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Starting from the QCD Hamiltonian, we derive a schematic Hamiltonian for low energy quark dynamics with
quarks restricted to the lowest s-level. The resulting eigenvalue problem can be solved analytically. Even though
the Hamiltonian exhibits explicit chiral symmetry the severe restriction of the number of degrees of freedom
breaks the pattern of chiral symmetry breaking for finite quark masses.
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I. INTRODUCTION

As significant advances have been made over the past few
years in lattice gauge QCD, progress in developing other,
approximate solutions to low energy QCD has not been as
impressive. Many models, such as the quark model, the bag
model, the flux tube model, and many others have been
utilized to capture selective feature of the theory. Traditional
approaches to develop models with a more rigorous relation to
QCD are based on the covariant representation of the theory.
Recently, however, fixed gauge approaches have also been
intensively pursued as they offer a bridge between QCD and
the more traditional (nonrelativistic) many-body problems in
nuclear and condensed-matter physics. The disadvantage of a
fixed gauge approach is, however, that it is not manifestly
Lorentz invariant and thus there are fewer restrictions on
the dynamical operators resulting in general in complicated
Hamiltonians. Fortunately experience gained form studies of
other many-body systems can be helpful in identifying approx-
imation schemes relevant for studies of particular aspects of the
dynamics. Attempts to enlighten the nonperturbative structure
of QCD using many-body techniques have recently been
undertaken by several authors [1,2] and even the confinement
scenario has been realized within the Coulomb gauge [2].

Though much progress has been made, schematic models
are still very useful to shed some light onto the nonperturbative
structure of QCD. For example, in Ref. [3] the gluon sector
was investigated restricting the quark-gluon dynamics to an
effective Hamiltonian for a fixed number of modes. The
gluon spectrum was adjusted to reproduce lattice gauge
calculations [4,5] and several other states have been predicted
and confirmed by lattice gauge calculations. In Ref. [6] a
Lipkin type model was introduced where the fermion sector
consisted of two levels, one at positive and the other at
negative energy, and a coupling to a boson level, occupied
by color-spin zero gluon pairs, was considered. Only meson
states were described. In Ref. [7] the model was extended
to include baryons. The nucleon resonances (especially the
Roper resonance) and � resonances were well described.
One drawback of these models, however is that they are
purely phenomenological and contain several parameters.
Our long term goal is to investigate classes of schematic

models which are derived from QCD. For example, one
expects the high energy quark and gluon modes be largely
irrelevant in determining the structure of the vacuum, and
lowest excitations, e.g., the pion or the ρ meson states, color
confinement, etc. One advantage of such schematic models
is that they are QCD and will depend on only one or few
well determined coupling constant(s). Preferably, such models
should allow analytic or alternatively nearly analytic solutions,
the latter requiring at most a numerical diagonalization.

Since it is a good practice to start from the simple cases first,
here we present exact solutions to a schematic model, which
has all the most drastic approximations. The goal is to identify
which of these play what role in the low energy dynamics.
Hopefully by systematically relaxing these approximations an
intuitive picture of QCD will emerge. The model presented
here is derived from QCD, under the restriction to SU(2)
in color and flavor. Only quarks and antiquarks will be
considered. The interaction via gluons will be simulated via an
effective, interaction reduced to the lowest momentum modes.
These modes will correspond to the quarks and antiquarks
restricted to be in a single spacial orbital level (S-state). Apart
from this, the model will depend only on one parameter related
to the energy of the color excitations thus ultimately irrelevant.

The paper is organized as follows. In Sec. II the derivation
of the schematic model, starting from QCD, is given and
the appropriate particle content is identified. In Sec. III the
eigenvalues and the basis states will be constructed and
the physical states are investigated in Sec. IV. In Sec. V
conclusions will be drawn and future developments discussed.

