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Use of Vlow-k in a chiral-perturbation-theory description of the pp → ppπ 0 reaction
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Previously, the near-threshold pp → ppπ 0 reaction was studied with the use of transition operators
derived from chiral perturbation theory (χPT) and the nuclear wave functions generated by high-precision
phenomenological potentials. A conceptual problem in that approach was that the transition amplitude receives
contributions from very high momentum components (above the cutoff scale of χPT) in the nuclear wave
functions. In the present work, we avoid this problem by replacing the “bare” phenomenological potentials with
Vlow-k , which is an effective potential derived from a bare potential by integrating out momentum components
higher than a specified cutoff scale. The use of Vlow-k is found to give an enhancement of the pp → ppπ0

cross sections over the values obtained with bare potentials. Although this enhancement brings the calculated
cross sections closer to the experimental values, the incident-energy dependence of the cross section is not well
reproduced, a problem that seems to indicate the necessity of including higher chiral order terms than considered
in the present work.
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I. INTRODUCTION

There have been many theoretical investigations [1–13]
devoted to explaining the high-precision data for the total cross
section of the near-threshold pp → ppπ0 reaction [14,15].
The initial surprise was that the measured cross section was
larger than the values expected from the earlier calculations
[16,17] by a factor of ∼5. Calculations in the phenomenolog-
ical one-boson-exchange model indicated that heavy-meson
(σ and ω) exchange contributions could account for the
unexpectedly large cross section for pp → ppπ0 [1]. The
importance of heavy-meson exchanges in π0 production is
to be contrasted with their much less pronounced role in
the charged-pion production process, which is dominated by
the one-pion-exchange diagrams. Effective field theory (EFT),
or more specifically, chiral perturbation theory (χPT) offers
a systematic framework for describing the NN → NNπ

processes at low energies. The leading-order term in χPT
(the Weinberg-Tomozawa term) contributes to charged-pion
production but not to π0 production. χPT allows us to keep
track of the contributions of higher chiral-order terms to
the low-energy NN → NNπ reactions [4,5]. A point to
be kept in mind, however, is that the NN → NNπ pro-
cesses involve rather large momentum transfers, p ∼ √

mNmπ

(mN = nucleon mass, mπ = pion mass) even at threshold, and
that this feature leads to the relatively slow convergence
of the χPT expansion [6]. The existence of the additional
scale p ∼ √

mNmπ in the NN → NNπ reaction led Cohen
et al. [5,11] to propose a new counting scheme in which
the expansion parameter is χ ≡ √

mπ/mN instead of χW ≡
mπ/mN employed in the usual Weinberg counting scheme.
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A thorough discussion on this and related topics as well as an
extensive list of references can be found in a recent review by
Hanhart [13].

To maintain formal consistency in the χPT calculation of
an inelastic nuclear process, one should derive from the same
effective Lagrangian the relevant transition operators and the
wave functions for the initial and final nuclear states. This
type of calculation, however, has not yet been carried out. A
practical and, in many cases, very useful method is a hybrid
χPT approach [18–22], in which the transition operators are
derived from χPT but the nuclear wave functions are generated
with the use of a modern high-precision phenomenological NN
potential. Hybrid χPT was applied to the pp → ppπ0 reaction
in Refs. [4–8]. These studies indicated: (1) There is a substan-
tial cancellation between the one-body impulse approximation
(IA) term and the two-body contributions, resulting in a cross
section that is much smaller than the experimental value;
(2) This feature seems reasonably stable against the different
choices of phenomenological NN potentials.1

A conceptual problem one encounters in these hybrid
χPT calculations is that, whereas the transition operators
are derived using χPT with the assumption that relevant
momenta are sufficiently small compared with the chiral scale
�χ (p � �χ ≈ 1 GeV), the wave functions generated by
a phenomenological NN potential can in principle contain
momenta of any magnitude. A numerical calculation in Ref. [7]
indicates that the transition amplitude receives non-negligible
contributions from momentum components well above �χ , a
feature that jeopardizes the applicability of χPT.

In a version of hybrid χPT called EFT∗ or MEEFT [19–21],
the contribution of the dangerously high momentum compo-
nents in the wave functions are suppressed by attaching a mo-
mentum cutoff factor to the transition operators derived from

1Reference [7] reports that the two different NN potentials, Argonne
V18 [23] and Reid soft-core [24], give almost the same results for the
pp → ppπ 0 cross sections.
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χPT.2 EFT∗ has proved to be extremely useful in explaining
and predicting many important observables for electroweak
processes in few-nucleon systems. Another possible way to
suppress the contributions of high momentum components in
hybrid χPT calculations is to attach a momentum cutoff factor
to the wave functions.3 Meanwhile, a systematic method was
developed by the Stony Brook group and others [25,26] to
construct from a phenomenological NN-potential an effective
NN potential that resides in a model space which only contains
momentum components below a specified cutoff scale �.
This effective potential, referred to as Vlow-k , is obtained by
integrating out momentum components higher than � from
a phenomenological NN-potential, which in this context may
be regarded as an underlying “bare” potential that resides in
full momentum space. Vlow-k represents a renormalization-
group-improved effective interaction of a bare NN interaction.
It has been found that, for a choice of � ∼ 2 fm−1, Vlow-k
reproduces low-energy observables such as the phase shifts
(for p < �) and the deuteron binding energy with accuracy
comparable to that achieved with the use of bare high-
precision phenomenological potentials [26]. Furthermore, for
any choice of bare NN-interactions (belonging to the category
of modern high-precision phenomenological potentials), it has
been found that the corresponding Vlow-k generates practically
the same half-off-shell T-matrix elements for p < �. This
means that the low-momentum behavior (p < �) of the two-
nucleon wave functions calculated from Vlow-k is essentially
model-independent.

