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Experimental constraints on nonlinearities induced by two-photon effects
in elastic and inelastic Rosenbluth separations
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The effects of two-photon exchange corrections, suggested to explain the difference between measurements of
the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have
been studied in elastic and inelastic scattering data. Such corrections could introduce e-dependent nonlinearities
in inelastic Rosenbluth separations, where ¢ is the virtual photon polarization parameter. It is concluded that such
nonlinear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q2 and W?

values measured.
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I. INTRODUCTION

Electron-proton (e-p) scattering has proven to be a powerful
tool in the investigation of the structure of the nucleon. This
interaction is typically described as the exchange between the
electron and the proton of a single virtual photon. Because the
electron is a point-like particle, any structure observed in e-p
scattering must be related to the target structure. Moreover,
the relatively small value of the electromagnetic coupling
constant ensures that corrections to the one-photon exchange
approximation should be relatively small. To further improve
on the already impressive accuracy achieved in the analysis
of electron scattering data, the contribution of two-photon
exchange (TPE) effects in elastic e-p scattering are under
theoretical investigation [1-7]. Two-photon exchange effects
have garnered particular attention as of late due to their poten-
tial role in resolving the discrepancy between electromagnetic
form factors measured through the Rosenbluth separation
method [8—11] and a polarization transfer technique [12,13]
(see Sec. III).

Data from elastic and inelastic scattering, both in the
resonance and deep-inelastic regimes, are here studied in light
of this concern. There is a newly expanded, substantial data
set which enables in particular a search for nonlinearities
caused by TPE effects. While dedicated measurements have
been proposed for elastic data [14], and a model-dependent
analysis of nonlinearity has been performed for elastic e-p
scattering [15], this work represents a first detailed, model-
independent study of nonlinear effects in elastic and inelastic
e-p scattering data.

II. ROSENBLUTH SEPARATION TECHNIQUE

The differential cross section for e-p scattering can be
expressed in the Born approximation in terms of absorption of
longitudinal (o) and transverse (o7 ) virtual photons as

d*c

o = Clor(W2, Q%) + o, (W2, 02)], (1)
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where Q? is the negative squared mass of the virtual photon,
W? is the mass squared of the undetected system, and I" is the
transverse virtual photon flux:
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Here, « is the fine structure constant, E and E’ are the energy
of the initial and scattered electron, respectively, and K is

_ 2Mv — Q?
- 2M

K : 3
where M is the mass of the proton and v = E — E’. The
variable ¢ is the relative longitudinal virtual photon flux.
Therefore ¢ = 0 corresponds to a purely transverse photon
polarization.

The Rosenbluth separation technique is used to separate the
longitudinal and transverse components of the cross section.
Here, Eq. (1) is written in the following form:

1 d%*

= o = or(W2, 0% 4+ eo (W2, 0%). (4

o
In the Born approximation, the left hand side, the reduced cross
section, depends linearly on ¢. To perform the Rosenbluth
separation, data covering a range in ¢ at fixed (W2, Q?) values
must be obtained. Any deviation from linearity must come
from higher order terms that are not included in the standard
radiative correction procedures.

III. TWO METHODS OF FORM FACTORS
MEASUREMENTS AND TWO DIFFERENT RESULTS

For the case of elastic scattering, the Rosenbluth separation
technique is used to extract the form factors G and G, from
the ¢ dependence of a reduced elastic cross section o, at fixed
Q. For elastic scattering, we define the reduced cross section
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as

_ do 8(1 +T) _ 2 2 2 2
= d_QTon = TGM(Q )+8GE(Q ), )

where T = Q%/4M?.

At fixed 02, the form factors G and Gy can be extracted
from a linear fit in ¢ to the measured reduced cross sections.
Such a Rosenbluth fit yields t G3, as the intercept and G% as
the slope. With increasing Q2, the cross section is dominated
by tG?2,, while the relative contribution of the G2 term is
diminished. Precise understanding of the e-dependence in the
radiative corrections becomes crucial at high values of Q2.
Therefore, in order to measure the ratio G g/ G at high values
of 02, a polarization transfer method has also been employed
in Hall A at Jefferson Lab (JLab).

In polarized elastic electron-proton scattering, the longitu-
dinal and transverse components of the recoil polarization are
sensitive to different combinations of the electric and magnetic
elastic form factors [16,17]. The ratio of the form factors can
be directly related to the components of the recoil polarization

Gp _ P (E+ E))tan(0,./2)
Gy P 2M ’

where P; and P; are the longitudinal and transverse com-
ponents of the final proton polarization, and 6, is the angle
between the initial and final directions of the lepton.