II. DERIVATION OF THE MODEL HAMILTONIAN

As discussed above, by choosing an appropriate gauge a
set of degrees of freedom can be selected which appears most
natural for description of certain features of QCD. In this case
physical (gauge independent) quantities may be simpler to
calculate when the “correct” gauge is chosen. For example, to
compute various deep inelastic amplitudes it is advantageous
to formulate QCD in the light-cone gauge, while to compute
low energy spectra Coulomb gauge seems to be the natural
choice. The Coulomb gauge has been extensively studied in
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Refs. [2,8]. The Gauss’s law can be used to eliminate the
longitudinal component of the electric field which leaves only
the transverse gluons representing generalized coordinates and
their conjugated momenta (given by the transverse electric
fields). Schematically the Coulomb gauge Hamiltonian has
the following structure [2,8]:

H = Kq + Kg + Vqqg + Vg3 + Vg4 + VC. (1)

Here Kq and Kg are the kinetic energies of the quarks,
antiquarks, and gluons, respectively, and are given by the
Dirac and Yang-Mills Hamiltonians. The next three terms have
polynomial dependence on the canonical degrees of freedom
and represent the local (anti)quark-gluon interaction, triple-
and quartic-gluon coupling, respectively. Finally VC is the
non-abelian generalization of the Coulomb potential. In an
abelian case, VC = α

∫
dxdyρ(x)|x − y|−1ρ(y) represents the

Coulomb energy between matter charges, which are described
by the charge density ρ(x). For simplicity we have already
dropped the Faddeev-Popov determinant, which as shown in
Ref. [9] can be accounted for by redefining the gluon wave
functional.

In a non-abelian theory like QCD the Coulomb potential
depends not only on the relative separation between charges
but also on the distribution of the gauge fields around them,

VC = −g2
∫

dxdyρa(x)

[
1

1 − λ†
1

∇2

1

1 − λ

]
ax;by

ρb(y). (2)

The matrix elements of 1 − λ are given by

[1 − λ]x,a;y,b = δabδ
3(x − y) − gfacb∇y

Ac(y)

|x − y| (3)

and the color-charge density is given by ρa(x) =
ψ†(x)T aψ(x) − fabcAb(x) · Ec(x). Aa,−Ea represent a =
1, . . . N2

c − 1 transverse gluon coordinates and conjugate
momenta, respectively, and T a = T a

ij , i, j = 1 . . . NC , and
fabc are the generators of the fundamental and adjoint
representations of the color SU(Nc) group. Thus, unlike QED,
in QCD to define the potential between a state containing
matter (quark, antiquark) sources it is necessary to know the
gluon wave functional of the state. It was shown in Ref. [10]
using a variational ansatz for the gluon wave functional of the
vacuum that VC leads to a confining interaction between matter
sources. The Coulomb potential has also been computed on
the lattice [11] and found to be confining at large distances.
The corresponding string tension was found to be larger
then the string tension of the static quark-antiquark potential
computed from the Wilson loop. This is to be expected since
the quark-antiquark source polarizes the vacuum and the gluon
distribution in a QCD eigenstate containing quark-antiquark
sources is different from that of the vacuum [12]. An attractive
interaction between quark-antiquark pairs destabilizes the
vacuum and leads to formation of quark-antiquark condensates
and chiral symmetry breaking [13]. The underlying mecha-
nism is analogous to BCS superconductivity.

In the following we want to investigate the minimal
requirements of a schematic model which yields the pattern
of chiral symmetry breaking consistent with that expected in
QCD. It should be noted, however that spontaneous symmetry
breaking formally happens only for systems with an infinite

number of degrees of freedom. Thus a schematic model with
a finite number of degrees of freedom is by definition in odds
with the expected pattern of symmetry breaking. A way out
is to consider a Hamiltonian with explicit symmetry breaking
terms,

H = H0 + m0H
′ (4)

with the symmetric limit corresponding to m0 → 0. If |n〉 label
degenerate vacuua of H0 with n representing transformation
properties under the symmetry group, then in the continuum
limit it is expected that off-diagonal matrix elements 〈n′|H |n〉
are much smaller (exponentially suppressed with the volume
of the system) compared to the diagonal matrix elements. Thus
even a very small perturbation H ′ will put the system in one
of the |n〉 states, rather then in a linear combination of these.
In our analysis of schematic models we will thus choose the
ground state to correspond to that of H ′ and then take the limit
m0 → 0.