These developments motivate us to carry out a hybrid χPT
calculation of the near-threshold pp → ppπ0 reaction with
the use of Vlow-k . This type of calculation will substantially
reduce the severity of the conceptual problem of momentum
component mismatching that existed in the previous hybrid
χPT calculations. It will thus allow us to examine more
directly whether the transition operators derived from χPT
up to a given chiral order are adequate or not. Furthermore,
comparison of the results of a calculation based on Vlow-k with
those based on bare NN-interactions will also give information
about the influences of the short-distance behavior of the NN-
interactions on the NN → NNπ reactions. In this context,
it is informative to gather more examples of calculations
that use bare NN-interactions. Therefore, in addition to a
calculation based on Vlow-k , we extend here our previous
bare-potential-based calculations (carried out for the Argonne
V18 and Reid soft-core potentials) to the Bonn-B potential [34]
and the CD Bonn potential [33].

After describing the primary motivations of our work,
we must mention that our present study is basically of an
exploratory nature and falls short of addressing a number of

2Another important aspect of EFT∗ is that the low-energy constants
appearing in the theory are constrained by the experimental data for
the observables involving neighboring nuclei. This aspect of EFT∗,
however, will not be discussed here.

3Insofar as the use of a momentum cutoff factor can be identified
with the introduction of a projection operator onto a model space with
a limited momentum range, applying the cutoff factor to the transition
operators is equivalent to applying it to the wave functions.

issues that warrant detailed studies. For one thing, we limit
ourselves to the use of the Weinberg counting scheme, although
it is important to examine the consequences of the counting
scheme of Refs. [5,11]. As for the employment of Vlow-k
in hybrid χPT, there is a problem of formal consistency in
that, whereas the relevant transition operators are derived in
the framework of the dimensional regularization [4,7], Vlow-k
is based on the momentum cutoff scheme. Furthermore, the
difference between the cutoff scales appearing in Ref. [7] and
in Vlow-k needs to be addressed. We relegate the study of these
points to future work and concentrate on the examination of
the consequences of the use of Vlow-k in the present limited
context; on the last point, however, we will give some brief
remarks later in the text.

The organization of this paper is as follows. Section II
gives a brief recapitulation of the general framework of hybrid
χPT, while we explain in Sec. III some technical aspects of
numerical calculations we need to address as we work with
Vlow-k instead of the bare potential. The numerical results are
presented in Sec. IV and compared with the data. Finally,
Sec. V is dedicated to discussion and summary.

II. CALCULATIONAL FRAMEWORK

The formalism to be used here is basically the same as in
Refs. [4,7] except that, for a calculation with Vlow-k , some
modifications (essentially of technical nature) are needed.
Therefore, as far as the general framework of our approach
is concerned, we only give a brief recapitulation, referring to
Refs. [4,7] for details.

A. Transition operators

As in Refs. [4,7], we derive the transition operators for
the pp → ppπ0 reaction using the heavy-fermion formalism
(HFF) [27] of χPT based on the Weinberg counting rules. The
relevant Lagrangian is written as

Lch = L(0) + L(1) + L(2) + · · · . (1)

Here L(ν̄) (ν̄ = 0, 1, 2 . . .) contains terms of chiral order ν̄

with ν̄ ≡ d + (n/2) − 2, where n is the number of fermion
lines involved in the vertex and d is the number of derivatives
or powers of mπ . For our present study we only need the terms
of ν̄ = 0 and ν̄ = 1, which are given as follows:

L(0) = f 2
π

4
Tr

[
∂µU †∂µU + m2

π (U † + U − 2)
]

+ N̄ (iv · D + gAS · u)N, (2)

L(1) = − igA

2mN

N̄{S ·D, v ·u}N + 2c1m
2
π N̄NTr(U + U † − 2)

+
(

c2− g2
A

8mN

)
N̄ (v ·u)2N + c3N̄u·uN. (3)

Here U (x) is an SU(2) matrix that is nonlinearly related to
the pion field and that has standard chiral transformation
properties; we use U (x) =

√
1 − [	π(x)/fπ ]2 + i 	τ · 	π (x)/fπ .

N (x) denotes the large component of the heavy-fermion
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field; the four-velocity parameter vµ is chosen to be vµ =
(1, 0, 0, 0). DµN is the covariant derivative, Sµ is the covariant
spin operator, and uµ ≡ i[ξ †∂µξ − ξ∂µξ †], where ξ = √

U (x)
[28]. The pion decay constant is taken to be fπ = 93 MeV, and
gA = 1.25. The values of the low-energy constants (LECs),
c1, c2, and c3, are given in, e.g., Refs. [4,28,29]:

c1 = −0.87 ± 0.11 GeV−1, c2 = 3.34 ± 0.27 GeV−1,
(4)

c3 = −5.25 ± 0.22 GeV−1.

The chiral order index ν of a Feynman diagram is defined
by ν = 4 − EN − 2C + 2L + ∑

i ν̄i , where EN is the number
of nucleons in the Feynman diagram, L the number of loops,
C the number of disconnected parts in the diagram, and the
sum runs over all the vertices in the Feynman graph [30]. We
are using here the Weinberg counting scheme [30], although,
as mentioned in the introduction, there exists a different
counting scheme tailored to keep track of high-momentum
flows involved in NN → NNπ reactions [5,13]. Furthermore,
we limit ourselves to the tree-level diagrams and examine the
consequences of employing Vlow-k in evaluating the transition
matrix elements corresponding to these tree diagrams.

