before the
effect of the Coulomb interaction and of electrons is small
for k = 100 MeV/nucleon. The isospin content δρn/δρp and
the actual frequency are modified by less then 10% by the
electromagnetic interaction. The behavior δρn/δρp > ρn/ρp

for proton-rich matter and δρn/δρp < ρn/ρp for neutron-rich

ρn
δρ

n/
δρ

p
(ω

/k
)2

−0.005

−0.003

−0.002
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1

2

3

4

0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

ρ n
/ρ p

FIG. 4. The ratios (ω/k)2 (upper figure) and dρn/dρp (lower
figure) versus the neutron density for ρp = 0.01 fm−3 and two
different momenta k = 5 and 100 MeV/nucleon. Thick (thin) lines
correspond to results with (without) electrons. The dotted line in the
lower figure represents the ratio ρn/ρp .

matter show clearly the preference of the system for symmetric
nuclear matter. This is the usual isospin distillation. A quite
different situation occurs for k = 5 MeV/nucleon: The insta-
bility is strongly reduced and δρn/δρp is always larger than
ρn/ρp. Even for the most neutron-rich unstable matter δρn/δρp

is still 2ρn/ρp. This antidistillation phenomenon seems to
be a general characteristic of long wavelength (small k)
instabilities that would lead to large clusters with enhanced
exoticity.

VI. CONCLUSIONS

In the present work, we have looked at dynamical and
thermodynamical instabilities of nuclear neutral matter, which
is of interest for the study of neutron stars and supernovae.
In particular, we have studied the importance of including the
Coulomb interaction on the instability region and the actual
role of the degenerated gas of electrons. The calculations were
performed within a relativistic mean-field approach to nuclear
matter, namely the NL3 parametrization of the NLWM, but we
believe that the main conclusions with respect to the dynamical
instabilities do not depend on the model. It was shown that,
at the mean-field level, the instability region is drastically
reduced for neutral matter with respect to nuclear matter
with the Coulomb interaction switched off. Depending on the
force, at the thermodynamical limit the spinodal region may
also disappear because of the strong incompressibility of the
electron gas. However, this reduction is small if the Coulomb
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interaction is properly taken into account within a dynamical
calculation looking at finite k instabilities. Structures with a
size ∼7 fm, corresponding to momenta 70–80 MeV/nucleon,
are the first to become unstable. This defines a wide instability
region. Smaller structures (larger k) stabilize nuclear matter
because of the finite range of the nuclear attraction as already
seen in Ref. [22] and larger structures are unstable in a
smaller density region because of the long range Coulomb
interaction. The main effect of the Coulomb interaction is to
block the protons at small k increasing the neutron density
fluctuations with respect to proton density ones. This may
be so dramatic that even in neutron-rich matter fluctuations
tend to increase asymmetry of the dense phase contrary to
what generally is accepted as the distillation effect. However,
we have shown that the most unstable mode depends only
slightly on the isospin asymmetry and on the density, and
it corresponds to structures of ∼7–10 fm. If we consider
structures of such a size (∼10 fm) the associated k are large
enough to not introduce large differences on the results because
of the Coulomb interaction. For such characteristic length
the only effect is a small reduction of the instability and so
of the borderline of the unstable region.

The calculation presented includes the electron dynamics.
Only for large wavelengths is the gain in Coulomb energy
sufficient to compensate for the loss because of the high-
electron Fermi energy, and electrons start to move in phase
with the protons. For the considered nuclear interaction this
phenomenon even leads to the survival of an instability at the
thermodynamical limit k → 0.

The present results will mainly have implications in
astrophysical objects, because we are dealing with neutral
matter, namely in transport properties. In particular it is
known that neutrino interactions are crucial in the dynamics of
the core-collapse supernovae because they carry most of the
energy away. In Ref. [34] it was shown that coherent neutrino
scattering from nonuniform hadron-quark matter or hadron
matter with and without kaon condensed phase would greatly
reduce the neutrino mean-free path. A similar effect at low den-
sities could allow enough energy transfer to revive the super-
nova shock. Our work focuses on the low-density regions.

Recent semiclassical simulations of the linear response of
nuclear nonhomogeneous matter at low densities, the so-called
nuclear pasta, to neutrinos in Ref. [35] have shown that
coherence effects reduce the mean free path of neutrinos. In
these simulations electrons are not modeled explicitly, but their
effect is included through a modified Coulomb interaction
between the protons through a screening length (taken equal
to 10 fm). Neutrinos will lose energy by exciting collective
nuclear modes or plasmon modes. As stated above, our
calculation shows that the behavior of the electrons depends
on the wavelength of the perturbation.

In Ref. [36] low-energy nuclear collective excitations of
Wigner-Seitz cells containing nuclear clusters immersed in a
gas of neutrons have been obtained. However, the electron
motion was not included. Including the electron contribution
will likely affect the results for large clusters. We have
also calculated the wavelengths corresponding to the most
unstable modes that give the order of magnitude of the
size of the clusters that will most probably be formed and
therefore determine the neutrino wavelengths that could be
most sensitive to the inhomogeneous phase. It should be
noticed that the instabilities we compute are connected with the
creation of inhomogeneities. The elastic scattering of neutrinos
on the created clusters reduces their mean-free path.

All the calculations were done at T = 0 MeV: The effect of
dynamical instabilities, including the Coulomb field, should
also be investigated at finite T. Understanding the mixed phase
of neutral matter at finite temperature is important to determine
the behavior of neutrinos emitted in a supernova explosion.
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