Recent measurements from Jefferson Lab using the po-
larization transfer technique to measure the ratio Gg/Gy
have found that G g decreases more rapidly than G, at large
0? [12,13]. This differs from results obtained at SLAC in
a similar Q? range using the Rosenbluth technique. There
exist but two explanations for this discrepancy. There is either
an unidentified systematic experimental uncertainty in the
polarization transfer data, or a systematic uncertainty common
to all Rosenbluth data.

It has been estimated that a 5-7% systematic correction to
the ¢ dependence of the reduced Rosenbluth cross section
measurements would be needed in order to resolve the
discrepancy [18-20]. However, a detailed analysis does not
show any inconsistencies in the cross section data sets [9].
Moreover, new high 0? cross section data from Jefferson
Lab [10,11] are consistent with the older SLAC cross section
data [21] obtained in the same Q7 range. The results of
Ref. [11], where the struck proton rather than the scattered
electron was detected, have a precision comparable to the
polarization transfer measurements. It must be concluded,
then, that the needed 5-7% ¢-dependent correction is not
due to standard experimental considerations in the measured
Rosenbluth cross sections.

It has been suggested [2,19] that the discrepancy may
be explained by TPE effects not fully accounted for in the
standard radiative corrections procedure of Mo and Tsai [22].
The polarization transfer technique involves a ratio of cross
sections, and hence is expected not to be very sensitive to such
effects [1,4,6]. In contrast, these contributions can significantly
affect the Rosenbluth separation technique. TPE contributions
can be independent of ¢ [affecting both G% and G2, in
Eq. (5)], linear in ¢ (significantly affecting G%), or nonlinear
ine.

o,

(6)
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The experimental evidence for significant TPE contribu-
tions to the form factor measurements is still quite limited.
While the nonzero transverse beam spin asymmetry [23,24]
provides direct evidence for TPE in elastic e-p scattering, we do
not have any evidence for the large changes in the unpolarized
cross sections (>5%) necessary to explain the difference
between polarization transfer and Rosenbluth separation mea-
surements. The discrepancy between polarization transfer and
Rosenbluth extractions of G g/ Gy provides only an indirect
indication of a missing correction, while direct searches for
TPE through the comparison of electron-proton and positron-
proton scattering yield some evidence of deviations from the
Born approximation at low &, but only at the three sigma
level [25]. Observation of a deviation from linearity in the
reduced cross section would provide a clear indication of TPE
(or other higher order corrections not included in standard
radiative correction procedures), though only the nonlinear
portion of the correction could be directly isolated. New high-
precision Rosenbluth data in elastic [11] and inelastic [26] e-p
scattering allow for a much more sensitive search for such
nonlinearities.

This work reports results of a search for effects of TPE
corrections in elastic and inelastic scattering data by searching
for e-dependent nonlinearities in existing Rosenbluth separa-
tions. We note that this analysis will not be sensitive to either
systematic shifts in the reduced cross section of Eq. (4), or to
two-photon effects which are linear in ¢.

IV. DATA OVERVIEW

Table I lists the data sets included in the present analysis.
We include several measurements of elastic e-p to cover a
range in 02, while the SLAC measurements [27,28] and the
recent JLab measurement [26] cover the DIS and resonance
regions.

For elastic e-p scattering, we examine Rosenbluth ex-
tractions from several different experiments. We study the
Rosenbluth separation for the experiments and Q2 values

TABLE I. Summary of experiments included in the analysis,
including the number of L-T separations and the typical cross section
uncertainties (excluding normalization uncertainties).

Elastic data 0? # of Typ. Lab
[GeV?] L-Ts do/o
Janssens et al. [29] 0.2-0.9 20 4.7% Mark III
Litt e al. [30] 2.5-3.8 4 1.7% SLAC
Berger et al. [31] 0.4-1.8 8 2.6% Bonn
Walker et al. [8]* 1.0-3.0 4 1.1% SLAC
Andivahis et al. [21]° 1.8-5.0 5 1.3% SLAC
Christy et al. [10] 0.9-5.2 7 1.3% JLab
Qattan et al. [11]° 2.64.1 3 0.6% JLab
Inelastic data W?[GeV?]
Liang et al. [26] 1.3-3.9 191 1.7% JLab
Dasu et al. [27,28] 3.2-30 61 3.0% SLAC

#Data below 20° are excluded.
Data from 8 GeV spectrometer.
“Excludes “slope” systematic uncertainties.
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TABLE II. Extracted values and 95% confidence level upper
limit on P,. A, is the upper limit on deviations of the cross section
from linearity [Eq. (8)].

