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A formalism based on a relativistic plane-wave impulse approximation is developed to investigate the strange-
quark content gs

A of the axial-vector form factor of the nucleon via neutrino-nucleus scattering. Nuclear structure
effects are incorporated via an accurately calibrated relativistic mean-field model. The ratio of neutral- to
charged-current cross sections is used to examine the sensitivity of this observable to gs

A. For values of the
incident neutrino energy in the range proposed by the FINeSSE Collaboration and by adopting a value of
gs

A = −0.19, a 30% enhancement in the ratio is observed relative to the gs
A = 0 result.
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I. INTRODUCTION

Neutrino physics has become a critical area of intense the-
oretical and experimental effort, primarily because neutrinos
play an important role in attempting to answer some of the
fundamental questions in such diverse fields as cosmology
and astro-, nuclear, and particle physics. A prime example of
such a paradigm is the recently commissioned MiniBooNE
experiment at Fermilab. The primary goal of the MiniBooNE
program is to confirm the 1995 neutrino-oscillation exper-
iment at the liquid scintillator neutrino detector (LSND)
at the Los Alamos National Laboratory [1]. However, this
unique facility is also ideal for the study of supernova
neutrinos, neutrino-nucleus scattering, and hadronic structure.
An ambitious experimental program—the Fermilab intense
neutrino scattering scintillator experiment (FINeSSE)—aims
to measure the strange-quark contribution to the spin of the
nucleon [2]. FINeSSE is part of a larger program started
in the late 1980s that attempts to answer a fundamental
nucleon-structure question: how do the nonvalence (“sea”)
quarks—particularly the strange quarks—contribute to the
observed properties of the nucleon? To date, the role of strange
quarks in the nucleon remains a contentious issue and one that
remains a subject of intense activity all over the world. In
an attempt to find a satisfactory answer to this fundamental
question, a number of reactions have been proposed. These
include (i) deep inelastic scattering of neutrinos on protons
[3,4], (ii) deep inelastic scattering of polarized charged leptons
[5], (iii) pseudoscalar meson scattering on a proton [6],
and (iv) parity-violating electron scattering [7,8]. Part of the
controversy arises from the fact that these reactions do not
all reach similar conclusions. For example, both reactions (i)
and (ii) suggest a nonzero strangeness contribution; this is
in contrast to reaction (iv), which indicates a strange-quark
contribution to the charge and magnetic moment consistent
with zero. Parity-violating electron scattering in particular
has received extensive experimental attention as in the
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SAMPLE Collaboration at the MIT-Bates accelerator [9], the
HAPPEX Collaboration at the Jefferson Laboratory [10], and
the A4 Collaboration at the MAMI facility in Mainz [11].

Neutrino-induced reactions provide an alternative to parity-
violating electron scattering [12]. While the latter is primarily
sensitive to the strange electric and magnetic form factors
of the nucleon, the former is particularly sensitive to the
axial-vector form factor of the proton—through the combi-
nation (�u − �d − �s + �c − �b + �t). This sensitivity
is the result of the small weak-vector charge of the pro-
ton (1 − 4 sin2 θW � 0.08) and the suppression of the weak
anomalous magnetic moment at small Q2. In the above
expression, the heavy quark flavors (c, b, and t) can be elim-
inated using a well-defined renormalization group procedure
[13,14]. Furthermore, the isovector combination (ūγµγ5u −
d̄γµγ5d) is constrained from neutron β decay. This leaves
the (assumed isoscalar) strange-quark contribution to the
spin of the proton �s to be determined from the elastic
neutrino-proton reaction. Finally, the theoretical uncertainties
in neutrino scattering are considerably smaller than in parity-
violating electron scattering, making this reaction the desired
method for extracting �s [15,16].

However, an absolute cross-section measurement of the
neutrino reaction is an experimental challenge due to dif-
ficulties in the determination of the absolute neutrino flux.
An attractive alternative has been proposed by Garvey and
collaborators [17,18] in which the extraction of �s proceeds
through a measurement of the ratio of proton-to-neutron cross
sections in neutral-current (NC) neutrino-nucleon scattering.
This ratio is defined by the following expression:

Rp/n = σ (νp → νp)

σ (νn → νn)
. (1)

This ratio is very sensitive to the strange-quark contribution
to the spin of the nucleon as �s [or gs

A ≡ G
(s)
A (Q2 = 0)]

interferes with the isovector contribution G
(3)
A with one sign in

the numerator and with the opposite sign in the denominator
[see Eq. (31)]. Unfortunately, Rp/n is difficult to measure
with the desired accuracy because of experimental difficulties
associated with neutron detection [2]. It is for this reason that
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FINeSSE will focus initially on the neutral- to charged-current
ratio (NC/CC):

RNC/CC = σ (νp → νp)

σ (νn → µ−p)
. (2)

This ratio is “simply” determined from counting the number
of events with an outgoing proton and missing mass relative
to those events with an outgoing proton and a muon. Note that
the CC reaction, being purely isovector, is insensitive to �s.
As such, RNC/CC is about a factor of 2 less sensitive to �s than
Rp/n.

