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The final state distribution of the first six electronic states of 3HeT+,3HeD+ and 3HeH+ resulting from the
β decay of T2, DT, and HT are calculated, to satisfy the higher-resolution requirements and increased sensitivity
of the future tritium neutrino mass experiments. The sensitivity of the initial temperature, ortho-para ratio, and
isotopic composition of the source is considered. Estimates of the error in the value of the neutrino mass deduced
from fitting, due to uncertainties in the temperature, the ortho-para ratio of T2, and the percentage of DT molecules
in the source are presented.
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I. INTRODUCTION

The most promising direct experiments for determining
the neutrino mass are based on the study of the β decay of
molecular tritium:

T2 → 3HeT+(f ) + e− + νe, (1)

where f refers to the molecular state of the 3HeT+ molecule.
The idea is to detect the energies of the electrons created in

the decay and to deduce the mass of the electron antineutrino,
mνe

, by analyzing the β spectrum. As the intensity of
β electrons near the endpoint is very weak and their detection is
hampered by background noise, an exact value for the endpoint
energy, the maximum β electron energy, is difficult to obtain.
Instead mνe

must be obtained by analyzing the shape of the
β spectrum close to the endpoint, where the effect of a nonzero
neutrino mass is greatest. The shape of the β spectrum is
dependent on the distribution of energy released in excitations
of the daughter molecule, 3HeT+.

There were extensive calculations of the final state distribu-
tion of 3HeT+ in the 1980’s [1–7]. However, the contempora-
neous experiments reported negative values for the neutrino
mass squared, m2

νe
, obtained from fitting the experimental

results to theoretical spectra, that lay outside the error bars
extending into the negative region. This indicated that there
was some systematic error in the experiment or the adopted
theory. Because of this and also the increasing sensitivity of
the experiments, a reinvestigation of the final state distribution
was performed in the 1990’s [8–15]. Special emphasis was
placed on validating the underlying approximations used
in the previous calculations. The validity of the sudden
approximation was demonstrated by Saenz and Froelich [12],
having found that the corrections to it, which were calculated
explicitly, were negligible. The effect of electronic excitation
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through recoil was also found to be negligible [11]. Jonsell
et al. [13,14] investigated the nonadiabatic effects (the cou-
pling of the electronic and nuclear motions) and found them
to be very small, therefore validating the Born-Oppenheimer
approximation. An important change that was made was the
relativistic correction to the recoil momentum, which increases
the recoil momentum by 1% [14]. Most of the other refine-
ments concentrated on the less accurately known electronic
continuum of 3HeT+ [8]. However, the negative mass squared
problem remained in the experiments of the 1990’s.

The most recent neutrino mass experiments to be performed
were the Mainz [16] and Troitsk [17] experiments that ran from
1994 to 2001. Both experiments reported negative m2

νe
from the

analysis of their early runs. Each group analyzed the systematic
effects and made improvements to their experimental setups
and m2

νe
fitting procedures. The Troitsk group associated

the negative m2
νe

problem with existence of an excess count
rate located a few electron volts below the endpoint, the
‘Troitsk anomaly.’ Taking the bump into account with the
addition of a steplike function, with variable height and
position, to the theoretical spectrum resulted in values of
m2

νe
compatible with zero, thus eliminating the negative

value problem. In the Mainz experiment the main systematic
uncertainties were connected to the physics and properties
of the quench-condensed tritium source. By reducing these
uncertainties and by the lowering and stabilization of the
background rate, the Mainz runs of 1998–2001 also reported
values of m2

νe
compatible with zero. The experiments at Mainz

and Troitsk reported upper limits for the mass of mνe
< 2.3 eV

[18] and mνe
< 2.05 eV [19], respectively. Several neutrino

oscillation experiments have shown that oscillations between
different neutrino flavors do occur, implying that the neutrino
mass is nonzero. Unfortunately these oscillation experiments
are not sensitive to the neutrino masses directly; however,
their evidence for massive neutrinos provides motivation for a
next-generation tritium β decay experiment.
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The future KATRIN experiment [20,21] anticipates a
sensitivity on the neutrino mass of mνe

< 0.2 eV (90%
C.L.), a factor of 10 higher sensitivity compared with the
Mainz and Troitsk experiments. The experiment will be
performed by using a gaseous molecular tritium source at a
temperature of 27 K. It will use an estimated 95% isotopic
purity, with the main contamination coming from deuterium.
This increased sensitivity and changes in requirements for
the KATRIN experiment has therefore led to a reinvestigation
of the molecular effects in the experiment. A calculation of
the final state distribution of the six lowest electronic states
of 3HeT+, 3HeD+, and 3HeH+ has been performed, and the
results are reported here. The calculation is so far limited to
these states only, as the aim of KATRIN is to obtain the neutrino
mass by analyzing the β spectrum in an energy interval with
a lower limit of 30 eV below the endpoint energy [22]. As the
effects of the Rydberg states and the electronic continuum of
3HeT+ start at 40 eV below the endpoint [15], these have not
been reinvestigated. The emphasis of these new calculations
is to investigate the effect of the uncertainty in temperature of
the T2 source and isotope contamination on the deduced value
of the neutrino mass obtained from fitting.