The kinematic variables for the pp → ppπ0 reaction we
use in this work and the relevant Feynman diagrams are shown
in Fig. 1. As discussed in Refs. [4,7], the Lagrangian in Eq. (1)
leads to the transition operator

T = T (−1) + T (+1) ≡ T (Imp) + T (Resc), (5)

where T (ν) represents the contribution of chiral order ν. T (−1)

comes from the one-body impulse approximation (IA) diagram
[Fig. 1(a)] and is given by

T (−1) ≡ T (Imp) ≡ i

(2π )3/2

1√
2ωq

gA

2fπ

×
∑
j=1,2

[
− 	σj · 	q + ωq

2mN

	σj · ( 	pj + 	p ′
j )

]
τ 0
j . (6)

T (+1), which arises from the two-body rescattering diagram
[Fig. 1(b)], is given by

T (+1) ≡ T (Resc) ≡ −i

(2π )9/2

1√
2ωq

gA

fπ

∑
j=1,2

κ(kj , q)
	σj · 	kj τ 0

j

k2
j − m2

π

,

(7)
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FIG. 1. Impulse term (a) and rescattering term (b) for the pp →
ppπ 0 reaction. In the text, the space components of the initial four-
momenta p̄1 and p̄2 in the center-of-mass system are denoted by 	pi

and − 	pi , respectively; similarly, the space components of the final
four-momenta p̄′

1 and p̄′
2 in the center-of-mass system are denoted by

	pf − 	q/2 and − 	pf − 	q/2, respectively.

where 	pj and 	p ′
j (j = 1, 2) denote the initial and final

momenta of the j-th proton. The four-momentum of the
exchanged pion is defined by the nucleon four-momenta at the
πNN vertex as kj ≡ pj − p ′

j , where pj = (Epj
, 	pj ), p ′

j =
(Ep ′

j
, 	p ′

j ) with Ep ≡ ( 	p 2 + m2
N )1/2. The four-momenta of

the final pion is q = (ωq, 	q ), with ωq = (	q 2 + m2
π )1/2. The

rescattering vertex function κ(k, q) of Eq. (7) is calculated
from Eq. (3):

κ(k, q) ≡ m2
π

f 2
π

[
2c1 −

(
c2 − g2

A

8mN

)
ωqk0

m2
π

− c3
q · k

m2
π

]
, (8)

where k = (k0, 	k) represents the four-momenta of the ex-
changed pion.

B. Transition amplitude and nuclear wave functions

We write the transition amplitude for the pp → ppπ0

reaction as

T = 〈�f |T |�i〉, (9)

where |�i〉 (|�f 〉) is the initial (final) two-nucleon state
distorted by the initial-state (final-state) interaction. As briefly
discussed in the introduction, in a formally consistent nuclear
χPT calculation, the transition operator T and the NN
interactions that generate |�i〉 and |�f 〉 are to be calculated to
the same chiral order ν from the common χPT Lagrangian. In
hybrid χPT, we instead use a phenomenological NN potential
to generate |�i〉 and |�f 〉. In the present treatment this
phenomenological NN potential can be either Vlow-k or a bare
NN-interaction (see the Introduction).

As described in Ref. [7], we can apply the standard partial-
wave decomposition to Eq. (9) and rewrite it into〈

χ
(−)
	pf ,ms′1

,ms′2
	q∣∣T ∣∣χ (+)

	pi ,ms1 ,ms2

〉
=

∑
Sf Lf Jf Mf

∑
SiLiJiMi

YJf M+
f

Sf Lf

(
p̂f ,ms ′

1
,ms ′

2

)

×YJiMi

SiLi

(
p̂i , ms1 ,ms2

) ∑
lπ mπ

Y ∗
lπ mπ

(q̂)

× 〈
pf [Lf Sf ]Jf Mf

∣∣Tlπ mπ
(q)

∣∣pi[LiSi]JiMi

〉
. (10)

Here YJM
SL is the spin-angular function of the antisymmetrized

two-proton state

YJM
SL ≡ 1 + (−1)L+S

√
2

∑
MSML

iL exp[iδ(LS)J ]

× Y ∗
LML

(p̂)
〈

1
2

1
2ms1ms2

∣∣SMS

〉〈LSMLMS |JM〉, (11)

where δ(LS)J is the NN scattering phase shift in the eigen-
channel defined by the orbital angular momentum L, total spin
S, and the total angular momentum J. lπ denotes the angular
momentum of the outgoing pion. It is convenient to introduce
the reduced matrix element using the standard convention:

〈pf [Lf Sf ]Jf Mf |Tlπ mπ
(q)|pi[LiSi]JiMi〉 (12)

≡ (−1)Jf −Mf

(
Jf lπ Ji

−Mf mπ Mi

)
× 〈

pf [Lf Sf ]Jf

∣∣∣∣Tlπ mπ
(q)

∣∣∣∣pi[LiSi]Ji

〉
. (13)
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Corresponding to the decomposition T = T Imp + T Resc in
Eq. (5), the reduced matrix element has two terms〈

pf [Lf Sf ]Jf

∣∣∣∣ Tlπ (q)
∣∣∣∣pi[LiSi]Ji

〉
= 〈

pf [Lf Sf ]Jf

∣∣∣∣T Imp
lπ

(q)
∣∣∣∣ pi[LiSi]Ji

〉
+ 〈

pf [Lf Sf ]Jf

∣∣∣∣T Resc
lπ

(q)
∣∣∣∣ pi[LiSi]Ji

〉
. (14)