Since the necessary condition for the condensate is ex-
istence of an attractive interaction, in the schematic model
considered here, we remove the gluon degrees of freedom (for
example by fixing the gluon wave functional), and approximate
the Coulomb kernel by its expectation value as in Refs. [10,11].
The system is then put in a finite volume, V with periodic
boundary condition to mimic translational invariance, and
the fermion fields are expanded in terms of the momentum
normal modes. In the minimal model considered here only
the zero-modes will be retained. In this case the interaction is
given by the spacial average of the Coulomb potential,

VC → 1

V

∫
V

dxVC(x) ≡ g

V . (5)

While the low momentum modes are expected to be rel-
evant for the nonperturbative aspects of hadron spectrum,
restriction to zero-modes is certainly a severe truncation of
the Fock space. However, by considering more momentum
modes it is in principle possible to systematically approach
the underlying Hamiltonian matrix. The main reason for
studying the zero-modes is that the corresponding Hamiltonian
can be diagonalized analytically and, as will be discussed
later, already reproduces some aspects of low energy QCD
dynamics.

Still in position space, Eq. (5) corresponds to a contact
interaction between quark charge densities,

H =
∫

dxψ†(x)[−i �α · �∇ + βm0]ψ(x)

+ g

∫
dxρa(x)ρa(x), (6)

with the color charge density originating from quarks only,
ρa(x) = ψ†(x)T aψ(x), and the coupling g which has mass
dimension −2 will be determined later. The quark fields ψ(x)
represent NC × Nf degrees of freedom. The generators of the
flavor axial rotations are

Qα
5 =

∫
dxψ†(x)γ5T

αψ(x), (7)

with T α being the generators of flavor, SU(Nf ). In the limit
of vanishing quark mass, m0 = 0, the Hamiltonian is invariant
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under flavor-axial rotations,

lim
m0=0

[
Qα

5 ,H
] = 0, (8)

while for a finite bare mass[
Qα

5 ,H
] = −2m0P

α
5 , (9)

with

P α
5 =

∫
dxψ†(x)γ 0γ5T

αψ(x). (10)

To obtain the particle content of the spectrum of this Hamil-
tonian we first rewrite it in a basis of massive quarks and
anti-quarks defined by the operators b(cf λk) and d(cf λk),
respectively with c, f, λ, k referring to color, flavor, spin
component and momentum, and related to the fields in the
standard way

ψ(x) =
∑

cf λ=±1/2

∫
dk

(2π )3
eix·k[u(λ, k)b(cf λk)

+ v(λ,−k)d†(cf λ − k)]. (11)

Here u and v are the eigenstates of the free Dirac Hamiltonian
describing a fermion of mass m, which is not yet specified but
is anticipated to be the constituent quark mass. In terms of
these quark operators the Hamiltonian is given by

H = Hq + Hqq̄ + V. (12)

Here Hq contains operators proportional to b†b and d†d,Hqq̄

contains pair creation and annihilation operators proportional
to b†d† and db, and v contains normal-ordered four-fermion
operators. Since we are interested in studying the low energy
phenomena we make the following simplification. First we
confine quarks to a finite box of volume V . The momentum
states become discrete, with k → n and k = 2πn/V1/3, so that∫

dk
(2π )3

→ 1

V
∑

n

. (13)

In the finite volume it is also useful to rescale the particle
operators,

b(cf λk) → b̃(cf λn), b(cf λk) = V1/2b̃(cf λk), (14)

and the same of the antiquark operator d. The new operator
are dimensionless and satisfy

{b̃(cf λn), b̃†(c′f ′λ′n′)} = δcc′δff ′δλλ′δnn′ . (15)

In the following we will rename b̃, d̃ back as b and d,
respectively. The final approximation is to retain only the
lowest momentum states, e.g., n = 0. Thus from now on
we drop the momentum index on the quark operators. The
next level of approximations would include the P- and higher
waves. Within this approximation the Hamiltonian becomes

H =
∑

1

(E + m0)b†1b1 +
∑

1

(E + m0)d†
1d1

−
∑
1234

Vqq(1234)b†1b
†
2b3b4 −

∑
1234

Vq̄q̄(1234)d†
1d

†
2d3d4

− 2
∑
1234

Vqq̄ (1234)b†1d
†
2d3b4 (16)

with

E = gCF

V

nmax∑
n

δn0 = gCF

V , (17)

and

Vqq(1234) = g

V T a
c1c3

T a
c2c4

[
δf1f3δλ1λ3

][
δf2f4δλ2λ4

]
Vq̄q̄(1234) = g

V T a
c3c1

T a
c4c2

[
δf1f3δλ1λ3

][
δf2f4δλ2λ4

]
(18)

Wqq̄ (1234) = g

V T a
c1c4

T a
c3c2

[
δf1f4δλ1λ4

][
δf2f3δλ2λ3

]
.