II. THEORY

A. β spectrum

An expression for the intensity I (Ee) of β electrons, with
kinetic energy Ee and momentum pe, can be derived from
Fermi theory. Detailed nonrelativistic derivations (except for a
relativistic relation between the energy and momentum of the
β electron and the neutrino) are given by Szalewicz et al. [5]
and Saenz and Froelich [11].

Results from neutrino oscillation experiments have pro-
vided compelling evidence for non-zero neutrino masses.
Observations show that while traveling from the source to the
detector, a neutrino flavor eigenstate, e.g., a muon neutrino,
can transform into another flavor eigenstate, e.g., an electron
neutrino. The existence of these neutrino oscillations requires
a nontrivial mixing between the neutrino flavor eigenstates
(νe, νµ, ντ ), produced in weak interactions and the correspond-
ing mass eigenstates (ν1, ν2, ν3) via a unitary mixing matrix
U. They also require that the mass eigenvalues (m1,m2,m3)
differ from one another and hence must be nonzero. Taking
into account the different mass states, the expression for the
intensity of β electrons is given by

I (Ee) = AF (pe)pe(Ee + mec
2)

∑
fj

{
Pf (W0 − Ef − Ee)

×H
(
W0 − Ef − Ee − mνj

c2)|Uej |2

× [
(W0 − Ef − Ee)2 − m2

νj
c4

]1/2}
, (2)

where

W0 = mT2 + E
T2
0 − m3HeT+ − E

3HeT+
0 − mec

2 − Erec. (3)

A is a normalization constant, F (pe) is the Fermi function, and
H is the Heaviside step function ensuring that the intensity is
real. Ef is the energy of the final molecular state f of 3HeT+,
and Pf is the probability that the 3HeT+ ion will be left in state
f after the β decay. The distribution of Pf and Ef is known as

the molecular final state distribution (which is abbreviated as
FSD throughout this paper). Here mT2 ,m3HeT+ , and me are the
masses of the parent molecule, daughter molecule, and electron
respectively; E

T2
0 and E

3HeT+
0 are the ground state energies of

the molecules, and Erec is the recoil energy transferred to
the center of mass motion of the molecular system. Hence,
W0 is the maximum kinetic energy of the β electron if the
neutrino mass were zero. The conservation of momentum will
be discussed in the next section.

For a quasi-degenerate model of the neutrino masses (m1 ≈
m2 ≈ m3), we can parametrize the analysis of the β spectrum
by Ref. [18]

m2
νe

=
3∑

j=1

|Uej |2m2
νj

, (4)

where mνe
is the effective electron antineutrino mass. However,

for a heirarchichal ordering of the neutrino masses (m1 �
m2 � m3), the three mass eigenstates and also the mixing
angles and CP phases that characterize the mixings must
be taken into account, resulting in several more independent
fit parameters. The effects of mixing result in the following
modifications of the β spectrum (see Ref. [22]): (1) the β

spectrum will have an experimental endpoint energy E =
W0 − m1 (where m1 is the lightest mass eigenstate), and
(2) kinks will appear at energies Ei ≈ W0 − mi (where the
magnitude of the kinks are determined by |Uei |2).

The mass of the neutrino is obtained by fitting the
experimental data to theoretical spectra given by Eq. (2). Pf

and Ef are obtained from theory, while A,W0, and m2
ν (as

well as the background rate) are free parameters.
Different final quantum states of the 3HeT+ ion give rise to

separate branches of the β spectrum, each with a different
endpoint energy. For the total β spectrum a sum over all
final states is performed as in Eq. (2). A very accurate
knowledge of the FSD, including nuclear motion effects, is
crucial in the determination of the neutrino mass from the
β spectrum, as the accuracy of the neutrino mass is limited
by the accuracy of the FSD. The effect of different levels of
accuracy of the FSD on the β spectrum is shown by Fackler
et al. [2]. This is one of the reasons that T2 is the source of
choice. It is one of the simplest tritium-containing compounds,
and for both T2 and 3HeT+ high-accuracy quantum chemical
computations can be performed and reliable energies and
probabilities calculated.

B. Molecular excitations in the β decay process

The theory of the molecular β decay process is given by
Cantwell [23], where an expression for the probability of
molecular excitations of the daughter ion is derived from the
Fermi golden rule formula.

If the sudden approximation (a complete neglect of the in-
teraction between the β electron and the remaining molecular
ion) is assumed, the probability that the daughter ion 3HeT+

will be in a final state f following the β decay of a T2 molecule
in an initial state i is

Pif = ∣∣〈�3HeT+
f

∣∣eiK.R
∣∣�T2

i

〉∣∣2
, (5)
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where �
3HeT+
f and �

T2
i are the wave functions describing

the quantum states of the daughter and parent molecule,
respectively, and the exponential eiK.R arises from the recoil
of the β electron. K = −pemT/(mT + mHe + 2me)h̄, and R is
the internuclear distance. The derivation of K and an estimate
of the effect of the approximation when R is used is given by
Saenz and Froelich [11].