Near threshold we can assume that the pp → ppπ0 reaction
is dominated by s-wave pion production, with the final pp
states in the 1S0 partial wave; this implies that we need only
consider the 3P0 partial wave for the initial pp state. With these
constraints, the reduced matrix elements for the impulse and
rescattering terms are given by

1√
4π

〈
pf [1S0]

∣∣∣∣T Imp
lπ =0(q)

∣∣∣∣pi[
3P0]

〉
= −i√

(2π )32ωq

gA

fπ

∫ ∫
d 	p ′d 	p

4π
R1S0, pf

(p′)

×p̂ ·
(

−	q + ωq

mN

	p ′
)

δ( 	p ′ − 	p + 	q/2)R3P0,pi
(p), (15)

1√
4π

〈
pf [1S0]

∣∣∣∣T Resc
lπ =0 (q)

∣∣∣∣pi[
3P0]

〉
= i√

(2π )32ωq

2gA

fπ

∫ ∫
d 	p ′d 	p

4π
R1S0, pf

(p′)

×κ(k, q)

(2π )3

p̂ · 	k
k2 − m2

π

R3P0, pi
(p). (16)

The radial functions, R3P0, pi
(p) and R1S0, pf

(p′), in Eqs. (15)
and (16) stand for the NN relative motion in the initial and
final state, respectively. To obtain these radial functions, we
first derive the K-matrix by solving the Lippman-Schwinger
equation in momentum space for a given NN potential; see
Ref. [31]. The calculated half-off-shell K-matrix and NN phase
shift δ(LS)J give the corresponding momentum space radial
wave function as

R(LS)J,p0 (p) = i−L cos(δ(LS)J )

×
[

δ(p − p0)

p2
0

+P K(LS)J (p, p0,W )

p2
0

/
mN − p2/mN

]
. (17)

Here P means taking the principal-value part of the two-
nucleon propagator, and p0 is the on-shell momentum defined
by W = 2Ep0 . We note that the on-shell K-matrix is related to
the phase shift as tan(δ(LS)J ) = −πp0mNK(LS)J (p0, p0)/2.

The choice of the four-momentum k of the exchanged
pion has been a subject of investigations in the literature,
see, e.g., Refs. [4,32]. In a simple prescription, which came
to be known as fixed kinematics approximation (FKA) [4],
we identify the four-momenta of the intermediate nucleon
lines with the corresponding asymptotic values (ignoring
thereby energy-momentum transfers due to the initial and final
state interactions) and “freeze” all the kinematic variables
at their threshold values. Thus FKA consists in using, in
Eqs. (8) and (16), k = (k0, 	k) = (mπ/2, 	k), 	k = 	p − 	p ′ , and
q = (ωq, 	q) = (mπ, 	0). Meanwhile, in Ref. [7], k was chosen
in such a manner that energy-momentum conservation at each

vertex in Fig. 1(b) should be satisfied, i.e.,

k = (k0, 	k) = (E 	p − E 	p ′−	q/2, 	p − 	p ′ + 	q/2), (18)

where 	p ( 	p ′) is the relative momentum of the two protons
before (after) pion emission, defined in Fig. 1 as

	p1 = − 	p2 = 	p, 	p ′
1 = 	p ′ − 	q

2
, 	p ′

2 = − 	p ′ − 	q
2
. (19)

A schematic study in Ref. [32] indicates that, when the final-
state NN interaction is included in the rescattering diagram,
FKA is an appropriate choice, but that, when initial-state
interaction is included, the situation is more complex. Thus
the choice of k is still an open issue. In the present work
therefore we give numerical results for the choice of k given
in Eqs. (18) and (19), as well as for FKA. The bulk of our
calculation will be done with the use of k given in Eqs. (18)
and (19); the results corresponding to FKA will be presented
with due remarks attached to them.

C. Cross sections

The total cross section at energy W (= 2E 	pi
) in the center-

of-mass frame for the reaction pp → ppπ0 is given by Ref. [7]

σpp→ppπ0 (W ) = (2π )4

16

Epi

pi

∫ qm

0
dq q2pf

√
4E2

pf
+ 	q 2

×
∑

LiSiJiLf Sf Jf lπ

∣∣∣∣ 1√
4π

e
iδ(Lf Sf )Jf

+iδ(Li ,Si )Ji

× 〈
pf [Lf Sf ]Jf

∣∣∣∣Tlπ (q)
∣∣∣∣pi[LiSi]Ji

〉∣∣∣∣
2

,

(20)

where Epf
≡ {(W − ωq)2 − 	q2}1/2/2, pf ≡

√
E2

pf
− m2

N ,
and the maximum momentum, qm, of the pion is given
by qm = √{(W − 2mN )2 − m2

π }{(W + 2mN )2 − m2
π }/4W 2.

Here pi (= | 	pi |) is the asymptotic relative momentum of the
initial pp states and E 	pi

=
√

	p 2
i + m2

N . Since we have already
specialized ourselves in the threshold pion production, we
need not deal with the general expression in Eq. (20); we can
limit [Lf Sf ]Jf to 1S0 and [LiSi]Ji to 3P0.