From a theoretical perspective extracting �s from the
ratio of cross sections is also attractive. As a large number
of the scattering events at FINeSSE will be from nucleons
bound to a carbon nucleus, it is important to understand
nuclear structure corrections [19,20]. This issue came to light
in experiment E374 at the Brookhaven National Laboratory
(BNL) where it was found that 80% of the events involved
neutrino scattering off carbon atoms, while only 20% were
from free protons. As nuclear structure corrections in RNC/CC

appear to be insensitive to final-state interactions between
the outgoing proton and the residual nucleus [21,22], the
ratio RNC/CC may be accurately computed using a much
simpler plane-wave formalism. Indeed, in Sec. II, we will show
how the cross-section ratio RNC/CC in carbon computed in a
plane-wave formalism may be expressed in a form that closely
resembles the “Feynman-trace” approach used to calculate the
cross section from free nucleons. We note in closing that the
new generation of neutrino experiments will require a tho-
rough understanding of neutrino-nucleus interactions since
the detectors often contain complex nuclei. Experimental and
theoretical work related to neutrino scattering from light and
heavier nuclear targets may be found in Refs. [23–30].

Our paper has been organized as follows. In Sec. II, we
briefly review the formalism developed in Ref. [31] for the
neutral-current case and point out the main modifications
required to make it applicable to charged-current neutrino-
nucleus scattering. Our main results—with a focus on the
sensitivity of RNC/CC to �s—are presented in Sec. III. Finally,
we summarize the main points of this work in Sec. IV.

II. FORMALISM

This section presents the formalism for the description of
charged-current neutrino-nucleus scattering. As the basic out-
line follows closely the neutral-current formalism developed
in Ref. [31], we present a brief review that focuses on those
modifications that arise from a finite muon mass.

A. Cross section in terms of the leptonic and hadronic tensors

The lowest-order Feynman diagram for the knockout
of a bound proton via the charged-current reaction [ν +
X(Z,A) → µ− + p + X(Z − 1, A − 1)] is shown in Fig. 1.
Here the initial four-momentum of the (left-handed) neutrino
is k while the four-momentum and helicity of the outgoing
muon are k′ and h′, respectively. The reaction proceeds via
the exchange of a virtual W+ boson with four-momentum

n (k)

( )W q+

Ψ (P)i 

FIG. 1. Lowest-order Feynman diagram for charged-current
neutrino-nucleus scattering.

q = (ω, q). The kinematic variables defining the hadronic
arm are the four-momentum of the target P and residual
nucleus P ′. Finally, p′ and s ′ denote the four-momentum
and spin component of the ejectile proton. Energy-momentum
conservation demands that

q = k − k′ = p′ + P ′ − P. (3)

The dynamic information for this reaction is contained in
the transition matrix element given by

−iM =
{
µ(k′, h′)

[ −ig

2
√

2
(γ µ − γ µγ 5)

]
ν(k)

}
iDµν(q)

×
{
〈p′, s ′; �f (P ′)| −ig

2
√

2
cos θCĴ ν(q)|�i(P )〉

}
. (4)

In Eq. (4), the initial and final nuclear states are denoted
by �i(P ) and �f (P ′), respectively. Furthermore, g is the
weak coupling constant, θC is the Cabbibo angle (cos θC =
0.974), and Ĵ ν(q) is the weak nuclear current operator. As
only low-momentum transfers (−qµqµ ≡ Q2 	 M2

W ) will be
considered, the following approximation is valid:

Dµν(q) = −gµν + qµqν/M
2
W

q2 − M2
W

−→ gµν

M2
W

. (5)

Using this expression, the transition matrix element may be
written as

M = GF√
2

cos θC[µ(k′, h′)γµ(1 − γ 5)ν(k)]

× [〈p′, s ′; �f (P ′)|Ĵ µ(q)|�i(P )〉], (6)

where the Fermi coupling constant GF has been introduced
via

GF√
2

= g2

8M2
W

. (7)

In Eq. (6), µ(k′, h′) is the Dirac spinor for the outgoing muon
expressed in the helicity representation. That is (suppressing
“prime” indices for clarity),

µ(k, h) =
√

Ek + m

2Ek

(
φh (̂k)

h k
Ek+m

φh (̂k)

)
,

(8)
(Ek =

√
k2 + m2; k = |k|),
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where φh=±1(̂k) are two-component Pauli spinors given by

φh=+1(̂k) =
(

cos(θ/2)

sin(θ/2)eiφ

)
,

(9)

φh=−1(̂k) =
(−sin(θ/2)e−iφ

cos(θ/2)

)
.

Here m denotes the muon mass, and θ and φ are the polar and
azimuthal angles of the muon momentum. The neutrino spinor
ν(k) is directly obtained from the above expressions by setting
the fermion mass to m = 0 and the helicity to h = −1. Note
that left/right projection operators on plus/minus helicity states
do not vanish in general due to the finite muon mass. That is,

PL/Rµ(k,h = ±1) ≡ 1
2 (1 ∓ γ 5)µ(k,h = ±1) = O(m/k) �= 0.