A further approximation that we have made is the use of a
constant recoil energy. The recoil energy, Erec [see Eq. (2)],
for T2 is 1.72 eV for an 18.6 keV (the maximum β electron
energy) electron. The dependence of the recoil energy on the
momentum of the neutrino is negligible. For a 1 eV neutrino
the recoil energy would change by a factor of 10−5. A larger
effect results from the neglect of the dependence of the recoil
energy on the β electron energy. However, in the region close
to the endpoint where the fit is to be performed this error
is still negligible. For the recoil momentum that enters into
the final state equation [Eq. (5)] we have also neglected the
dependence on the neutrino momentum and the change in
electron momentum. This effect has also been shown [14] to
be very small.

If we consider transitions to bound rovibrational states
of 3HeT+, for the case where the initial T2 molecule is in
its ground electronic and rovibrational state (ni = 1, vi = 0,
Ji = 0, Mi = 0), where n, v, J , and M are the electronic,
vibrational, rotational, and azimuthal quantum numbers,
Eq. (5) reduces to (see the Appendix)

PnvJ = (2J + 1)

∣∣∣∣
∫ ∞

0
Sn(R)jJ (KR)f f

nvJ (R)f i
100(R) dR

∣∣∣∣
2

,

(6)

where f
f

nvJ /R and f i
100/R are the radial parts of the rovibra-

tional wave functions of 3HeT+ and T2, Sn(R) is the overlap of
the electronic wave functions of 3HeT+ and T2, and jJ (KR)
is the spherical Bessel function.

For transitions to the nuclear motion continuum, Eq. (6) will
not be dependent on v. The probability per unit energy PnJ (E)
that the 3HeT+ molecule dissociates via the nth electronic state
and that the dissociation products are in a state with energy E
and angular momentum J, as shown by Jeziorski et al. [3], is
given by

PnJ (E) = (2J + 1)

×
∣∣∣∣
∫ ∞

0
Sn(R)jJ (KR)f f

nJ (R|E)f i
100(R) dR

∣∣∣∣
2

, (7)

where f
f

nJ (R|E) are the energy normalized radial functions of
the continuous spectrum.

III. CALCULATION OF THE FINAL STATE
DISTRIBUTION

A. Transitions to the electronic ground state of 3HeT+

The radial or (effective) one-dimensional Schrödinger
equation is

− h̄2

2µ

d2fnvJ (R)

dR2
+ U eff

nJ (R)fnvJ (R) = EnvJ fnvJ (R), (8)

where µ is the effective or reduced mass of the system and
EnvJ the energy of the rovibrational state. The effective one-
dimensional potential, U eff

nJ (R),

U eff
nJ (R) = J (J + 1)h̄2

2µR2
+ UBO(R)

+Uad(R) + Urel(R) + Urad(R), (9)

is a sum of the centrifugal term, the electronic potential in
the nonrelativistic Born-Oppenheimer approximation UBO(R),
and if known, the mass-dependent adiabatic Uad(R), relativis-
tic Urel(R), and radiative Urad(R) corrections.

The transition probabilities were calculated by using Le
Roy’s programs LEVEL [24] and BCONT [25], with mod-
ifications made to them; LEVEL, which solves the radial
Schrödinger equation [Eq. (8)] for bound and quasi-bound
levels by numerical integration, was used to calculate energies,
wave functions and probabilities of the bound rovibrational
states and of the predissociative resonances, including widths
for the resonances. BCONT, which calculates bound-continuum
transition intensities, was used to calculate probability density
distributions for each J in the nuclear motion continuum at
chosen energy steps.

To obtain the ground state electronic energy potential of
3HeT+, we used the same procedure as in Ref. [14]. We used
the Born-Oppenheimer potentials from Refs. [26–28] and the
adiabatic correction from Ref. [28]. Two extra points at R =
0.6 and 0.8 a.u. were obtained by extrapolating the adiabatic
correction.

The ground state electronic energy potential of T2 was
obtained by using the Born-Oppenheimer potential and the
radiative, relativistic and adiabatic corrections from Ref. [29].
The electronic overlap S1(R) of Ref. [1] was used.

In the previous calculation of the FSD [14], the nuclear
reduced masses were used for the molecules when the radial
Schrödinger equation was solved in LEVEL and BCONT. Coxon
and Hajigeorgiou [30] investigated the effect of using different
reduced masses for the isotopes of HeH+. We have tested,
for 3HeH+ and 3HeD+, the use of the four different reduced
masses as in Ref. [30]; the nuclear reduced mass µnuc, the
charge adjusted reduced mass µC, the dissociation reduced
mass µdis and the effective mass µeff (which assumes that one
of the two electrons is essentially tied to the He2+ nucleus,
with the second electron being distributed between the H+ and
He+ centers). The energies of the rovibrational states, obtained
by the LEVEL program using each of the reduced masses, were
compared with experimental transition frequencies given in
Refs. [31–33]. Our results are summarised in Table I. µeff

was found to be the best compromise (as in Ref. [30]) and so
was used for the daughter molecular ion in our calculations.
However, at the level of a few tenths of an electron volt, the
energy resolution of KATRIN, the choice of reduced mass
has no effect on the FSD. Similar calculations have recently
been used to determine the partition function and opacity of
various HeH+ isotopologues for stellar modeling [34]; these
used µdis.

