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Global Dirac phenomenology for proton elastic scattering from 4He
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In the past, Dirac phenomenology has been used to determine global proton-nucleus optical potentials for
a number of targets. 4He has not been previously included in these analyses. This paper addresses p + 4He
using medium-energy proton elastic scattering data with proton kinetic energies in the laboratory from 156 to
1728 MeV. The characteristic features of the optical potentials for p + 4He are shown as well as the the predictive
power of the global approach for this nucleus.
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I. INTRODUCTION

For several years Dirac phenomenology has been used to
determine global proton-nucleus optical potentials that span
energies from 20 to 1040 MeV [1,2]. Previously, 4He has
been left out, so here we present a global optical potential
for p + 4He in the energy range from 156 to 1728 MeV.
The scalar-vector (SV) model of Dirac phenomenology used
in Hama et al. [1] and Cooper et al. [2] is used in this
paper. The Coulomb potential, Vc, is determined from the
empirical charge distribution [3]. The reason why we did
not produce a fit for 4He in the past was because it was a
surprisingly difficult task. However, we have now found a
fit that we believe to be respectable enough to share, so we
are presenting it here. The parametrization of the fit looks a
little unusual because of the way we have had to constrain the
parameters.

II. PARAMETRIZING THE POTENTIALS

We parametrize vector and scalar potentials that go into a
Dirac equation, which is then solved for scattering solutions.
The Dirac equation is

{α · p + β[m + Us(r)] + [U0(r) + Vc(r)]}�(r) = E�(r).

(1)

The scalar and vector potentials are both parametrized as

Uj (r, E) = Vj (E)fj (r, E) + iWj (E)gj (r, E), (2)

where the subscript j can be s for scalar or 0 for vector,
respectively. Because we consider only proton data we did
not include a term dependent on isospin, which should be
small for 4He. The geometries were taken to be symmetrized
Woods-Saxon (SWS) shapes with a fourth-order polynomial

in the numerator:

fj and gj =
{[

1 + exp
[r − R(E)]

a(E)

]−1

×
[

1 + exp
−[r + R(E)]

a(E)

]−1
}

×
[

1 + w1r2

R2(E)
+ w2r4

R4(E)

]
. (3)

As in the work of Hama et al. [1] and Cooper et al. [2] the
Cooper-Jennings recoil factors [4] were employed for both
scalar and vector potentials, including Vc. The two factors
Rs and Rv multiply the Lorentz scalar and vector optical
potentials, respectively, and can be thought of as a relativistic
version of a reduced mass. The factor Rs is

Rs = (target mass)/
√

s, (4)

where
√

s is the total c.m. energy of p-A system. The
corresponding recoil factor for the vector potential is

Rv = (total c.m. energy of target)/
√

s. (5)

These factors multiply the scalar Us and vector U0 + Vc

potentials in the Dirac equation.
Recoil effects are presumably large in 4He and are ac-

counted for by these factors. However, since we search only on
the strengths of the potentials in this approach, their presence
here is more of a formality.

We were unable to obtain satisfactory fits to the data using a
simple Woods-Saxon form, or SWS form. This was discussed
in the case of a single energy fit at 500 MeV by Moss et al. [5]
and Greben and Gourishankar [6]. The simplest way to go
beyond this form is to put a polynomial in the numerator; we
found that going to fourth order gave us sufficient flexibility.
We did not find it necessary to introduce an energy dependence
to the two coefficients w1 and w2.
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The expression for the potential used here has several
parameters that themselves are parametrized as functions of
energy. Because we expect them to be changing less quickly
with energy at higher energies than at lower energies, we
parametrize our strength and geometry parameters in terms
of the variable x = 1000/E

p
c.m., where E

p
c.m. is the proton’s

total relativistic energy (mass energy + kinetic) in the center
of momentum frame. This is the same approach used in
Refs. [1,2]. In practice we found that powers up to x3 were
adequate for this energy range.

III. DETAILS OF PRODUCING THE FIT

We initially hoped that a simple approach that works on
heavier nuclei would swiftly deliver a good optical potential
for 4He. However, we found that if left unguided the fitting
procedure produced potentials that had large imaginary parts
(several hundred MeV). This feature was quite robust, but at
the present time we can think of no physical mechanism to
explain it. We suspect it to be an artifact of the data used.
The small size of the nucleus means that the differential cross
section data have less structure than would be so for a larger
nucleus. The data set is less extensive than that of heavier
nuclei, it tends to be older, and there are fewer data points with
larger error bars and there is not so much spin observable data.

Perhaps as a consequence of these three points, we found
that fitting the data is no guarantee of reasonable looking
potentials or of reasonable looking reaction cross sections.
Moreover, we found that fitting σ (θ ) and Ay data did not give
an automatic fit to the other spin observables (the R parameter

FIG. 1. The potentials as a function of energy. The solid line is
at 200 MeV, the dashed line is at 350 MeV, the dash-dot line is at
800 MeV, the dotted line is at 1240 MeV, and the spaced-out dashed
line is at 1728 MeV.

at 500 MeV [6] in this case). This contrasts with our experience
on heavier nuclei.