D. NN interactions

As discussed in the Introduction, the main purpose of
the present work is to carry out a hybrid χPT calculation
of the pp → ppπ0 reaction with the use of Vlow-k , which
resides in reduced Hilbert space characterized by the constraint
p < �. Specifically, we use here the Vlow-k derived from
the CD-Bonn potential [33].4 We are also interested in
comparing the the results of this calculation with those of
hybrid χPT calculations based on standard high-precision
phenomenological potentials, which we refer to as “bare”
interactions. Regarding a bare NN potential case, in order to
augment the examples given in Ref. [7], we shall carry out

4We are grateful to T. T. S. Kuo for allowing us to use a computer
code to generate Vlow-k developed by his group.
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additional calculations with the use of the Bonn-B potential
and the CD Bonn potential.

III. NUMERICAL CALCULATION

The numerical evaluation of the scattering amplitude
and the cross section follows closely the method employed
in Ref. [7]. The calculation of the rescattering amplitude
[Eq. (16)] can be readily done in momentum (p)-space,
whereas it is technically easier to carry out a numerical
evaluation of the impulse amplitude [Eq. (15)] in coordinate
(r)-space [7]. Since the calculational method for the case of a
bare NN-potential was explained in detail in Ref. [7], we only
describe here modifications that need to be made when we use
Vlow-k instead of a bare potential.

A. Principal-value integral

The principal value integral appearing in Eq. (17) is usually
rendered amenable to numerical calculation in the following
manner. If we need to numerically evaluate the integral

I ≡ P
∫ ∞

0
dk

f (k)

q2 − k2
, (21)

we may convert this expression into an ordinary integral by
subtracting zero:

I = P
∫ ∞

0
dk

f (k)

q2 − k2
− P

∫ ∞

0
dk

f (q)

q2 − k2

=
∫ ∞

0
dk

1

q2 − k2
[f (k) − f (q)]. (22)

In a calculation that involves Vlow-k , the upper limit of k-
integration is a finite value (�), so that we encounter an integral
such as

I� ≡ P
∫ �

0
dk

f (k)

q2 − k2
, (23)

where, for the sake of definiteness, we may assume q < �.
Since P

∫ �

0 dk
f (q)

q2−k2 �= 0, the procedure used for I needs to be
modified as

I� = P
∫ �

0
dk

f (k)

q2 − k2
− P

∫ �

0
dk

f (q)

q2 − k2

+P
∫ �

0
dk

f (q)

q2 − k2

=
∫ �

0
dk

1

q2 − k2
[f (k) − f (q)] + f (q)

2q
log

�+ q

�− q
. (24)

B. Calculation of the impulse-term amplitude in r-space

As mentioned, the numerical evaluation of the impulse-
term amplitude can be done more conveniently in r-space than
in p-space. In a case involving a bare potential, switching

from the p-representation to the r-representation can be readily
performed using the standard Bessel transformation,

R(LS)J,p0 (r) =
√

2

π
iL

∫ ∞

0
p2dp jL(pr)R(LS)J,p0 (p), (25)

and the well-known identity,
∫ ∞

0 jL(pr)jL(pr ′)p2dp =
π

2r2 δ(r − r ′). The result is given by [7]

1√
4π

〈
pf [1S0]

∣∣∣∣T Imp
lπ =0(q)

∣∣∣∣pi[
3P0]

〉
= 1√

(2π )32ωq

gA

fπ

∫
dr r2R1S0,pf

(r)

[(
1 + ωq

2mN

)

× qj1(qr/2) − ωq

mN

j0(qr/2)

(
d

dr
+ 2

r

)]
R3P0,pi

(r).

(26)

The usefulness of this method, however, diminishes in
the case of Vlow-k , where the momentum integral does not
run to ∞ but stops at �, and hence we cannot use the
above-quoted orthogonality of the spherical Bessel functions:∫ �

0 jL(pr)jL(pr ′)p2dp �= π
2r2 δ(r − r ′). We therefore use the

following procedure. In evaluating the impulse amplitude
[Eq. (15)] for Vlow-k , we first integrate out the δ-function,
and then divide the range of p-integration in two intervals as
follows:

1√
4π

〈
pf [1S0]

∣∣∣∣T Imp
lπ =0(q)

∣∣∣∣pi[
3P0]

〉

= −i√
(2π )32ωq

gA

2fπ

{∫ pc

0
dpp2

×
∫ +1

−1
dxR1S0, pf

(p)

[	l
l

·
(

−	q + ωq

mN

	p
)]

R3P0, pi
(l)

+
∫ �

pc

dpp2
∫ +1

−1
dxR1S0, pf

(p)

×
[	l

l
·
(

−	q + ωq

mN

	p
)]

R3P0, pi
(l)

}
. (27)

Here p = | 	p |, and x denotes the cosine of the angle between 	p
and 	q, i.e., 	p · 	q = pqx; 	l ≡ 	p + 	q/2, and the momentum pc

is chosen to lie between pf and pm, where pm is the solution
of the equation pi = √

p2
m + pmqx + q2/4 for a given value

of x. The merit of dividing the p-integration range in the two
intervals is that each p-space integral in Eq. (27) contains
only one principal-value part coming from either the initial or
the final NN relative-motion propagator. For instance, in the
second integral of Eq. (27) the final state radial wave function
takes the following simple form:

R1S0, pf
(p) = cos

[
δ
(1
S0

)]
mN

K1S0 (p, pf )

p2
f − p2

,

where pf (<pc) is the final-state on-shell momentum. We
evaluate the first term in Eq. (27) directly in p-space. The
second integral in Eq. (27) is calculated using a modified
Bessel transformation outlined in the appendix.
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Since the above-described method for carrying out the
r-space calculation of the one-body amplitude with Vlow-k is
somewhat involved, it seems safer to check its validity using
some pilot calculation. If in deriving T we assume 	q = 0 (the
“	q = 0 approximation”), the evaluation of the transition matrix
element is drastically simplified, and even with Vlow-k we
need not resort to the above lengthy prescription. We therefore
consider it informative to compare the results of calculations
with and without the “	q = 0 approximation.” This comparison
is given in Appendix B.