(P2> |P2|max Amax
95% C.L. 95% C.L.
Elastic 0.019(27) 0.064 0.8% - (Ag)?
Resonance —0.060(42) 0.086 1.1% - (Asg)?
DIS —0.012(71) 0.146 1.8% - (As)?

listed in Table II of Ref. [9], including the updated radiative
corrections [9]. In addition, data from two recent Jefferson Lab
measurements [10,11] are included. In all cases, the reduced
cross sections are taken from a single experiment and single
detector. Where necessary, cross section values at slightly
different Q2 values are shifted to a fixed Q? values. Only
small corrections were needed, typically below 2%, although
a handful of points were corrected by 5-10%. There are
a total of 51 Rosenbluth separations that we will examine
for nonlinearities. Typical point-to-point uncertainties are
roughly 1-2% for most of the data sets, although several
of the older experiment had larger uncertainties and the
E01-001 results [11] have point-to-point uncertainties below
one percent.

For the resonance region, we used newly obtained data from
JLab Hall C experiment E94-110 [26,32], which was utilized
to separate the longitudinal and transverse unpolarized proton
structure functions in the nucleon resonance region via the
Rosenbluth separation technique. The experiment ran with
seven different energies ranging from 1.2 to 5.5 GeV over
a scattering angle range 12.9 < 6, < 79.9. The total point-
to-point uncertainty on the cross section measurements was
approximately 2% [32]. The data taken from this experiment
were used to perform 191 Rosenbluth separations covering
the kinematic region 0.5 < Q% < 5.0 GeV? and 1.1 < W?
< 4.0 GeV?. Examples of these Rosenbluth separations are
shown in Fig. 1. These data were used to extract the ratio,
R, of longitudinal to transverse cross section components.
Rosenbluth separations are performed in five Q2 bins and
43 W? bins, yielding separations for inclusive scattering over
the entire resonance region. The cross section values are
interpolated to the central W2 and Q? values of each bin
using a global fit to the world’s resonance region data [26,33],
with constraints built in to provide a smooth transition to the
DIS region and the Q2 — 0 limit. Typical corrections were
5%, and data that required corrections larger than 60% were
excluded. The uncertainty in the interpolation was generally
much smaller than the experimental uncertainties and was
neglected in the analysis. While a few points had large enough
corrections that the uncertainty in the interpolation may not be
negligible for the given data set, their effect on the extracted
values of any nonlinear terms should be small and random,
thus largely canceling and providing a negligible contribution
to the uncertainty in the extracted limits on nonlinearity.

For the deep-inelastic scattering (DIS) region, the data from
experiment E140 at SLAC [27,28] have been used. A total of
61 Rosenbluth separations have been performed covering the
kinematic region 0.63 < Q% < 20 GeV? and 2.5 < W? <
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FIG. 1. (Color online) Example Rosenbluth separations per-
formed in JLab experiment E94-110 [26]. Each panel shows the
reduced cross section [Eq. (4)] vs ¢ at a fixed value of W? and Q2
(in GeV?), and the extracted value of R = oy /o7.

30 GeV?. The total point-to-point uncertainties on the cross
section measurements depends on the actual kinematics, but
are typically 2-3%. Example Rosenbluth separations from
E140 are shown in Fig. 2.

The data from the JLab E94-110 and SLAC E140 exper-
iments are by far the largest data sets available for inelastic
Rosenbluth separations, while the new elastic measurements
from JLab E01-001 provide significantly more precise data
for elastic scattering.
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FIG. 2. (Color online) Example Rosenbluth separations per-
formed in SLAC experiment E140 [27,28]. Each panel shows the
reduced cross section [Eq. (4)] vs ¢ at a fixed value of W? and Q2
(in GeV?), and the extracted value of R = oy /o7.
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V. ANALYSIS AND RESULTS

From the discussions of Secs. II and III it is clear that
the linearity of the reduced cross section in Eq. (4) is a
crucial component of the Rosenbluth technique, and that
two-photon exchange corrections could introduce a nonlinear
e-dependence in Eq. (4). Therefore, such corrections could
manifest themselves as nonlinearities in Figs. 1 and 2.