Here 1 = (f1, c1, λ1), etc., denote all remaining (discrete)
quantum numbers of the particle labeled by 1; c1 denotes
color, f1 flavor and λ1 spin projection. It is worth noting at
this point that with S-orbitals only the pair creation part of
the Hamiltonian vanishes. Scalar quark-antiquark pairs have
quarks in relative spin-one coupled to one unit of orbital
angular momentum which vanishes for S-waves. Within these
approximations the flavor axial charge generators become

Qα
5 =

∑
12

(
b
†
1Q

α
12d

†
2 + d1Q

α
12b2

)
, (19)

with

Qα
12 = T α

f1f2
δc1c2δλ1λ2 , (20)

and the pseudo-scalar charges P α
5 become

P α
5 =

∑
12

(
b
†
1Q

α
12d

†
2 − d1Q

α
12b2

)
. (21)

We also note that[
P a

5 ,H
] = −2m0Q

a
5, (22)

is still satisfied. For completeness, the vector flavor charges
V α ,

V α =
∫

dxψ†(x)T αψ(x), (23)

become

V α =
∑

12

(
b
†
1V

α
12b2 − d

†
1V

α
12d2

)
, (24)

with

V α
12 = T α

f1f2
δc1c2δλ1λ2 . (25)

The Hamiltonian contains four parts. A noninteraction
part, quark-quark, and antiquark-antiquark potentials and a
quark-antiquark potential. We recall some basic properties of
the particle operators. In the following we concentrate on
the case of two colors and two flavors. Generalization to
arbitrary NC and Nf is straightforward. The creation and
annihilation operators carry color, c, flavor, f and spin, λ

indices and these all range from − 1
2 to + 1

2 . We distinguish now
between co- and contravariant indices in order to denote the
different transformation properties of the fermion creation and
annihilation operators. We denote the creation and annihilation
operators for quarks by b†α and bα , respectively, where α is a
shorthand notation for (cf λ). Subsequently representation of
SU(2)-color, flavor, spin will be similarly denoted by three
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numbers (ScSf S), where Sc is the color angular momentum
and similar for flavor, Sf , and spin, S. Similarly for the
antiquark operators we have d†α for the creation and dα for the
annihilation operators. The anticommutation relations are now
given by {bβ, b†α} = {dβ, d†α} = δα

β . The indices are lowered
according to the following convention. If aα denotes any of the
four operators (b†, b, d, or d†) with an upper index, lowering
this index corresponds to

acf λ = (−1)
1
2 −c(−1)

1
2 −f (−1)

1
2 −λa−c−f −λ. (26)

We can now rewrite the Hamiltonian. The noninteracting part
is trivial and given by

Hq = (E + m0)(n̂q + n̂q̄) (27)

with n̂q = b†αbα and n̂q̄ = d†αdα being the quark and antiquark
number operators, respectively. The quark-quark interaction is
given by

Vqq = −
∑

c′sf ′sλ′s

g

V T a
c1c3

T a
c2c4

[
δf1f3

][
δf2f4

]
× b

†
c1f1λ1

b
†
c2f2λ2

bc3f3λ3bc4f4λ4 . (28)

Using

T a
c1c3

T a
c2c4

= 1

2

(
δc1c4δc3c2 − 1

2
δc1c3δc2c4

)
(29)

and joining operators with common indices through the
anticommutation relations, we obtain in an intermediate step

Vqq = − 3g

4V n̂q − g

4V n̂2
q

+ g

2V
∑
c1c2


∑

f1λ1

b
†
c1f1λ1

bc2f1λ1





∑

f2λ2

b
†
c2f2λ2

bc1f2λ2


 .

(30)

Finally using Eq. (26) and coupling to definite color, flavor
and spin, we arrive at

Vqq = −3

4

g

V n̂q − 2g

V
√

3[[b† ⊗ b]100 ⊗ [b† ⊗ b]100]000
000,

(31)

where [A
1 ⊗ B
2 ]
µ with 
 = ScSf S and µ = cf λ denotes
the coupling of A and B in color, flavor and spin,

[A
1 ⊗ B
2 ]
µ =
∑
µ1µ2

〈
1µ1, 
2µ2|
µ〉A
1
µ1

B
2
µ2

, (32)

and 〈
1µ1, 
2µ2|
µ〉 is the product of three Clebsch-Gordan
coefficients in color, flavor, and spin.