IV. NUMERICAL RESULTS

We now present the pp → ppπ0 cross sections calculated
with the use of Vlow-k [25] as well as typical bare NN
interactions. We consider here three examples of the bare
potential: Argonne V18 [23], Bonn-B [34], and CD-Bonn [33].
The results for Argonne V18 are taken from Ref. [7], while
those for Bonn-B and CD-Bonn have been newly calculated
in the present work. It is informative to study the individual
behavior of the impulse- and rescattering-term contributions
before discussing the behavior of their combined contributions.

A. Contribution of the impulse-approximation term

We first consider σ Imp, the total pp → ppπ0 cross sec-
tion calculated with only the impulse-approximation ampli-
tude retained; viz., in evaluating Eq. (20), we replace
〈pf [Lf Sf ]Jf || Tlπ (q) || pi[LiSi]Ji〉 with 〈pf [1S0] ||T Imp

lπ=0(q) |
| pi[3P0]〉. Figure 2 shows σ Imp as a function of ELab, the
incident proton energy in the laboratory system. We note that,
for the three representative bare NN-potentials, σ Imp varies up
to 40%. These variations are a measure of ambiguity inherent
in a calculation that uses a bare NN potential. The fact that the

FIG. 2. σ Imp, the pp → ppπ 0 cross section calculated with the
impulse term alone. The cross section is given in units of η2, where
the “velocity” η is defined as the maximum pion momentum at a
given laboratory energy ELab of the incident proton divided by the
pion mass, mπ = 135 MeV.

FIG. 3. σ Resc, the pp → ppπ 0 cross sections calculated with the
rescattering term alone. For the explanation of the quantity η, see the
caption of Fig. 1.

short-distance behavior of bare NN potentials is not controlled
with sufficient accuracy underlies this instability. Figure 2
indicates that the use of Vlow-k leads to a value of σ Imp that is
significantly smaller (by a factor of 3 or more) than those for
the bare potentials. A plausible explanation of this difference
is as follows. In the one-body transition diagram [Fig. 1(a)],
the large momentum transfer (p ∼ √

mπmN ) between the two
nucleons needs to be mediated by the NN potential.5 Now,
by construction, Vlow-k only contains momentum components
below � = 2 fm−1, whereas the bare potentials carry very high
momentum components (albeit in a rather arbitrary manner).
We can expect that the absence of those high-momentum
components in Vlow-k suppresses the contribution of the
one-body transition diagram.

As mentioned, we are using in the present work the Vlow-k
derived from the CD Bonn potential. It is known, however,
that, so long as one starts from a bare potential that belongs to
the category of modern high-precision phenomenological po-
tentials, the resulting Vlow-k is practically model-independent
in the sense that the half-on-shell K-matrices corresponding to
different bare potentials are nearly indistinguishable [25,26].
This means that σ Imp calculated with Vlow-k corresponding to
any realistic bare potential would lie close to the solid line in
Fig. 2. Thus the use of Vlow-k results in a significant reduction
of model dependence in our calculation.

B. Contribution of the rescattering term

Figure 3 gives σ Resc, the total pp → ppπ0 cross sec-
tion calculated with only the rescatttering term contri-
bution retained, i.e., in evaluating Eq. (20), we replace
〈pf [Lf Sf ]Jf || Tlπ (q) || pi[LiSi]Ji〉 with 〈pf [1S0] ||T Resc

lπ=0 (q) |

5As pointed out in Ref. [7], with the use of a bare NN potential, one
needs to take the upper limit of p-integration very high (up to p ∼
2 GeV/c) before the integral starts to show a sign of convergence for
both the impulse and rescattering amplitudes.
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| pi[3P0]〉. The figure indicates that, for the three different
choices of the bare NN-potential, σ Resc shows variations of
about 30%, while the use of Vlow-k leads to σ Resc that lies
more or less within the range of these variations. In the
rescattering diagram [Fig. 1(b)], a substantial fraction of the
momentum transfer between the two nucleons can be carried
by the exchanged pion, and therefore the NN interactions need
not directly support a large momentum transfer. This feature
explains why the change in σ Resc is less pronounced than σ Imp

as we switch from the bare potentials to Vlow-k . It is worth
reemphasizing here that, although σ Resc(Vlow-k) in Fig. 3 was
obtained with the Vlow-k derived from the CD-Bonn potential,
the result should be considered model-independent in the sense
discussed in the preceding subsection.

C. Combined contributions of the impulse-approximation
and rescattering terms

We now consider the total pp → ppπ0 cross section, σ ,
calculated with the full transition amplitude consisting of
the one-body and two-body terms; thus σ is obtained from
Eq. (20) with the transition amplitude given by Eqs. (14)–(16).
The results are shown in Fig. 4 for the three choices of the
bare potential and for Vlow-k , along with the experimental
values of σpp→ppπ0 . Figure 4 indicates that the use of Vlow-k
leads to a rather visible enhancement of σ over the results
obtained with the bare potentials. This enhancement is related
to the suppression of the impulse-approximation amplitude
corresponding to Vlow-k . As pointed out in the earlier χPT
calculations [4,5], the impulse and rescattering amplitudes
tend to interfere destructively, and in the case of a bare
NN interaction the cancellation between the two amplitudes
is quite substantial, leading to a significantly suppressed
value of σ as compared with the individual magnitudes of

FIG. 4. The total cross sections calculated from the full amplitude
consisting of the impulse and rescattering terms. The experimental
data points are taken from Refs. [14] (solid circles) and [15] (solid
squares). For the explanation of the quantity η, see the caption of
Fig. 1.