(10)

Further, we have adopted a noncovariant normalization for
the Dirac spinors of Eq. (8),

µ†(k, h)µ(k, h′) = µ̄(k, h)γ 0µ(k, h′) = δhh′, (11)

a choice that is in accordance with the standard normalization
of the bound-state spinor [32] and given by∫

U†
α(r)Uα(r)d3r = 1. (12)

Following Ref. [31], the differential cross section can now be
written as

dσ = G2
F cos2 θC

2(2π )5

× d3k′d3p′δ(Ek + MA − Ek′ − Ep′ − EP ′)µνW
µν,

(13)

where the leptonic tensor is given by

µν = Tr [(γµ−γµγ5)(ν(k)ν(k))(γν−γνγ5)(µ(k′, h′)µ(k′, h′))],
(14)

and a discussion of the hadronic tensor Wµν is postponed
until the next section.

We conclude this section with the evaluation of the leptonic
tensor. To do so, both matrices νν and µµ in Eq. (14) are
first expressed in terms of Dirac matrices. For the case of the
massive muon, we obtain

µ(k′, h′)µ(k′, h′) = (/k′ + m)

2Ek′

[
1

2
(1 + h′γ 5/s)

]
, (15)

where the four-component spin vector is given by

sµ ≡ sµ(k′) = 1

m
(k′, Ek′ k̂′). (16)

The corresponding expression for the massless left-handed
neutrino may be obtained from the above equations by setting
the helicity to h = −1 and by taking the massless (m → 0)
limit. Note that in the massless limit, msµ → k′µ. Thus we
obtain

ν(k)ν(k) = /k

2Ek

[
1

2
(1 + γ 5)

]
. (17)

Finally, by substituting the above expressions into the leptonic
tensor of Eq. (14), which in turn we separate into (µ ↔ ν)

symmetric and antisymmetric parts,

µν ≡ 
µν

S + 
µν

A , (18)

we obtain


µν

S = 2

kEk′
(kµK ′ν + K ′µkν − gµνk · K ′), (19a)


µν

A = − 2i

kEk′
εµναβkαK ′

β. (19b)

Note that in the above expressions, the following four-vector
has been introduced:

K ′ ≡ 1
2 (k′ − h′ms) −→

m=0
k′δh′,−1, (20)

where the last expression denotes the massless limit. Hence,
in the m → 0 limit, the leptonic tensor vanishes for positive
helicity (h′ = +1); but for negative helicity (h′ = −1), it goes
over to Eq. (17) of Ref. [31]. Finally, note that the following
convention was adopted [33]:

Tr(γ 5γ µγ νγ αγ β) = 4iεµναβ, (ε0123 = −1, ε0123 = +1).

(21)

We close this section with a comment on the conservation
(or rather the lack thereof ) of the leptonic tensor. While the
antisymmetric component satisfies

qµ
µν

A = 
µν

A qν = 0 (22)

because of the antisymmetric property of the Levi-Civita
tensor, this is no longer true for the symmetric part due to
the finite muon mass. That is,

qµ
µν

S �= 0 and 
µν

S qν �= 0. (23)

B. Differential cross section in terms of
nuclear structure functions

In Eq. (13) of the previous section, it was shown that the
differential cross section for the CC reaction may be written as
a contraction of the leptonic tensor with the hadronic tensor,
where the latter is defined in terms of the expectation value of
the weak nuclear operator [see Eq. (6)]. That is,

Wµν = [〈p′, s; �f (P ′)|Ĵ µ(q)|�i(P )〉]
× [〈p′, s; �f (P ′)|Ĵ ν(q)|�i(P )〉]∗

≡ W
µν

S + W
µν

A . (24)

Although the general form of the hadronic tensor was intro-
duced and discussed in detail in Ref. [31], some of its most
salient features are underscored here for completeness. For the
case of unpolarized proton emission, the hadronic tensor may
be written in terms of 13 independent structure functions,

W
µν

S = W1g
µν + W2q

µqν + W3P
µP ν + W4p

′µp′ν

+W5(qµP ν + P µqν) + W6(qµp′ν + p′µqν)

+W7(P µp′ν + p′µP ν), (25a)

W
µν

A = W8(qµP ν − P µqν) + W9(qµp′ν − p′µqν)

+W10(P µp′ν − p′µP ν) + W11ε
µναβqαPβ

+W12ε
µναβqαp′

β + W13ε
µναβPαp′

β. (25b)
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Note that all structure functions are functions of the four
Lorentz-invariant quantities, qµqµ ≡ −Q2, q · P, q · p′, and
P · p′. Details on the contraction between the leptonic and
hadronic tensors

µνW
µν = S

µνW
µν

S + A
µνW

µν

A , (26)

have been reserved for presentation in Appendix A. Yet we note
that the charged-current reaction is now sensitive to the three
structure functions W2,W5, and W6. This is in contrast to the
neutral-current reaction (see Eq. (22a) of Ref. [31]); the origin
of this difference is the nonconservation of the symmetric
part of the leptonic tensor due to the finite muon mass [see
Eq. (23)]. However, as the antisymmetric part of the leptonic
tensor is manifestly conserved, both NC and CC processes are
insensitive to the W8 and W9 structure functions.

This concludes the model-independent description of
charged-current neutrino-nucleus scattering. In summary, the
cross section may be parametrized in terms of 11 nuclear-
structure functions. In principle, they could be determined by
a “super” Rosenbluth separation. In practice, however, this is
not possible, so we resort to a relativistic mean-field model to
obtain explicit expressions for these quantities. This will be
done in the next section.