Note, that the quadratic dependence on the quark number
operator is canceled and only the linear dependence remains.
The last term in Eq. (31) represents the color angular
momentum squared, whose components in spherical basis are
given by

Sc
q,m =

√
2[b† ⊗ b]100

m00
(33)

Sc
q̄,m = −

√
2[d† ⊗ d]100

m00,

for the quark and antiquark part, respectively. With this, the
final form of Vqq is

Vqq = −3

4

g

V n̂q + g

V
(
Sc

q · Sc
q

)
, (34)

and we used [Sc
q ⊗ Sc

q] = −(Sc
q · Sc

q). In a complete analogy
one can show that the antiquark-antiquark part is found to be

Vq̄q̄ = −3

4

g

V n̂q̄ + g

V
(
Sc

q̄ · Sc
q̄

)
. (35)

And finally for the quark-antiquark interaction is given by

Vqq̄ = 2g

V
(
Sc

q · Sc
q̄

)
. (36)

Summing all terms leaves us with a surprisingly simple
Hamiltonian whose interactions are easily identified,

H =
(
E + m0 − 3

4

g

V

)
(n̂q + n̂q̄) + g

V S2
c, (37)

where S2
c = (Sc

q + Sc
q̄)2 is the total color angular momentum

squared.

III. THE SPECTRUM

The basis used to diagonalize H is determined by the
number of degrees of freedom each quark (antiquark) carries.
There are eight degrees of freedom: two spin times two flavor
and times two color components. The Fock space is thus finite
and contains maximally eight quarks and eight antiquarks. The
group structure for each sector is given by [14]

U (8) ⊃ Uc(2) ⊗ Uf S(4)

[1nq ] [h1h2] [2h2 1h1−h2 ],

Uf S(4) ⊃ Uf (2) ⊗US(2)

[2h2 1h1−h2 ] Sf S. (38)

The notation [p1p2 . . . pn] refers to the Young diagrams [14],
which describes the symmetry under permutation of a given
irreducible representation (irrep) of a unitary group. In Eq. (38)
we have h1 + h2 = nq and the reduction of the flavor-spin
group Uf S(4) is given in Ref. [14]. In Table I we give a list of
the color-flavor-spin content as a result of Eq. (38).

We now consider meson-like excitations, i.e., the Fock
sector with equal number of quarks and antiquarks. For this
case, the basis can be labeled by the following set of quantum
numbers,

|nq̄ = nq ;
(
Sc

q̄ , S
c
q

)
Scmc;

(
S

f
q̄ , Sf

q

)
Sf mf ; (Sq̄, Sq )Sm〉, (39)

where mc,mf and m refer to the magnetic color, flavor,
and spin projection. The eigenvalue of the Hamiltonian with
respect to such states is given by

E =
(
E + m0 − 3

4

g

V

)
(nq + nq̄) + g

V Sc(Sc + 1). (40)

For physical states with no net color only the first term
contributes, and using Eq. (17) we find E = m0 and the
spectrum is degenerate with respect to flavor and spin.
Color excitations are separated by a finite energy gap which
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is an artifact of the contact approximation for the quark
interactions. In full QCD the splitting is expected to be infinite
as the potential between the quarks grows with the relative
separation. Nevertheless, one can investigate the structure of
colored excitations in the model, which might play a role in
models like the quark-gluon glass condensate [15], important
at high densities.

The energy solutions are simple and degenerate for all states
with the same color. At a first glance one might think that the
physical states should be a certain sum over all basis states
[Eq. (39)] with the same color. As a consequence, in our
schematic model one would look for adequate superposition
of the degenerate states in order to construct, e.g., the physical
vacuum state. One criterion used can be to reproduce the
quark condensate (see next section). However, as we will show
further below, arguments of coninuity require that the lowest
state has to be the vacuum state |0〉. To get more physical
solutions, it will be necessary to introduce an interaction which
lifts the large degeneracy of the Hamiltonian.