σ Imp and σ Resc. The smaller impulse-approximation amplitude
obtained with the use of Vlow-k somewhat diminishes the
extent of this destructive interference, resulting in a larger
value of σ . The enhancement of the cross section obtained
with Vlow-k brings the calculated values of σ closer to the
experimental values. It is to be noted, however, that the energy
dependence of σ obtained with Vlow-k differs significantly
from the experimentally observed behavior. We remark once
again that the σ (Vlow-k) shown in Fig. 4 should be essentially
independent of the choice of a bare potential from which Vlow-k
is derived (see Sec. IV A).

The above results correspond to the case where the four-
momentum k of the exchanged pion is specified according
to Eqs. (18) and (19). As discussed earlier, however, there
is an argument that favors FKA in a certain context [32]. It
therefore seems informative to repeat our calculation with the
use of FKA. The σ corresponding to this case is shown in
Fig. 5. We observe that the cross sections obtained in FKA are
smaller than those in Fig. 4, representing a larger deviation
from the experimental values, and that the energy dependence
of σ does not resemble the experimentally observed behavior.

However, we need to discuss here the dependence of our
results on the values of the LEC, c1, c2, and c3. The above
results were obtained for the “standard values” of c1, c2, and
c3 given in Eq. (4). These were originally deduced in Refs. [28]
and quoted in Ref. [7] as “parameter set I”. The allowed
ranges of these LECs were discussed in Refs. [7,29], where, in
addition to the parameter set I, two more sets were considered
as examples of other possible choices. For convenience, we
tabulate these three sets of parameters:

Parameter set I

c1 = −0.87 GeV−1, c2 = 3.34 GeV−1,
(28)

c3 = −5.25 GeV−1;

FIG. 5. The total cross sections calculated from the full amplitude
consisting of the impulse and rescattering terms evaluated in the
fixed kinematics approximation. The experimental data points are
taken from Refs. [14] (solid circles) and [15] (solid squares). For the
explanation of the quantity η, see the caption of Fig. 1.
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FIG. 6. The total cross section σ calculated with the full am-
plitude (including both the one-body and two-body amplitudes) for
Vlow-k . The results obtained with the parameter sets I and III are
compared. The experimental data points are taken from Refs. [14]
(solid circle) and [15] (solid square).

Parameter set II

c1 = −0.87 GeV−1, c2 = 4.5 GeV−1,
(29)

c3 = −5.25 GeV−1;

Parameter set III

c1 = −0.98 GeV−1, c2 = 3.34 GeV−1,
(30)

c3 = −5.25 GeV−1.

To get a measure of the sensitivity to the choice of the LECs,
we have repeated our calculation of σ for Vlow-k using the
parameter sets II and III. The results are shown in Fig. 6
together with those for the set I; in fact, since the set II gives
practically the same result as the set I, we give in the figure
only the results for the sets I and III. Figure 6 indicates that
the set III, which differs from the set I only by a modest
12% change in c1 = −0.98 GeV−1, enhances σ considerably,
bringing the calculated values of σ closer to the experimental
values. However, the energy dependence of the theoretical σ

remains dissimilar to the experimentally observed behavior.
Figures 4–6 seem to suggest that, in order to fully explain
the magnitude and incident-energy dependence of the pp →
ppπ0 cross sections near threshold, one probably needs to
include terms of chiral orders higher than considered here.
We remark in this connection that the possible importance
of two-pion exchange diagrams in a χPT calculation of the
pp → ppπ0 reaction was pointed out in Refs. [35,36].

V. DISCUSSION AND SUMMARY

We have carried out a hybrid χPT calculation of the
cross section σ for the s-wave pion production reaction,
pp → ppπ0, with the use of Vlow-k . Vlow-k is a low-energy
effective potential derived from a high-precision phenomeno-
logical potential (called a “bare” potential in our context)

by integrating out momentum components higher than � ∼
2 fm−1. The results obtained with Vlow-k are compared with
those obtained with the three representatives bare potentials,
ANL V18, Bonn-B and CD-Bonn. The principal features of
our calculation based on Vlow-k are summarized as follows:

(i) A hybrid χPT calculation based on a bare potential
has the “momentum mismatch” problem that the ini-
tial and final nuclear wave functions generated by the
bare potential involve very high momenta, whereas the
transition operators derived from χPT can be used only
within a limited momentum range (p ≤ 300 MeV). This
momentum mismatch problem is significantly mitigated
by the use of Vlow-k .

(ii) Reflecting the fact that the short-distance behavior of the
bare potential is not well controlled, the σ ’s calculated
with the above-mentioned three bare potentials exhibit
∼40% variance. This kind of model dependence practi-
cally disappears with the use of Vlow-k , since different
choices of a bare potential lead to practically equivalent
Vlow-k’s [26]. This feature allows us to better focus on
the question whether the transition operator for the pp →
ppπ0 reaction derived from χPT up to next-to-leading
order is adequate or not.

(iii) The calculation with Vlow-k enhances σ over the values
obtained with the bare potentials, and, with certain choices
of the relevant LECs, σ can come close to the experimental
values for some range of the incident energy. It is however
unlikely that the magnitude and energy dependence of
σ can be fully reproduced with the transition operators
considered in this work. Thus it seems necessary to
consider higher-order transition operators.