C. Model-dependent evaluation of the cross section

The previous section presented a model-independent
formalism for charged-current neutrino-nucleus scattering.
Specifically, the cross section was written in terms of a set of
nuclear structure functions that parametrize our “ignorance”
about the strong-interactions physics at the hadronic vertex.
However, to proceed any further, a number of approximations
must be made in order to obtain a numerically tractable
problem.

The first “no-recoil” approximation, detailed in Eqs. (23)–
(26) of Ref. [31], is purely kinematic and yields the following
expression for the angle-integrated differential cross section:

dσ (h′)
dEp′

= G2
F cos2 θC

2(2π )4
k′Ek′p′Ep′

×
∫ π

0
sin α dα

∫ π

0
sin θ dθ

∫ 2π

0
dφ(µνW

µν). (27)

Here α is the polar angle defining the direction of the
outgoing proton having momentum p′ ≡ |p′| and energy
Ep′ =

√
p′2 + M2. Similarly, θ and φ define the polar and

azimuthal angles of the outgoing muon with momentum
k′ ≡ |k′| and energy Ek′ = √

k′2 + m2. (For further details,
we refer the reader to Fig. 2 of Ref. [31]). Finally, to compare
the present charged-current calculation to the neutral-current
one, we have integrated over the kinematic variables of the
outgoing lepton.

The second approximation concerns the evaluation of the
nuclear matrix element

Jµ = 〈p′, s; �f (P ′)|Ĵ µ(q)|�i(P )〉. (28)

First, two- and many-body components of the current operator
are neglected by assuming that the W boson only couples
to a single bound neutron. Second, two- and many-body

rescattering processes are neglected by assuming that the
detected proton is associated with the specific bound neutron to
which the W boson had coupled to. Further, as we are confident
that distortion effects largely factor out from the ratio of cross
sections [21,22], final-state interactions between the outgoing
proton and the residual nucleus will be neglected. Finally, the
impulse approximation is invoked by assuming that the weak
charged-current operator for a nucleon in the nuclear medium
retains its free-space form. That is,

Ĵµ ≡ Ĵ CC
µ − Ĵ CC

µ5

= F1(Q2)γµ + iF2(Q2)σµν

qν

2M
− GA(Q2)γµγ5. (29)

Here M is the nucleon mass and F1, F2, and GA are
Dirac, Pauli, and axial-vector nucleon form factors. Note
that the pseudoscalar form factor has been neglected, since
its contribution is suppressed by the small lepton mass [34].
A detailed discussion of the weak charge current [Eq. (29)]
has been reserved for Appendix B. As we have assumed
that the ratio of cross sections given in Eqs. (1) and (2) are
insensitive to final-state interactions between the outgoing
proton and the residual nucleus, both initial (bound) and final
(free) nucleon propagators may be written in terms of Dirac
γ matrices, thus rendering the hadronic tensor analytical.
Explicit expressions for both propagators and for the analytic
(albeit model-dependent) hadron tensor are given in Eqs. (34)–
(38) of Ref. [31].

III. RESULTS

This section presents results based on the formalism
outlined in Sec. II for charged-changing neutrino scattering
from 12C. The angle-integrated differential cross section
[Eq. (27)] is shown in Fig. 2 as a function of the kinetic
energy Tp′ of the outgoing proton in the laboratory frame for
three incident neutrino energies, namely, Ek = k = 200, 500,
and 1000 MeV. We display separately the contribution to the
cross section from the 1p3/2 and 1s1/2 orbitals computed in a
relativistic mean-field approximation using the NL3 parameter
set [35]. Note that because of the finite muon mass, both
negative- and positive-helicity muons contribute to the cross
section; the two smallest contributions correspond to the
positive-helicity case. As the energy of the incident neutrino
increases, and consequently also that of the outgoing muon,
the positive-helicity contribution (which scales as m/Ek′)
becomes less and less important until it ultimately disappears
at a large-enough energy. This can already be observed at
Ek = 500 and 1000 MeV.

For the elementary process ν + n −→ µ− + p, the thresh-
old laboratory energy of the incident neutrino is approximately
112 MeV. An additional kinematic constraint that is strongly
affected by binding energy corrections follows from energy
conservation. Using the fact that Ek′ � m, we obtain

Ek + (M + EB) � m + (Tp′ + M) ⇒ Tp′ � Ek − EB − m,

(30)

where EB is the (positive) binding energy of the neutron. For
12C, the NL3 parameter set predicts EB(1s1/2) ≈ 53 MeV and
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FIG. 2. Differential cross section dσ/dEp′

[Eq. (27)] as a function of the outgoing proton
laboratory kinetic energy Tp′ . Solid and dashed
lines denote the contributions from the 1p3/2 and
1s1/2 neutron orbitals in 12C to the negative-
helicity (h = −1) cross section. The long-
dashed–short-dashed and dotted lines are the
corresponding contributions for positive helicity
(h = +1). The three incident neutrino energies
considered are Ek = 200, 500, and 1000 MeV.

EB(1p3/2) ≈ 19 MeV. For the particular case of a neutrino
incident energy of Ek = 200 MeV, the cross section displays a
sharp cutoff for the knockout of the 1s1/2 neutron at an energy
of Tp′ ≈ 40 MeV. For higher incident neutrino energies, the
maximum allowed value for the kinetic energy of the outgoing
proton is already sufficiently large to allow the cross section to
fall off smoothly to (almost) zero. Our subsequent results will
only focus on incident neutrino energies of 500 and 1000 MeV,
as the ratio RNC/CC defined in Eq. (2) will be measured by the
FINeSSE Collaboration with neutrinos in that energy range [2].