Predissociative resonances in the region 0–0.5 eV above
the dissociation limit of 3HeT+, result in volatile behavior
of the probability. For this reason, the probability density
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TABLE I. Differences between experimental rotation-vibration
transition frequencies (cm−1) [31–33] and theoretical frequencies
calculated by using different reduced masses for 3HeH+ and 3HeD+

(v′, J ′) (v′′, J ′′) νobs νcalc − νobs

µnuc µC µdis µeff

3HeH+

(0,1) (0,0) 71.367 0.004 −0.042 −0.005 −0.016
(0,2) (0,1) 142.293 0.005 −0.084 −0.008 −0.033
(1,0) (0,1) 2923.680 0.395 −0.408 0.279 0.050
(1,1) (0,2) 2846.775 0.389 −0.365 0.281 0.066
(1,2) (0,3) 2764.768 0.388 −0.311 0.288 0.088
(1,3) (0,4) 2678.113 0.383 −0.258 0.291 0.108
(1,4) (0,5) 2587.243 0.380 −0.200 0.297 0.131
(1,5) (0,6) 2492.591 0.372 −0.143 0.298 0.151
(1,1) (0,0) 3060.433 0.399 −0.488 0.270 0.018
(1,2) (0,1) 3119.405 0.400 −0.519 0.268 0.006
(1,3) (0,2) 3171.549 0.402 −0.542 0.266 −0.003
(1,4) (0,3) 3216.468 0.403 −0.559 0.265 −0.009
(1,5) (0,4) 3253.785 0.406 −0.567 0.267 −0.011
(1,6) (0,5) 3283.156 0.404 −0.572 0.264 −0.014
(1,7) (0,6) 3304.247 0.395 −0.575 0.256 −0.021
(1,8) (0,7) 3316.761 0.395 −0.560 0.258 −0.014
(6,12) (5,11) 981.322 0.014 1.380 0.210 0.600

3HeD+

(0,2) (0,1) 89.932 0.006 −0.031 −0.007 −0.011
(0,3) (0,2) 134.467 0.009 −0.046 −0.011 −0.016
(1,0) (0,1) 2378.374 0.374 −0.071 0.219 0.171
(1,2) (0,3) 2280.081 0.378 −0.025 0.238 0.194
(1,2) (0,1) 2504.487 0.386 −0.109 0.213 0.160
(1,3) (0,2) 2540.161 0.391 −0.116 0.214 0.159
(1,4) (0,3) 2572.388 0.392 −0.126 0.212 0.155
(1,5) (0,4) 2601.007 0.396 −0.129 0.213 0.156
(6,19) (5,18) 1034.144 0.048 0.738 0.289 0.363
(7,17) (5,19) 995.415 0.061 1.215 0.464 0.589

distributions of nonisolated resonances and those with suf-
ficiently large widths, were obtained by using the BCONT

program and very small energy steps (as small as 10−9 eV).
However, for very narrow resonances this step size is still
too large, and the resonances could not be characterized by
using the BCONT program. In these cases the energy and
total probability associated with the resonance given by the
bound-bound transition program LEVEL was used. For the
region beyond 0.5 eV above the dissociation limit, where no
resonances are present, an energy step of 0.001 eV is sufficient.

The previous FSD [15] was presented as a finite number
of discrete transition probabilities by dividing the spectrum
into small bins varying in size from 0.1 eV, for the ground
state of 3HeT+, to 1.0 eV, for the electronically excited
states of 3HeT+. This approach is the best for analysis of
the experiments and was also used here. However, due to the
improved sensitivity of the experiment, 0.1 eV bins are no
longer sufficient, and so 0.01 eV bins are used throughout.

The FSD for the electronic ground state is shown in
Fig. 1, where the energy zero is the ground rovibrational state
of 3HeT+. Due to the energy resolution of the experiment, such
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FIG. 1. (Color online) Final state probability distribution
(0.01 eV bins) for calculations to the electronic ground state of 3HeT+.

fine energy bins cannot be resolved. To illustrate the shape
of the distribution we have assumed an experimental energy
resolution of σ = 0.1 eV and produced a Gaussian average
(in terms of probability density) of the unbinned results. This
probability density distribution was integrated over bins of
0.01 eV and is also shown in Fig. 1.

B. Electronically excited states of 3HeT+

The Born-Oppenheimer energies and electronic overlaps
Sn(R) of the first five electronically excited states of 3HeT+

were taken from Ref. [14]. No adiabatic corrections were
included. These excited states are essentially dissociative, and
therefore only the BCONT program was used. The n = 2, 4,
and 5 states dissociate to He++T, and the n = 3 and 6 states
dissociate to He + T+. For the excited states, the relevant
dissociation reduced mass was used instead of the effective
reduced mass. The probability distribution for the n = 2–6
states is shown in Fig. 2 for energy bins of 0.01 eV.
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FIG. 2. Final state probability distribution (0.01 eV bins) for the
first five electronically excited states of 3HeT+.
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C. Rotational excitation of T2