IV. PHYSICAL STATES AND THE CHIRAL LIMIT

In the chiral limit, m0 = 0 all color singlet states have zero
energy. The vacuum state should be identified as a state with
all scalar quantum numbers. Since the single quark-antiquark
pair in the S-wave has pseudoscalar quantum numbers, the
vacuum will be given by a superposition of states with an even
number of quark-antiquark pairs with total color, flavor and
spin zero. The most general (unnormalized) vacuum state can
be schematically written as

|z〉 = |0〉 +
4∑

n=1

zn(b†b†d†d†)n|0〉. (41)

Since in the chiral limit all JPC = 0++ states are degenerate
in this model we cannot distinguish between the true vacuum
and, for example the σ meson. Thus we take for the vacuum
a state given by the sum of the perturbative vacuum |0〉 and
the state with the lowest number (two) of the quark-antiquark
pairs coupled to definite color, flavor and spin. Each pair can
be written in the following equivalent form:

|ScSf S〉 = 1√
2

[[b† ⊗ b†]ScSf S ⊗ [d† ⊗ d†]ScSf S]000
000|0〉. (42)

Because the two-quark state has to be antisymmetric (the
same for the antiquarks) the only allowed color, flavor, and
spin values are (ScSf S) = (000), (110), (101), and (011). The
coupling of first two quarks and then two antiquarks to a total
color, flavor, and spin zero can be reexpressed easily in terms
of the coupling of two quark-antiquark pairs as follows:

[[b† ⊗ b†]ScSf S ⊗ [d† ⊗ d†]ScSf S]000
000 = − ∑

S ′
cS

′
f S ′


1
2

1
2 Sc

1
2

1
2 Sc

S ′
c S ′

c 0







1
2

1
2 Sf

1
2

1
2 Sf

S ′
f S ′

f 0







1
2

1
2 S

1
2

1
2 S

S ′ S ′ 0




× [[b† ⊗ d†]S
′
cS

′
f S ′ ⊗ [b† ⊗ d†]S

′
cS

′
f S ′

]000
000, (43)

where the symbols {. . .} refer to the usual 9-j symbols [16].
For the vacuum we thus take the normalized state in the form

|z0z1〉 = 1√
1 + 2ρ2


|0〉 +

∑
Sc

zSc

∑
Sf S

|ScSf S〉

 , (44)

with |ScSf S〉 given in Eq. (42). Here we assumed that due
to the degeneracy of the states with the same color, there
is no dependence of the trial state parameters zSc

, Sc = 0, 1
on flavor and spin. In general the z-values are complex and
can be written as zSc

= ρSc
eiφSc , with ρ0 = ρ cos(φ) and ρ1 =

ρ sin(φ), and ρ = |z0|2 + |z1|2 being the total radius. In such
a vacuum expectation values of n̂q and n̂q̄ , which determine
the quark condensate, are given by

〈z0z1|n̂q |z0z1〉 = 〈z0z1|n̂q̄ |z0z1〉 = 4ρ2

1 + 2ρ2
. (45)

In the limit zSc
= 0, n̂q = n̂q̄ = 0 as expected for the pertur-

bative vacuum. For large values of ρ, each expectation value
approaches 2, as it has to be, because then the main contribution
comes from the two quark-antiquark pairs. Using Eq. (45) it
is possible to define the collective potential as the expectation
value of the Hamiltonian, the result is

V (z0, z1) = 〈z0, z1|H |z0, z1〉 =
(
E − 3

4

g

V

)
8ρ2

1 + 2ρ2
, (46)

which corresponds near ρ = 0 to a harmonic oscillator and
the potential saturates for ρ → ∞ at 4(E − 3

4
g

V
). The use of

such trial states played primordial role in nuclear physics to
help understand the structure of a complicated many body
problem [18] and might be here also of great value when a
more sofisticated Hamiltonian is used. Because, as we showed
above, the factor which contains E is zero one obtains a flat
potential which reflects the complete degeneracy of color zero
states. As already mentioned, the z parameters are complex, but
the expectation value above depends only on the total radius
ρ. This implies that equipotential lines flow along constant ρ

with arbitrary angles φSc
and

√
ρ2

0 + ρ2
1 = ρ.

To further determine parameters of the vacuum one
can consider the quark condensate 〈q̄q〉 = 〈ūu〉 = 〈d̄d〉 =
〈ψ̄(0)ψ(0)〉/2 ∼ −(225MeV)3 ∼ −1 fm−3 [17],

〈q̄q〉 = − 1

V

[
NCNS − 1

2
(〈n̂q〉 + 〈n̂q̄〉)

]
= − 4

V
1 + ρ2

1 + 2ρ2
.