Before doing so, however, we present a simple estimate of
the nuclear theory uncertainties in our model. First, through the

work of others [21,22], we have justified neglecting final-state
interactions in the calculation of the ratio. Second, Ref. [19]
established that the nuclear model dependence may also be
reduced (by as much as an order of magnitude) whenever gs

A

is extracted from the ratio of cross sections rather than from
the individual cross sections. Note, however, that we did not
consider the uncertainties associated with model choice as in
Ref. [19] and that doing so should be addressed by someone in
the future. Figure 3 shows the nucleon momentum distribution
of 12C predicted by three different relativistic models of nuclear
structure. (For the definition of the momentum-space wave
functions see Refs. [31,36].) These are the linear Walecka
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FIG. 3. Bound-state wave functions in mo-
mentum space for the two occupied orbitals in
12C (1s1/2 and 1p3/2) using three relativistic
models of nuclear structure. Neutron (proton)
orbitals are displayed on the left (right) panels.
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FIG. 4. Differential cross section dσ/dEp′ [Eq. (27)] as a
function of the outgoing proton laboratory kinetic energy Tp′ . Target
nucleus is 12C, and incident neutrino energy is 500 and 1000 MeV.
Solid line represents the cross-section calculation summed over both
muon helicities (h = ±1) and both bound-state (1s1/2 and 1p3/2)
orbitals. The dashed and long-dashed–short-dashed lines represent
the individual contributions to the (unpolarized muon) cross section
from the 1p3/2 and 1s1/2 orbitals, respectively.

model (or QHD II) [32], the successful NL3 parameter set [35],
and the recently introduced FSUGold parameter set [37]. Note
that the last two sets are obtained from an accurate fit to a
large body of ground-state data. Clearly the difference among
the various models is very small. Moreover, this difference
is likely to get even smaller as one incorporates these wave
functions into the calculation of the ratio of integrated cross
sections [see Eq. (27)].

The cross section that results from adding the contributions
from both muon helicities (h = ±1) and both neutron orbitals
(1s1/2 and 1p3/2) is depicted in Fig. 4 by the solid line. The
other lines represent the calculation where we summed over
the two helicity values for the individual 1p3/2 and 1s1/2

orbitals. The result for the full cross section (solid line) may
be compared to Fig. 8 of Ref. [20]. In the kinematic region in
which they can be compared, there is good agreement in both
the shape and magnitude of the cross sections.

Next we investigate in Fig. 5 the contribution from the
single-nucleon form factors to the differential cross section
for incident neutrino energies of Ek = 500 and 1000 MeV.
As in the previous figures, the full result is displayed by the
solid line. Next in importance is the long-dashed–short-dashed
line obtained by setting the weak Pauli form factor to zero
(F2 ≡ 0). The last three lines are obtained from calculations
using a single nonzero form factor. That is, the dashed line
is obtained from the full calculation by setting F1 = F2 = 0,
the dotted line by setting GA = F2 = 0, and the dashed-dotted

FIG. 5. Effect of the single-nucleon form factors on the differ-
ential cross section [Eq. (27)] as a function of the laboratory kinetic
energy Tp′ of the outgoing proton. Calculations include a sum over
the two (1s1/2 and 1p3/2) neutron orbitals in 12C and are for incident
neutrino energies of 500 and 1000 MeV. Explanation of the various
lines is given in the text.

line by setting GA = F1 = 0. This figure clearly illustrates the
relatively minor role played by the kinematically suppressed
weak Pauli form factor F2. Indeed, by itself, it yields a partial
cross section that both in magnitude and in shape shows
little resemblance to the full cross section. Clearly, the two
dominant form factors are the weak Dirac and the axial-vector
form factors, with the latter assuming the dominant role.
Yet no single form factor by itself reproduces the full cross
section, indicating that all interference terms, F1F2, F1GA, and
F2GA are important to the charged-current process. Contrast
this with the neutral-current process, where the Dirac form
factor is strongly suppressed by the weak mixing angle
(1 − 4 sin2 θW ≈ 0.076).

As mentioned earlier, systematic errors with the neutron de-
tection make the ratio of neutral- to charged-current reactions
RNC/CC a more viable alternative than the proton-to-neutron
neutral-current ratio Rp/n. Thus, we now compare in Fig. 6
the cross section for the charged-current reaction with that
for the neutral-current process: ν + X(Z,A) −→ ν + p +
X(Z − 1, A − 1). A comparison to Fig. 8 of Ref. [20] shows
good agreement in both the shape and magnitude of the cross
sections. The axial-vector form factor plays a dominant role
in the neutral-current neutrino-proton reaction and makes this
reaction particularly sensitive to the strange-quark contribution
to the spin of the proton. Recall that the axial-vector form factor
of a proton in the neutral-current case is given by [31]

G̃A(Q2) = (
gA − gs

A

)
GA

D(Q2) −→
Q2=0

(
1.26 − gs

A

) −→
gs

A=−0.19
1.45.