If the experiments are performed with a source at a
temperature greater than 0 K, some of the T2 molecules will be
in excited states. At 27 K, the T2 molecules will be distributed
mainly in the first four rotational states of the electronic and
vibrational ground state. In fact, more T2 molecules will be in
the Ji = 1 state than in Ji = 0. Past calculations of the FSD
focused mainly on Ji = 0 [2,3,14]. Calculations of transitions
with Ji = 1 were performed [14], but only for the ground
state of 3HeT+. We therefore calculated separate FSD’s for
the ground and electronically excited states of 3HeT+, with T2

in initial states of Ji = 1, 2 and 3.
Eq. (6) was derived for the case when T2 is in the state Ji =

0. For Ji = 1, 2, and 3 the relevant equations and derivation
are given in the Appendix.

For each of the FSD’s, before energy binning was per-
formed, the excitation energies Ef were shifted by the
respective rotational excitation energy of the T2 molecule in
order to make the endpoint energies of all the FSD’s consistent.
Figure 3 shows the Gaussian form of the FSD (in terms of
probability density, summed over 1 eV bins) of the ground
electronic state of 3HeT+ for the different initial states of T2.

D. Isotopes of T2

In previous tritium β decay experiments the source
has had a significant contamination of HT molecules. In
Refs. [14] and [15] an elaborate FSD of 3HeH+ was calculated.
We have recalculated the FSD of 3HeH+ for HT in states
Ji = 0 and 1. However in the future KATRIN experiment the
T2 purity will be much higher, with the main contamination
expected to come from DT molecules. Therefore the FSD
of 3HeD+ has been calculated for DT in initial states Ji = 0
and 1. These distributions have not been calculated previously.
As will be shown in Sec. IV. C, an uncertainty in the percentage
of DT molecules has a significant effect on the reliability of
the neutrino mass obtained.
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FIG. 3. (Color online) Final state probability density distribution
for the electronic ground state of 3HeT+ for initial Ji = 0, 1, 2,
and 3.

E. Sum rules

To check the accuracy of our calculations we used two sum
rules satisfied by PnvJ and PnJ (E). Summing Eq. (6) over v

and J, adding the integral of Eq. (7) over J, and using a closure
relation gives (see Ref. [35])

Pn =
∑
v,J

PnvJ +
∑

J

∫
PnJ (E) dE

=
∫ ∞

0
S2

n(R)
[
f i

100(R)
]2

dR. (10)

Analogously [3],

PnJ =
∑

v

PnvJ +
∫

PnJ (E) dE

= (2J + 1)
∫ ∞

0
S2

n(R)j 2
J (KR)

[
f i

100(R)
]2

dR. (11)

These sum rules provide a useful test of our results as they
are computed without solving the radial Schrödinger equation
of the daughter molecule.

For all J, our errors in PnJ were found to be <2 × 10−5%
for the electronic ground state (n = 1) and <1 × 10−4% for
the electronically excited states (n = 2–6). The error in Pn

was found to be <1 × 10−4% for n = 1, and <7 × 10−4% for
n > 1.

IV. MODELING

A. Temperature effects

If the source is thermal, the relative populations of rotational
states of the T2 molecules are dependent on the temperature
of the source and are given by a Boltzmann distribution. At a
temperature of 30 K, the amount of T2 molecules in states Ji =
0, 1, 2, and 3 are 43%, 56%, 1%, and 1 × 10−4%, respectively.
The overall FSD at a given temperature is obtained by summing
the FSD’s for each different initial state Ji , weighted by the
percentage of T2 molecules in that state.

An uncertainty in the temperature of the source could result
in an inaccurate FSD being used in the calculation of the
theoretical spectrum, and hence an error in the neutrino mass
deduced from fitting the theoretical and experimental spectra.
To determine how accurately the temperature of the source
must be known, we have investigated the effect of uncertainties
in the source temperature on the value of the neutrino mass
deduced from fitting.

The spectrum obtained by the KATRIN experiment is in
fact an integral β decay spectrum. The spectrometer used in the
KATRIN experimental setup acts as an integrating high-energy
filter. Cylindrical electrodes produce an electrostatic potential
that allows only the electrons with enough energy to pass the
electrostatic barrier through to the detector. The integrated
spectrum, recorded by varying the retarding potential, is given
by [22]

N (qU ) = NtottU

∫ W0

0
I (Ee)fres(Ee, qU ) dEe, (12)

where U is the retarding potential, Ntot is the total number
of tritium nuclei in the source and tU is the measuring time
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FIG. 4. (Color online) Error in the neutrino mass squared deduced from fitting, due to uncertainties in (a) source temperature (b) ortho-para
ratio, and (c) amount of DT molecules in the source (from fitting of β spectrum with W0 = 18.6 keV, T = 30 K, and 100% T2).

at retarding potential U. fres is the response function of the
KATRIN spectrometer for isotropically emitted electrons (see
Ref. [22]).

The experiments are not free from systematic and statistical
errors, therefore these must be accounted for in the theoretical
spectra as fit parameters. For an accurate investigation of
the temperature uncertainty effects, we would ideally need to
include the effect of all these parameters. To obtain an estimate
of the error in the neutrino mass caused by uncertainty in source
temperature, we have performed fits with idealized conditions
(no systematic or statistical errors) and only the fit parameters
expected from a theoretical point of view.