(47)

It should be noticed that the state |0〉 is not the zero-particle
state of perturbation theory, (g = 0) of mass-less fermions (or
in general with mass m0). Instead, the fermions have effective,
constituent masses, given by E [cf. Eq. (16)]. It is therefore
not surprising that there is a non-vanishing quark condensate
in the state |0〉. One might be tempted to use this to determine
ρ for given volume (e.g., taking as a volume of sphere of
radius of 0.8 fm would yield ρ = 0.67). This is however not
correct since there are further constraints from the spontaneous
realization of chiral symmetry breaking. As expected (see
discussion in Sec. II) with a finite number of degrees of
freedom, in the chiral limit, the ground state is degenerate, and
in general given by a coherent sum of states as in Eq. (41). In the
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continuum limit some of these will move to the continuum part
of the spectrum, and would be identified with physical states
(with scalar quantum numbers); other will stay in the discrete
part of the spectrum and will represent equivalent vacuua. The
Hamiltonian in these vacuua is expected to be diagonal (in the
infinite volume limit) thus a small symmetry breaking term
will break the degeneracy and select a single vacuum state.
Thus an alternative way to identify the physical ground state,
which is in accord with expectations from the continuum limit,
is to study the spectrum for m0 = 0 and define the ground state
as the lowest energy state when m0 → 0. Away from the chiral
limit, m0 = 0 each additional quark-antiquark pair raises the
energy by 2m0. Thus, for m0 = 0 the vacuum has to be given
by the single state |0〉, so ρ = 0. The quark condensate is then
entirely determined by the volume and the total number of
degrees of freedom,

V = −NCNS〈q̄q〉−1 = 2.7 fm3. (48)

As expected for spontaneous breaking the generators of chiral
symmetry, Eq. (19), which can be also written as

Q5
f =

√
NCNf NS

2

(
[b† ⊗ d†]010

0f 0 + [d ⊗ b]010
0f 0

)
, (49)

do not annihilate the vacuum, instead they mix the vacuum
with the single pion state,

〈π, f ′|Q5
f |0〉 = δf ′f fπmπV (50)

with fπ = 93 MeV being the pion decay constant. Chiral
symmetry, and relativistic normalization of single particle
states,

〈π, f ′|πf 〉 = 2mπV, (51)

implies that in the chiral limit m0 → 0,mπ = O(m2
0) and fπ =

O(1). Since pion has JPC = 0−+ quantum numbers and is
generated by the axial rotation from the vacuum the most
general (unnormalized) pion state is given by

|π〉 ∼ b†d†

[
|0〉 +

∑
n=1,4

wn(b†b†d†d†)n|0〉
]

. (52)

Mixing with the vacuum through the axial charge, as given by
Eq. (50), constraints the quark-antiquark component to

|π, f 〉 = fπmπV
2√

NCNf NS

× [b† ⊗ d†]010
0f 0

(
|0〉 +

4∑
n=1

wn(b†b†d†d†)n|0〉
)

. (53)

However, all states in the expansion in Eq. (53) are
eigenstates of the Hamiltonian with increasing eigenvalues
and physical states cannot be given such a linear combination.
We thus conclude that the single pion state should be identified
with the valence component alone,

|π, f 〉 = fπmπV
2√

NCNf NS

[b† ⊗ d†]010
0f 0|0〉. (54)

TABLE I. Color-flavor-spin content as a function on the number
nq of quarks. The list is equivalent for the antiquarks.

nq [h1h2] Sc

∑
(Sf , S)

0 [0] 0 (0,0)

1 [1] 1
2 ( 1

2 , 1
2 )

2 [2] 0 (0,0) + (1,1)
2 [12] 1 (1,0) + (0,1)

3 [21] 1
2 ( 1

2 , 1
2 ) + ( 3

2 , 1
2 ) + ( 1

2 , 3
2 )

3 [13] 3
2 ( 1

2 , 1
2 )

4 [22] 0 (0,0) + (1,1) + (2,0) + (0,2)
4 [212] 1 (1,0) + (0,1) + (1,1)
4 [14] 2 (0,0)

5 [221] 1
2 ( 1

2 , 1
2 ) + ( 3

2 , 1
2 ) + ( 1

2 , 3
2 )

5 [213] 3
2 ( 1

2 , 1
2 )

6 [23] 0 (0,0) + (1,1)
6 [2212] 1 (1,0) + (0,1)

7 [231] 1
2 ( 1

2 , 1
2 )

8 [24] 0 (0,0)

With the pion mass related to the bare quark mass by mπ =
2m0. The normalization condition of Eq. (51) then leads to

fπ =
√

NCNf NS

2mπV
=

√
−Nf 〈q̄q〉

2mπ

= 200
√

Nf MeV.