(31)
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FIG. 6. Differential cross section dσ/dEp′ [Eq. (27)] for neu-
trinos on 12C as a function of the laboratory kinetic energy Tp′ of
the outgoing proton. Solid line represents the full charged-current
neutrino-nucleus cross section; dashed (long-dashed–short-dashed)
line represents the corresponding neutral-current neutrino-nucleus
cross section using gs

A = 0 (gs
A = −0.19). Results are shown for

incident neutrino energies of 500 and 1000 MeV. Note that for
clarity the neutral-current cross sections have been multiplied by a
factor of 4.

Here GA
D(Q2) is the axial-vector form factor of the nucleon (see

Appendix B) and a value of gs
A = −0.19 is assumed for the

strange-quark contribution to the spin of the nucleon [38]; this
value seems to improve the agreement with the Brookhaven
National Laboratory experiment E734 [39]. Note that this
negative value of gs

A leads to an increase in the proton G̃A

by about 15%.
We are now in a position to display results for the main

observable of this work: the ratio of neutral- to charged-current
neutrino-nucleus scattering cross sections RNC/CC defined in
Eq. (2). For notational simplicity, let us denote the differential
cross section dσ/dE by σ , where it is implied that we have
summed over the 1s1/2 and 1p3/2 orbitals of 12C as well as
over the two values of the helicity (when appropriate). Then,
because of the dominance of the axial-vector form factor, we
may write the NC cross sections as

σNC
(
gs

A �= 0
)

σNC
(
gs

A = 0
) ≈

(
1 − gs

A

gA

)2

. (32)

As the strange-quark contribution to the spin of the nucleon
is assumed to be isoscalar, the charged-current reaction is
insensitive to it. Thus,

RNC/CC
(
gs

A �= 0
)

RNC/CC
(
gs

A = 0
) ≈

(
1 − gs

A

gA

)2

−→
gs

A=−0.19
1.32. (33)

That is, assuming the dominance of the axial-vector form
factor in neutral-current neutrino-proton scattering, a ∼30%

FIG. 7. Ratio of neutral- to charged-current neutrino-nucleus
(12C) cross sections as a function of the laboratory kinetic energy
of the outgoing proton Tp′ . Solid and long-dashed–short-dashed lines
correspond to gs

A = −0.19 and gs
A = 0, respectively. Dashed line is

obtained by multiplying the gs
A = 0 result by a constant factor of 1.32

[see Eq. (33)].

enhancement (for gs
A = −0.19) in RNC/CC is expected from a

nonzero strange-quark contribution to the spin of the nucleon.
The RNC/CC ratio is plotted in Fig. 7 as a function of the
laboratory kinetic energy Tp′ of the outgoing proton for inci-
dent neutrino energies of 500 and 1000 MeV. The agreement
between the solid and dashed lines indicates that the simple
estimate given in Eq. (33) is quantitatively correct—especially
at small Tp′ (or equivalently small momentum transfer q) where
the contribution from the interference term F̃2G̃A remains
small. While significant, the sensitivity to gs

A in RNC/CC is
about a factor of 2 less than in Rp/n, where both proton and
neutron NC cross sections are sensitive to gs

A. We trust that
after working out the systematic uncertainties in the neutron
detection, this crucial experiment will also be performed.

We close this section with a brief comment on the mild
oscillations displayed by RNC/CC, especially at 1000 MeV.
Note that this structure is not unique to the CC cross
sections (see Fig. 4) but has already been observed in the
NC cross sections of Ref. [31] (in which see Fig. 9). As
neither the momentum distribution of the bound nucleons
nor the nucleon form factors display any such structure, we
attribute this behavior to a kinematic effect originally pointed
out in Ref. [38] (see its Fig. 1) and later reproduced by
us in Figs. 5–6 of Ref. [31]. The mild oscillations in the
single-differential cross section dσ/dTp′ is a residual effect
associated with the existence of a “double-humped” structure
in the double-differential cross section d2σ/dTp′d cos α (here
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α is the polar angle of the outgoing proton with kinetic energy
Tp′). In turn, the emergence of the double-humped structure
is a purely kinematic effect that results from the inability
of the reaction to produce medium-energy nucleons. That is,
high-energy neutrinos are able to produce low- or high-energy
nucleons but not medium-energy ones. While the double-
humped structure is a robust kinematic effect, the integration
over α introduces model dependences that smooth out—to a
greater or lesser degree—some of the structure displayed by
d2σ/dTp′d cos α.

IV. SUMMARY

The distribution of mass, charge, and spin in the proton are
among the most fundamental properties in hadronic structure.
In this context, a topic that has received tremendous attention
for over 15 years is the contribution of strange quarks to the
structure of the proton. In this work, we have focused on
the strange-quark contribution to the spin of the proton gs

A.
Elastic neutrino-proton scattering at low momentum transfer
is particularly well suited for this study, as the axial-vector
form factor of the proton—the observable that encompasses
the spin structure of the proton [see Eq. (31)]—dominates
this reaction. Indeed, the two “competing” Dirac and Pauli
form factors are strongly suppressed, the former by the weak
mixing angle (1 − 4 sin2 θW ≈ 0.076) and the latter by the
nucleon mass (|q|/2M). Yet in an effort to reduce systematic
uncertainties related to the neutrino flux, a “ratio method” has
been proposed to extract gs

A. Two ratios are particularly useful
in this regard: (i) proton-to-neutron yields in elastic neutrino
scattering [Eq. (1)] and (ii) neutral-current-to-charged-current
yields [Eq. (2)]. While the former shows a larger sensitivity to
gs

A, the latter is insensitive to systematic errors associated with
neutron detection. As neutrino experiments involve extremely
low count rates, these reactions use targets that consist of a
combination of free protons and nucleons bound into nuclei.
Thus, nuclear structure effects must be considered.