To do this we took the FSD for temperature T = 30 K and
produced a reference integrated β spectrum by using Eq. (12)
and chosen values for the fit parameters A,W0, and m2

νe
. The

endpoint energy, W0, was fixed at a value of 18.6 keV, and the
normalization constant omitted. We ran separate calculations
for three different chosen values of the neutrino mass, 0.0,
0.2, and 0.5 eV. We then fitted theoretical integral β spectra
for temperatures in the range 5–50 K, in steps of 5 K, to the
reference spectrum with m2

νe
, as the only free parameter. For

the fitting we used an energy window with a lower limit of
30 eV below the endpoint, as this will be the energy interval

analyzed in the KATRIN experiment. The last 2 eV below the
endpoint was not included in the fitting, as the spectrum here is
dominated by the background noise. A statistical distribution
for the error in the intensity of β electrons, σ = √

I , was
assumed. The mass errors, defined as the absolute difference
in m2

νe
, are shown in Fig. 4(a). These absolute differences in

m2
νe

are very similar for all three values of the neutrino mass
squared tested. For a 0.2 eV neutrino mass this translates to a
±0.25% error in the value of mνe

, as a result of an uncertainty
in the source temperature of ±5 K. For these calculations a
pure tritium source was assumed.

B. Effects of a nonthermal source

For homonuclear molecules with nonzero nuclear spin,
transitions between symmetric and antisymmetric states occur
so slowly that it may take months or years before a molecule
goes from an even-numbered rotational level to an odd-
numbered level. Therefore, if the source is initially at a higher
(lower) temperature than 30 K and is then cooled (heated) to
30 K, it may take a long time before the source becomes
thermal. In this case we may regard the T2 molecules as
a mixture of two separate species, para-T2 (even J ) and
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ortho-T2 (odd J), and use separate partition functions for each
species:

Qp(T ) =
∑
Jeven

gJ e−EJ /kT , (13a)

Qo(T ) =
∑
Jodd

gJ e−EJ /kT , (13b)

where Qp(T ) and Qo(T ) are the partition functions for the para
and ortho T2 at temperature T , gJ = (2J + 1) is a rotational
degeneracy factor, EJ is the energy of the state with rotational
quantum number J with respect to E0, and k is Boltzmann’s
constant.

The total partition function is then given by

QT = (1 − λ)Qp + (λ)Qo, (14)

where λ (which includes spin degeneracy) defines the ortho/
para ratio. For thermalized T2 at T = 0 K, λ is 0, and at high
temperatures, λ is 3/4.

The relative populations are then

P (Jeven) = (1 − λ)gJ e−EJ /kT

QT

, (15a)

P (Jodd) = λgJ e−EJ /kT

QT

. (15b)

We have looked at how the deduced neutrino mass changes
with uncertainties in the ortho/para ratio of the source. Using
the same fitting procedure as was used for investigating the
temperature uncertainty effects, different theoretical integrated
spectra for λ varying between 0 and 3/4 in steps of 0.05 were
fitted to a reference spectrum for λ = 0.3 (corresponding to
T = 29.6 K). The results are shown in Fig. 4(b). The error
of the neutrino mass squared is similar to the error caused
by temperature uncertainty. KATRIN will use thermalized T2,
which will be rapidly cooled, so λ values in the range 0.3 <

λ < 0.75 are to be expected. It should also be noted that
the stability of the ortho- and para- T2 ratio also depends
completely on experimental conditions. The long lifetime
stabilization is valid for isolated molecules; however molecular
collisions with the walls (and possibly external fields) may
very well change these numbers. It is therefore essential that
the ortho-para ratio be measured directly when one is running
the experiment rather than be obtained from theory.

C. DT contamination

Even though the isotopic purity of tritium in the source
of the KATRIN experiment is expected to be at least 95%,
this means that the amount of DT molecules may be anything
between 0% and 10%. To see how accurately this percentage
needs to be known, we have investigated the error in the neu-
trino mass deduced as a result of uncertainties in the amount
of DT in the source between 0% and 20%. We have assumed
that the temperature of the source is 30 K. The results of these
fits, Fig. 4(c), show that for a neutrino mass of 0.2 eV, a 10%
change in the amount of DT molecules in the source gives
an error in the deduced neutrino mass of ≈22%. This is a
significant difference, and therefore the isotope contamination

needs to be measured more accurately than the current estimate
proposed by the KATRIN experiment.

While performing these various fits, we found that the size
of the energy interval below the endpoint chosen in which
to perform the fit affected the estimated error in the neutrino
mass deduced. We considered energies within the range of
10–30 eV below the endpoint. However, this is not a major
issue for our fits, as we are simply studying the sensitivity of
various experimental parameters to the makeup of the tritium
source. More precise error estimates can be performed by
using our data once the precise experimental parameters and,
in particular, the range of energies to be fitted are known.