For formal consistency, it is desirable to go beyond the
hybrid χPT approach by employing NN potentials derived
from χPT. This is however a major task relegated to the future.
We remark in this connection that, for reactions that only
involve the rearrangement of the nucleons, there has been
much progress in constructing a framework that is formally
consistent with effective field theory [37,38].

A related issue is that we concentrated here on the
consequences of changing the nuclear wave functions from
those generated by the bare NN potentials to those generated by
Vlow-k , without taking account of the possible renormalization
of the transition operators due to the truncation of model
space.6 As is well known, a reduction of nuclear model space
in general entails a corresponding modification of operators
for the nuclear observables. Again, to fully address this issue,
we need to go beyond the hybrid χPT used in this work. In
the present study of exploratory nature, we have concentrated
on a hybrid χPT evaluation of the transition operators that
arise from the tree diagrams. At this chiral order there are
no loop corrections to the LECs (ci, i = 1, 2, 3) and the
other coefficients appearing in Lch such as, e.g., gA. We
may therefore expect that, although the scale of χPT (�χ ∼
1 GeV) is larger than the momentum cutoff scale (� ∼ 2 fm−1)

6For discussion of some formal aspects of the use of Vlow-k in hybrid
χPT, see Ref. [39].
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used in deriving Vlow-k , this difference does not lead to a
drastic renormalization of the transition operators. To turn
around the argument, the issue of the renormalization of the
transition operators is coupled with the treatment of higher
chiral-order terms, and these two aspects need to be addressed
simultaneously. This important question, however, is beyond
the scope of our present study, which is limited to the tree
diagrams.

As an immediate follow-up of the work described here,
we are studying [40] the expected important contributions
from the two-pion exchange diagrams [35,36] in a hybrid χPT
calculation with Vlow-k .
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APPENDIX A

With the use of Vlow-k , the numerical evaluation of the
second integral of the impulse amplitude [Eq. (27)] requires
the “modified” Bessel transformation,

R(LS)J,p0 (r) =
√

2

π
iL

∫ �

0
p2dp jL(pr)R(LS)J,p0 (p). (A1)

However, since
∫ �

0 jL(pr)jL(pr ′)p2dp �= π
2r2 δ(r − r ′), the

inverse transformation for Eq. (A1) gets complicated, which
prevents us from arriving at an r-space expression similar to
Eq. (26). We therefore replace R(LS)J,p0 (p) in Eq. (A1) with
the K-matrix expression Eq. (17) and then we use in Eq. (27)
the Bessel transformation

R(LS)J,p0 (k) =
√

2

π
i−L

∫ ∞

0
r2dr jL(kr)R(LS)J,p0 (r), (A2)

where k � � is understood. In our numerical evalua-
tion of the impulse amplitude with Vlow-k , only the

FIG. 7. σ Imp calculated for Vlow-k without or with the 	q = 0
approximation. The solid (dotted) line corresponds to the calculation
without (with) 	q = 0 approximation. For the explanation of the
quantity η, see the caption of Fig. 1.

initial wave function in the second integral of Eq. (27) is
evaluated using the above prescription.

APPENDIX B

To check the validity of the numerical techniques described
in the text, it is informative to compare the σ Imp calculated
for Vlow-k using the prescription explained in Sec. III B with
the σ Imp obtained in the “	q = 0 approximation,” wherein
the transition operators are derived under the simplifying
assumption that the outgoing pion has no momentum, 	q = 0.
(In evaluating the phase space, we do treat 	q as a variable.) In
the 	q = 0 approximation, the impulse term can be evaluated in
p-space in a straightforward manner without any complicated
handling of the principal value integrals. The results for the two
cases, with and without the 	q = 0 approximation, are shown
in Fig. 7, and we compare this figure with Fig. 2 in Ref. [7],
which presents σ Imp calculated for the bare potentials with
and without the 	q = 0 approximation. According to Fig. 2 in
Ref. [7], σ Imp obtained in the 	q = 0 approximation tends to
become somewhat larger than σ Imp obtained without using the
	q = 0 approximation. The fact that Fig. 7 exhibits a similar
tendency may be taken as an indication that the somewhat
lengthy procedure we use in handling the principal-value
integrals for the Vlow-k case is reliable.
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Phys. Lett. B358, 21 (1995).
[4] B.-Y. Park, F. Myhrer, J. R. Morones, T. Meissner, and

K. Kubodera, Phys. Rev. C 53, 1519 (1996).

[5] T. D. Cohen, J. L. Friar, G. A. Miller, and U. van Kolck, Phys.
Rev. C 53, 2661 (1996).

[6] U. van Kolck, G. A. Miller, and D. O. Riska, Phys. Lett. B388,
679 (1996).

[7] T. Sato, T.-S. H. Lee, F. Myhrer, and K. Kubodera, Phys. Rev. C
56, 1246 (1997).

[8] S. Ando, T.-S. Park, and D.-P. Min, Phys. Lett. B509, 253
(2001).

025202-9



Y. KIM, I. DANCHEV, K. KUBODERA, F. MYHRER, AND T. SATO PHYSICAL REVIEW C 73, 025202 (2006)

[9] C. Hanhart, J. Haidenbauer, O. Krehl, and J. Speth, Phys. Lett.
B444, 25 (1998).

[10] E. Gedalin, A. Moalem, and L. Razdolskaya, Phys. Rev. C 60,
031001(R) (1999).

[11] C. Hanhart, U. van Kolck, and G. A. Miller, Phys. Rev. Lett. 85,
2905 (2000).
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