In the present work, we have extended the formalism
developed in Ref. [31] for neutral-current neutrino-nucleus
scattering to the charged-current reaction. In particular, cross-
section ratios have been computed within a relativistic plane-
wave impulse approximation. Benefiting from work done
by others [21,22], we justify the omission of final-state
interactions by the suggestion that while distortion effects
change the overall magnitude of the cross section, they do
so without a substantial redistribution of strength. Nuclear
structure effects—which enter in our formalism exclusively
in terms of the momentum distribution of the bound nucleons
computed at the mean-field level—were incorporated via the
accurately calibrated relativistic NL3 parameter set [35]. The
validity of the plane-wave approximation yields theoretical
cross sections that may be displayed in closed, semianalytic
form. Although the structure of the weak hadronic current
is the same for the neutral- and charged-current reactions, a
few differences emerge. First, the finite muon mass results
in muons produced with both negative and positive helicity.
Further, a finite muon mass produces cross sections that display
a sharp cutoff for low values of the incident neutrino energy.

However, for the range of neutrino energies of interest to the
FINeSSE Collaboration (500–1000 MeV) the positive-helicity
contribution becomes negligible. Further, while the same three
nucleon form factors enter the neutral- and charged-current
reactions, their quantitative impact differs considerably. For
example, while the Dirac form factor for the neutral-current
process is strongly suppressed [F̃1(Q2 = 0) = 0.076], it is
large for the charged-current process [F1(Q2 = 0) = 1].
Hence, no single form factor dominates the charged-changing
reaction. More importantly, as the strange-quark content of
the nucleon is assumed to be isoscalar, the purely isovector
CC reaction is insensitive to the strange-quark content of
the nucleon. This renders the ratio RNC/CC less sensitive
to strange quark effects (by about a factor of 2) than the
neutral-current ratio Rp/n. Still, for the value of gs

A = −0.19
adopted in this work [38], a 30% enhancemenent in RNC/CC is
obtained relative to a calculation with gs

A = 0. We note that our
results for the charged-current cross sections were compared
to similar calculations done in Ref. [20] and good agreement
was found in both the shape and the magnitude of the cross
section.

In summary, the sensitivity of the ratio of neutral- to
charged-current cross sections to the strange-quark contri-
bution to the spin of the nucleon gs

A was investigated in a
relativistic plane-wave impulse approximation. The enormous
advantage of this formalism is that our theoretical results
may be displayed in closed, semianalytic form. The central
motivation behind this work is the proposed FINeSSE program
that aims to measure gs

A with unprecedented accuracy via the
neutral- to charged-current ratio RNC/CC. By adopting a value
of gs

A = −0.19, an increase in this ratio of approximately 30%
was found relative to the gs

A = 0 result. While sensitive, it
is less so than the corresponding ratio of proton-to-neutron
yields Rp/n in neutral-current neutrino-induced reactions.
This measurement, however, has been hindered by difficulties
associated with neutron detection. We trust that this difficulty
may be overcome so that this crucial program may get off the
ground.
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APPENDIX A: LEPTONIC-HADRONIC CONTRACTION

In Sec. II A, we showed that the charged-current cross sec-
tion could be expressed as the contraction of a leptonic tensor
µν [Eq. (14)] with a hadronic tensor Wµν [Eq. (24)] written in
a model-independent way in terms of 13 independent structure
functions. In this appendix, we carry out the contraction, which
we separate into symmetric and antisymmetric parts. That is,

µνWµν = S
µνW

µν

S + A
µνW

µν

A . (A1)
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Here the symmetric part is given by(
4

kEk′

)−1

S
µνW

µν

S

= (−W1(k · K ′) + W2f1(q) + W3f1(P ) + W4f1(p′)
+W5f2(P, q) + W6f2(q, p′) + W7f2(P, p′)), (A2)

and the antisymmetric part by(
4

kEk′

)−1

A
µνW

µν

A = i(W10ε
µναβkµK ′

νPαp′β + W11f3(q, P )

+W12f3(q, p′) + W13f3(P, p′)). (A3)

Note that the following four-vector has been defined:

K ′ ≡ 1
2 (k′ − h′ms) −→

m=0
k′δh′,−1. (A4)

Further, for simplicity the following three functions have been
introduced:

f1(x) = 2(k · x)(K ′ · x) − x2(k · K ′), (A5a)

f2(x, y) = (k · x)(K ′ · y) + (k · y)(K ′ · x) − (x · y)(k · K ′),
(A5b)

f3(x, y) = (k · y)(K ′ · x) − (k · x)(K ′ · y). (A5c)

From Eq. (A2), we see that the three structure functions
W2,W5, and W6 do contribute to charged-current neutrino-
nucleus scattering, in contrast to the neutral-current case (see
Eq. (22a) of Ref. [31]). This is due to the lack of conservation
of the symmetric part of the leptonic tensor as a result of the
finite muon mass [see Eq. (19a)]. Note, however, that in the
massless limit, f1(q) = f2(P, q) = f2(q, p′) = 0, as required.
Finally, due to the form of Eq. (19b), the charged-current
process remains insensitive to the two structure functions W8

and W9.