The identification of other physical states with the spectrum
given in Table I is now straightforward. Since the number of
quarks and antiquarks are well defined and each additional
(anti)quark raises energy by m0 the spectrum of single meson
and baryon states would correspond to stated with a single
qq̄ pair and three quarks, respectively. States with other
numbers of quarks or antiquark should be identified with
multiparticle states e.g., qqqqq̄ with a meson-baryon state.
Colored states are split from the physical color singlet states
by gSc(Sc + 1)/V where Sc is a half-integer or integer total
color for an odd or even number of quarks and antiquarks in
the state, respectively, and g is the effective strength of the
colored interactions. We thus see that it is now possible to
take the limit g → ∞ which is expected for the zero-mode
component of a confining interactions without affecting the
physical spectrum.

V. SUMMARY

Models play an important role in understanding compli-
cated dynamical structures. Our goal here was not to build
the most sophisticated model of low energy QCD, but on
the contrary to identify the most basic starting point for such
an endeavor. Starting from the underlying QCD interactions
in the Coulomb gauge we have defined an approximations
scheme which gave us a model for the interactions of the quark
zero modes. The model is exactly solvable and physical states
can be identified with using the symmetry patterns observed
in the physical spectrum. In particular spontaneous breaking
of chiral symmetry enables to identify the vacuum state and
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the single pion state and conservation of the particle number
by our model Hamiltonian then leads to mapping between
the representations of the underlying U (NC × Nf × NS)
symmetry and the physical states. We worked with the NC = 2
number of colors, but extension to NC = 3 is straightforward
since the coupling and recoupling methods in SU(2) can be
readily extended to SU(3) (see, for example the appendix of
Ref. [20]). For the basis, instead of U (8) we would start from
U (12) if flavor is still SU(2) or U (18) if flavor is also SU(3).
The reductions are known (see Refs. [6,7,21]). In the model we
find splitting between physical states to be proportional to the
total bare mass of the quarks and anti-quarks independently
of the strength of the color or confining interaction. The quark
basis itself, however, corresponds to constituent quarks with
constituent masses generated from self-interactions [13]. The
spectrum of physical states is rather trivial since the interaction
is independent from spin, flavor and, for zero-modes, also
spacial degrees of freedom. The color interaction is responsible
for lifting the energy of the color nonsinglet states. In the
continuum limit this splitting is expected to be infinite (since
the spacial average of a long-ranged confining interaction
diverges) thus the model naturally removes color non-singlet
states from the physical spectrum. This aspect of many-body
dynamics is typically missing in quark potential models [22].
The model respects the pattern of chiral symmetry breaking
in the sense that the vacuum can be selected as a state that
is noninvariant under chiral rotations. However, the chiral
behavior of the physical constants, e.g., the pion mass and
the pion decay constant is not as expected. This is because in

the model with a finite number of degrees of freedom there is
no spontaneous chiral symmetry breaking in the usual sense,
with an infinite number of degenerate vacuua. If we identify
the pion with the lowest energy state with pseudosclar quantum
numbers, its mass turns out to be a linear and not quadratic
function of the symmetry breaking parameter, m0, and the
decay constant depends on m0. This is an expected behavior
for large values of m0, or the nonrelativistic quark model.
It is not surprising that our schematic model away from the
exact chiral limit of m0 = 0 immediately follows the pattern
of a heavy quark theory since the model conserves the quark
number. This in turn is the consequence of reduction of the
quark degrees of freedom. With the gauge degrees of freedom
integrated out and quark Fock space reduced to the zero modes
there are no pair production interactions in the Coulomb gauge.
This suggests that by extending the Fock space to include a
limited number of nonzero momentum modes and/or adding
gluon degrees of freedom it may be possible to address the low
energy phenomena in a model with a finite number of degrees
of freedom.
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