V. CONCLUSION

We have calculated the final state distributions of the
six lowest lying electronic states of 3HeT+, 3HeD+, and
3HeH+ resulting from the β decay of T2, DT, and HT to
accommodate the increased sensitivity and requirements of
the future neutrino mass experiments. We have investigated
the effect of rotational excitations of the parent molecules by
explicitly calculating separate final state distributions for the
daughter molecules following the β decay of T2 in rotational
states Ji = 0, 1, 2, and 3, and DT/HT in states Ji = 0 and 1.

We have obtained estimates of the error in the value of
the neutrino mass deduced from fitting theoretical curves,
due to uncertainties in the temperature, ortho-para ratio, and
percentage of DT molecules in the source in order to see
how accurately these need to be known. Our results show that
uncertainties in the (rotational) temperature and ortho-para
ratio are less of a problem than those in deuterium fraction. It is
recommended that the amount of DT molecules is determined
in the source, for example by using spectroscopy, after cooling.
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APPENDIX

The probability of finding the daughter ion in a final state
�f following the β decay of the parent molecule in an initial
state �i is

Pif = |〈�f |eiK.R|�i〉|2 =
∣∣∣∣
∫

�f ∗
eiK.R�i dR

∣∣∣∣
2

, (A1)

where K = −pemT/(mT + mHe + 2me)h̄, R is the internu-
clear distance, and �i and �f are functions of relative
coordinates only.

Invoking the adiabatic approximation for �i and �f gives

�i = ψi
ni

(r1, r2; R)R−1f i
niviJi

(R)YJiMi
(θ, φ), (A2a)

�f = ψf
n (r1, r2; R)R−1f

f

nvJ (R)YJM (θ, φ). (A2b)

ψn are the clamped-nuclei electronic wave functions, fnvJ are
the radial vibrational wave functions, YJM are the spherical
harmonics, r1 and r2 denote the spatial positions of the
electrons, (R, θ, φ) are the spherical coordinates of R, and
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n, v, J and M are the electronic, vibrational, rotational, and
azimuthal quantum numbers.

From the standard partial wave expansion for eiK.R,

eiK.R = 4π

∞∑
l=0

+l∑
m=−l

iljl(KR)Y ∗
lm(θK, φK )Ylm(θ, φ), (A3)

where jl(KR) is the spherical Bessel function, (K, θK, φK )
are the spherical components of K, and

dR = R2 d�R dR, (A4)

the integration can be reduced to

PnvJM (K) = (4π )2

∣∣∣∣∣
∑
lm

Y ∗
lm(θK, φK )

∫
Sn(R)f f

nvJ

∗
(R)

× f i
niviJi

(R)jl(KR) dR

∫
Y ∗

JM (θ, φ)

×Ylm(θ, φ)YJiMi
(θ, φ) d�R

∣∣∣∣∣
2

, (A5)

where Sn(R) is the overlap integral providing the R-dependent
probability amplitude of transition to the nth electronic state
of the daughter system and is given by

Sn(R) =
∫

ψf
n

∗
(r1, r2; R)ψi

ni
(r1, r2; R) dr1 dr2. (A6)

Averaging over initial Mi , summing over final M, and
averaging over final directions K gives

PnvJ (K) = 4π

(2Ji + 1)

∑
MMi

×
∫ ∑

lml′m′
Y ∗

lm(θK, φK )Yl′m′(θK, φK )d�K

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

niviJi
(R)jl(KR) dR

∣∣∣∣
2

×
∣∣∣∣
∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi

(θ, φ) d�R

∣∣∣∣
2

.

(A7)

Since ∫
Y ∗

lm(θK, φK )Yl′m′(θK, φK )d�K = δll′δmm′ , (A8)

one has

PnvJ (K) = 4π

(2Ji + 1)

∑
l

∑
MmMi

×
∣∣∣∣
∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi

(θ, φ)d�R

∣∣∣∣
2

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

niviJi
(R)jl(KR)dR

∣∣∣∣
2

.

(A9)

The integration over three spherical harmonics can be
represented in terms of matrix elements:
∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi

(θ, φ)d�R = 〈JM|Ylm|JiMi〉.
(A10)

The Wigner-Eckart theorem for the factorization of the
matrix elements of tensor operators is

〈j ′m′|T(kq)|jm〉 = (−1)j
′−m′

(
j ′ k j

−m′ q m

)
〈j ′‖Tk‖j 〉,

(A11)

where T(kq) is a tensor operator of rank k. The theorem states
that the dependence of the matrix element 〈j ′m′|T(kq)|jm〉
on the projection quantum numbers is entirely contained in
the Wigner 3j -symbol. 〈j ′‖Tk‖j 〉 are the reduced matrix
elements.

The total transition probability (summed over magnetic
quantum numbers) is therefore

∑
m′qm

|〈j ′m′|T(kq)|jm〉|2 = |〈j ′‖Tk‖j 〉|2
∑
m′qm

(
j ′ k j

−m′ q m

)2

= |〈j ′‖Tk‖j 〉|2. (A12)

The orthogonality property of 3j -symbols has been used and
is given by

∑
αβ

(
a b c

α β γ

) (
a b c′
α β γ ′

)
= 1

(2c + 1)
δcc′δγ γ ′δ(abc),

(A13)

where δ(abc) = 1 if a, b, c satisfy the triangular condition

|a − b| � c � |a + b| (A14)

and is zero otherwise.
Therefore one gets

∑
MmMi

∣∣∣∣
∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi

(θ, φ)d�R

∣∣∣∣
2

= |〈J‖Yl‖Ji〉|2 . (A15)

The reduced matrix elements of spherical harmonics are given
by

〈j ′‖Yk‖j〉 = (−1)j
′
[

(2j ′ + 1)(2k + 1)(2j + 1)

4π

] 1
2
(

j ′ k j

0 0 0

)
,

(A16)

hence

|〈J‖Yl‖Ji〉|2 = (2J + 1)(2l + 1)(2Ji + 1)

4π

(
J l Ji

0 0 0

)2

.