To make a general, model-independent search for such
nonlinearities, the following analysis has been performed. For
each data set with three or more ¢ values at fixed Q2 and W2,
the reduced cross sections are fit to a quadratic in ¢, of the
form

o, = Py-[1+ Pi(e — 0.5) + P(e¢ — 0.5)]. (7)

This form is chosen so that the extracted nonlinear term,
P,, will be a fractional contribution, relative to the average
(¢ = 0.5) cross section, rather than an absolute contribution
to the cross section. One could also take the quadratic term
relative to the ¢ = 0 cross section, but this would greatly
enhance the apparent size of the nonlinear contributions for
data with o, < or and would lead to large uncertainties for
data sets with only large ¢ values, where there is a significant
extrapolation to ¢ =0. In the absence of TPE, we expect
o, =o0r + &0y, yleldmg P() =0or +0.50L, P()P] =0or, and
P, = 0. TPE corrections can modify P, and P;, and may
introduce a nonzero value of P,. The only estimates we have for
the size of the nonlinearity come from calculations for elastic
e-p scattering. If one takes the calculations [2,3] of TPE effects
for elastic scattering and scales the size of the corrections so
that they are large enough to explain the discrepancy between
polarization and Rosenbluth extractions, as done in Ref. [14],
one obtains P, values of ~6-9%, although the precise value
depends significantly on Q2 and the & range of the data.

While P, represents the fractional curvature, the size of
cross section deviations from linearity will be much smaller.
For P, = 10%, the maximum deviation of the cross section
from P, = 0 would be 2.5%, at ¢ = 0, 1. The effects are even
smaller if the ¢ range of the data, Ag, is less than one. In
this case, the deviations from P, = 0 will go approximately as
(Ag)?. Finally, when one performs the Rosenbluth separation,
the extracted values of o and o7 will be shifted from their
true values in order to minimize the deviation from the straight
line fit, reducing the deviations by roughly a factor of two from
the size of the P, contribution in Eq. (7). Thus, the maximum
observed deviations from linearity will be,

(G - Uﬁt)max

o

Anmax = ~ Py - (Me)*/8, ®)
typically more than a factor of ten smaller than the value of P;.
For the expected P, values of <10% and a rather large Ae
range of 0.8, one expects maximum deviations from linearity
to be at the level of <0.8%. So even with high precision
measurements and a good € range, one needs a large data set
to provide meaningful limits on the nonlinearities.

We perform the fit from Eq. (7) for each of the elastic,
resonance region, and DIS Rosenbluth data sets. Figures 3
and 4 show P,, binned in Q2 for the elastic data, and binned in
W for the resonance and DIS data. The results are consistent
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FIG. 3. (Color online) Extracted values of the curvature parame-
ter, P,, as extracted from the elastic data as a function of Q2. The red
dotted line indicates the average value, (P,) = 0.019 & 0.027.

with no nonlinearities, and there is no apparent Q% or W?
dependence. The best constraints for the elastic scattering
come from the Q% = 2.64,3.2 GeV? data from most recent
Jefferson Lab measurement [11], which by themselves yield
(P,) = 0.013(33), compared to previous worlds data which
yields (P,) = 0.028(46). Table II shows the extracted value
for P,, the 95% confidence level upper limit on |P|, and
the approximate maximum deviation from linearity for the
elastic, resonance region, and DIS (W? > 4 GeV?) data. From
these results, we determine the 95% confidence level upper
limits on | P;| of 6.4% for the elastic data and 10.7% for the
inelastic data. This yields limits on the deviations of the data
from the Rosenbluth fit of roughly 0.4% (0.7%) for the elastic
(inelastic), assuming a Ae¢ range of 0.7.
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FIG. 4. (Color online) Extracted values of the curvature parame-
ter, P», as extracted from the inelastic data as a function of W. Data in
each W bin is averaged over all Q? values in the resonance region and
DIS measurements.The red dotted line indicates the average value,
(P,) = —0.048 £ 0.036.
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Note that it is also possible for a purely linear correction to
introduce a small nonlinearity, since