APPENDIX B: SINGLE NUCLEON FORM FACTORS

In Sec. II C, we showed that in the impulse approximation,
the single nucleon current probed in the charge-changing
reaction may be written in the standard form

Ĵµ ≡ Ĵ CC
µ − Ĵ CC

µ5

= F1(Q2)γµ + iF2(Q2)σµν

qν

2M
− GA(Q2)γµγ5, (B1)

where F1, F2, and GA are the Dirac, Pauli, and axial-vector
form factors, respectively, and the pseudoscalar form factor
has been neglected. To understand the structure of the vector
form factors (F1 and F2) we invoke the conservation of the
vector current (CVC) hypothesis. To start, one parametrizes
the nucleon matrix elements of the isovector electromagnetic
current in the standard form

〈N (p′, s ′, t ′)|Ĵ EM
µ (T = 1)|N (p, s, t)〉

= 〈N (p′, s ′, t ′)|qγµ

τ3

2
q|N (p, s, t)〉

= U (p′,s ′)
[
F

(1)
1 (Q2)γµ + iF

(1)
2 (Q2)σµν

qν

2M

]
U (p,s)(τ3)t t ′,

(B2)

where q = (u, d) is an isospin doublet of quark fields, and
F

(1)
1 and F

(1)
2 are the isovector Dirac and Pauli form factors of

the nucleon, respectively. In turn, these are given in terms of
proton and neutron electromagnetic form factors as

F
(1)
i (Q2) = 1

2

(
F

(p)
i (Q2) − F

(n)
i (Q2)

)
, (i = 1, 2). (B3)

The CVC hypothesis is a powerful relation that assumes that
the vector part of the weak charge-changing current may
be directly obtained from the isovector component of the
electromagnetic current. That is,

Ĵ EM
µ (T = 1) = V̂ (3)

µ = qγµ

τ3

2
q,

Ĵ CC
µ (±) = V̂ (1)

µ ± iV̂ (2)
µ = qγµ

(
τ1 ± iτ2

2

)
q. (B4)

Thus, a determination of the electromagnetic form factors of
the nucleon—which has been done experimentally—fixes the
vector part of the charge-changing currents to:

〈N (p′, s ′, t ′)|Ĵ CC
µ (±)|N (p, s, t)〉

= U (p′, s ′)
[
F

(1)
1 (Q2)γµ + iF

(1)
2 (Q2)σµν

qν

2M

]
U (p, s)(2τ±)t t ′.

(B5)

In this way, the vector form factors of Eq. (B1) are then simply
given by

Fi(Q
2) = 2F

(1)
i (Q2) = F

(p)
i (Q2) − F

(n)
i (Q2), (i = 1, 2).

(B6)

Paraphrasing Ref. [40]: CVC implies that the vector part of
the single-nucleon matrix element of the charge-changing
weak current, whatever the detailed dynamic structure of
the nucleon, can be obtained from elastic electron scattering
through the electromagnetic interaction!

A similar procedure may be followed to determine the axial-
vector form factor GA in terms of the isovector axial-vector
current. That is,

Ĵ CC
µ5 (±) = Â(1)

µ ± iÂ(2)
µ = qγµγ5

(
τ1 ± iτ2

2

)
q, (B7)

so that

〈N (p′, s ′, t ′)|Ĵ CC
µ5 (±)|N (p, s, t)〉

≡ GA(Q2)U (p′, s ′)γµγ5U (p, s)(τ±)t t ′ . (B8)

As before, the above expression neglects the contribution from
the pseudoscalar form factor.

We finish this section by parametrizing the various nucleon
form factors in terms of their known Q2 = 0 values times form
factors of a dipole form. This is identical to the procedure
employed in Appendix A of Ref. [31], for the neutral-current
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reaction. We obtain

F
(p)
1 (Q2) =

(
1 + τ (1 + λp)

1 + τ

)
GV

D(Q2),

(B9a)

F
(p)
2 (Q2) =

(
λp

1 + τ

)
GV

D(Q2),

F
(n)
1 (Q2) =

(
λnτ (1 − η)

1 + τ

)
GV

D(Q2),

(B9b)

F
(n)
2 (Q2) =

(
λn(1 + τη)

1 + τ

)
GV

D(Q2),

GA(Q2) = gAGA
D(Q2), (B9c)

where we assume a dipole form factor of the form

GV
D(Q2) = (

1 + Q2
/
M2

V

)−2 = (1 + 4.97τ )−2, (B10a)

GA
D(Q2) = (

1 + Q2
/
M2

A

)−2 = (1 + 3.31τ )−2, (B10b)

η = (1 + 5.6τ )−1, τ = Q2/(4M2). (B10c)

Finally, for reference we display the values of the various
nucleon form factors at Q2 = 0 as

F
(p)
1 (0) = 1, F

(n)
1 (0) = 0, (B11a)

F
(p)
2 (0) = λp = +1.79, F

(n)
2 (0) = λn = −1.91, (B11b)

GA(0) = gA = +1.26. (B11c)
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