(A17)
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A 3j symbol with m1 = m2 = m3 = 0 can be computed by
using the general formula
(

j1 j2 j3

0 0 0

)
=

[
(J − 2j1)!(J − 2j2)!(J − 2j3)!

(J + 1)!

]1/2

×
J
2 !(

J
2 − j1

)
!
(

J
2 − j2

)
!
(

J
2 − j3

)
!
, (A18)

where J = j1 + j2 + j3. J must be even, otherwise the
3j symbol equals 0.

The angular momentum algebra [Eqs. (A10)–(A18)] was
obtained from Refs. [36,37].

To obtain a final equation for the probability, one needs to
evaluate Eqs. (A17) and (A18) for different values of Ji .

For Ji = 0: From the triangular condition and the fact that
a + b + c must be even, l = J . Therefore:

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ ‖0〉|2 δl,J

= (2J + 1)(2J + 1)

4π

(
J J 0
0 0 0

)2

δl,J , (A19)

|〈J‖YJ ‖0〉|2 = 2J + 1

4π
δl,J . (A20)

Substituting this back into Eq. (A9) gives (as stated in
Ref. [14]):

PnvJ(K) = (2J + 1)

∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi0(R)jJ(KR)dR

∣∣∣∣
2

.

(A21)

For Ji = 1: Here l = J ± 1.

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+1‖1〉|2 δl,J+1+|〈J‖YJ−1‖1〉|2 δl,J−1,

(A22)

|〈J‖Yl‖1〉|2 = 3

4π

[
(J + 1)δl,J+1 + Jδl,J−1

]
. (A23)

Therefore [14]

PnvJ (K) = (J +1)

∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi1(R)jJ+1(KR)dR

∣∣∣∣
2

+ J

∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi1(R)jJ−1(KR)dR

∣∣∣∣
2

.

(A24)

For Ji = 2: We have l = J ± 2 and l = J

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+2‖2〉|2 δl,J+2 + |〈J‖YJ ‖2〉|2 δl,J

+ |〈J‖YJ−2‖2〉|2 δl,J−2, (A25)

|〈J‖Yl‖2〉|2 = 5

4π

[
3

2

(J + 2)(J + 1)

(2J + 3)
δl,J+2

+ (J + 1)J (2J + 1)

(2J + 3)(2J − 1)
δl,J + 3

2

J (J − 1)

(2J − 1)
δl,J−2

]
.

(A26)

Therefore

PnvJ (K) = 3

2

(J + 2)(J + 1)

(2J + 3)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi2(R)jJ+2(KR)dR

∣∣∣∣
2

+ (J + 1)J (2J + 1)

(2J + 3)(2J − 1)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi2(R)jJ (KR)dR

∣∣∣∣
2

+ 3

2

J (J − 1)

(2J − 1)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi2(R)jJ−2(KR)dR

∣∣∣∣
2

.

(A27)

For Ji = 3: l = J ± 3 and l = J ± 1,

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+3‖3〉|2 δl,J+3 + |〈J‖YJ+1‖3〉|2 δl,J+1

+ |〈J‖YJ−1‖3〉|2 δl,J−1

+ |〈J‖YJ−3‖3〉|2 δl,J−3, (A28)

|〈J‖Yl‖3〉|2 = 7

4π

[
5

2

(J + 3)(J + 2)(J + 1)

(2J + 5)(2J + 3)
δl,J+3

+ 3

2

(J + 2)(J + 1)J

(2J + 5)(2J − 1)
δl,J+1

+ 3

2

(J + 1)J (J − 1)

(2J + 3)(2J − 3)
δl,J−1

+ 5

2

J (J − 1)(J − 2)

(2J − 1)(2J − 3)
δl,J−3

]
. (A29)

Therefore

PnvJ (K) = 5

2

(J + 3)(J + 2)(J + 1)

(2J + 5)(2J + 3)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi3(R)jJ+3(KR)dR

∣∣∣∣
2

+ 3

2

(J + 2)(J + 1)J

(2J + 5)(2J − 1)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi3(R)jJ+1(KR)dR

∣∣∣∣
2

+ 3

2

(J + 1)J (J − 1)

(2J + 3)(2J − 3)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi3(R)jJ−1(KR)dR

∣∣∣∣
2

+ 5

2

(J (J − 1)(J − 2)

(2J − 1)(2J − 3)

×
∣∣∣∣
∫

Sn(R)f f

nvJ

∗
(R)f i

nivi3(R)jJ−3(KR)dR

∣∣∣∣
2

.

(A30)
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