I3

I — (14 Re)-(14+Caope) =1+ (R+ Caple + R - Cape?,

or

©))
where R = o /o7 and (1 + C», ¢) is the TPE correction factor.
For the elastic data at high Q? and all of the inelastic data
presented here, R < 0.2-0.3, while estimates TPE predict
a change in slope, Cy,, of approximately 5%. Hence, the
nonlinear term arising from a linear TPE correction, R - Cy,,
will be very small, yielding P, < 1%. At low Q2 values, the
value of R for the elastic cross section becomes quite large,
yielding values of P, on the scale of Cy, for R > 1. However, R

is only this large for Q2 < 0.4 GeV2, where the TPE corrections
decrease as Q% — 0 [6,19,20,25]. The effect is <1% if one

assumes that C5, increases slowly as one goes up from 0% =0,
as it does in calculations [6] and phenomenological extractions
of the TPE corrections [19,20]. If one takes a more rapid
increase with Q2, Cy, =0.06-[1 — exp(Q?/0.5 GeV?)], we
obtain values of P, coming from the linear correction of
1.5-2.5% for Q> < 1 GeV?. Thus, the size of this effect should
be well below the sensitivity of the existing data in all cases.

To better visualize the limits on nonlinearities, we have also
performed a global comparison of the residuals between the
reduced cross sections and a linear fit to the reduced cross
sections. For the previous fit, data sets with a very small Ae
range have very little sensitivity to the curvature. Although
these data sets have large uncertainties, they still provide
meaningful P, values. When plotting the residuals, we want to
exclude such data sets because the data points have uncertain-
ties comparable to the other data sets, but the residuals little
sensitivity to nonlinearities. Thus, we require include only
those data sets where Ag > 0.4 when studying the residuals.
This cut reduces the number of data sets to 35 for elastic kine-
matics, 77 in the resonance region, and 38 in the DIS region.

For the data sets with sufficient & coverage, we take Ry,
to be the residual from the Rosenbluth (one-photon exchange)
fit,

Ry, = > Mt (10)

and obtain a value of R, for every cross section measurement
in the Rosenbluth data sets. We can then determine the
weighted average value from the extracted Ry, values in ¢ bins
for the elastic, resonance region, and inelastic data sets. In the
absence of TPE contributions, one expects Ry, = 0 in every
¢ bin and, hence, any ¢ dependence to R;, is an indication of
two-photon exchange. Figure 5 shows the combined R;,, as a
function of ¢ for the elastic, resonance region, and DIS data,
and all three data sets are consistent with R;,, = 0. One can
see that while the elastic and resonance region data have high
precision, the resonance region data has less data as ¢ — 0
and 1, while the DIS data has limited data an low ¢, as well as
lower statistical precision in general.
We fit the combined residuals to the form

Ry, = A+ B(e — &), (11)
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FIG. 5. (Color online) The weighted average of R, = (Opaa —
ory) /oy for the elastic measurements, the resonance region data
(JLab experiment E94—-110) and the DIS data (SLAC experiment
E140). The solid lines are the fits to the form of Eq. (11).

where A, B, and g( are the fit parameters. Because we are
fitting to residuals that have already had the expected linear
cross section dependence removed, we expect that Ry, will
average to zero, yielding A =~ 0 in the absence of any strong
¢ dependence. Indeed, we find A < 0.05% for the elastic,
resonance, and DIS data. The quadratic fit to Ry, yields a
curvature parameter, B, consistent with zero for all data sets.
We obtain B = (0.9 & 2.0)% for the elastic data, (—2.3 &+
3.0)% for the resonance region data, and (0.9 £ 3.8)% for
the DIS measurements.

While the limits in Table II provide the best quantitative
limits on deviations from linearity, the residuals shown in
Fig. 5 give a better idea of the sensitivity of the different
data sets in different regions of &. The parametrization of
Eq. (7) assumes a simple quadratic nonlinear term, while some
models for the contribution to elastic scattering indicate larger
nonlinearities for ¢ — 1. From Fig. 5 we see that this region
is not as well constrained for the resonance region data, while
very low ¢ values are not well constrained except in the elastic
data.

VI. CONCLUSION

We have searched for possible two-photon exchange
contributions that show up as nonlinearities in Rosenbluth
separations. We have used existing data in the elastic and
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deep-inelastic scattering region and recent data in the nucleon
resonance region. We do not find any evidence for TPE
effects. The 95% confidence level upper limit on the curvature
parameter, P,, was found to be 6.4% (10.6%) for the elastic
(inelastic) data. This limits maximum deviations from a linear
fit to <0.4% (0.7%) for typical elastic (inelastic) Rosenbluth
separation data sets.
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