To simply take each parameter to be a cubic function
of x and allow the computer to go to work was disastrous.
The potentials produced seemed quite unphysical. To obtain
the fit was a tedious process of trial-and-error constraining of
the potentials. In the end we found it necessary to impose some
constraints.

We constrained the imaginary scalar potential to be

WS(r, E) = 125x0.25. (6)

We also constrained the difference between the real scalar and
vector potentials to be

DR = V0 − VS = x0.8(c1 + c2x), (7)

where c1 and c2 are adjusted parameters, and also constrained
w1 = 0.25 and w2 = 0 for the imaginary scalar potential. The
sum of the real scalar and vector potentials, SR = V0 + VS ,
is simply taken to be a cubic function of x. These constraints
then gave us potentials that resembled those we would expect
from the impulse approximation, or those we got while doing
unconstrained fits on heavier nuclei. Specifically, it gave us
imaginary potentials between 50 and 100 MeV in strength,
consistent with those we had previously obtained in fits to
other nuclei where we did not need to impose this constraint
by hand. This constraint also allowed “reasonable” reaction
cross section predictions, as opposed to reaction cross sections
that sometimes even went negative at the lowest energy with
the unconstrained fits.

FIG. 2. The results for p + 4He at 200 MeV. The data are from
Ref. [5].
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FIG. 3. The results for p + 4He at 500 MeV. The data are from
Ref. [6].

FIG. 4. The results for p + 4He at 800 MeV. The data are from
Refs. [10–12].

FIG. 5. The results for p + 4He at 1728 MeV. The data are from
Refs. [11,12].

FIG. 6. The predictions for p + 4He at 788 MeV. The data are
from Ref. [13].
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TABLE I. Potential parameters of best fit.

x = 1000/Ep
c.m.

SR = −978.5503603 + 4316.904390x − 6608.849154x2 + 3231.566144x3

DR = −875.2315053x0.8 + 2232.447037x1.8

Real Vector
V0 = (SR + DR)/2
R = 8.617616893 − 29.84965759x + 37.88503845x2 − 16.39919464x3

a = 0.786091018 − 2.076885320x + 3.035244766x2 − 1.435519343x3

w1 = 0.9967839657
w2 = −0.03090937349

Imag. Vector
W0 = 50.79424956 − 579.6270433x + 380.1128566x2 + 54.69695846x3

R = 11.70038533 − 46.18432913x + 63.90965243x2 − 28.86857144x3

a = −3.646922078 + 16.51799610x − 23.01720173x2 + 10.53173074x3

w1 = 0.1331521091
w2 = 0.2842912264

Real Scalar
Vs = (SR − DR)/2
R = 2.927371087 − 6.267362964x + 5.421153798x2 − 1.538166556x3

a = 1.203172799 − 3.820557035x + 5.233705616x2 − 2.406689149x3

w1 = 0.4205562336
w2 = 0.4074032181

Imag. Scalar
Ws = 125x0.25

R = 14.99124087 − 60.15737738x + 83.72437219x2 − 38.06370158x3

a = −7.959644910 + 34.05359443x − 46.26205326x2 + 20.64969278x3

w1 = 0.25
w2 = 0.0

The rest of the parameters were then expressed as simple
polynomials in x. Note that in this paper we are fitting a total
number of 584 data points with 48 parameters. With fewer
parameters we could not get a good description of the data; with
additional parameters there were too many local chi-squared
minima and the fit tended to produce unphysical potentials.
Even with the constraints described here, the chi-squared space
still has many minima. The technique that seemed the most
effective in finding a good minimum was to start with reason-
able looking parameters and obtain a fit using the Marquadt
algorithm [7]. Then take the starting values and randomly
multiply them with random numbers near 1 and re fit the data.
Often the best fit would emerge after 50 or 100 trials, which
is a testament to the nonlinear nature of this fitting procedure.

The elastic data itself were edited for the purpose of this
fit. At larger angles nonlocalities in the potential, including
those from triton exchange, become important. Trying to fit
these with a local potential is possible but would be a mistake.
Thus we have cut off the data we use in this fit at 110 degrees.
Also, since there is much more cross section data than spin
observable data we weighted more heavily the analyzing power
and spin rotation parameter data at 200, 350, 500, 800, 1240,
and 1720 MeV.

IV. RESULTS

We have used 14 data sets. Ten were used in the fit, and four
were used to check the interpolation properties of the fit. The

10 used were 156 MeV from Comparat et al. [8]; 200, 350, and
500 MeV from Moss et al. [5]; 500 MeV [6]; 650 MeV [9]; and
561, 800, 1029, 1240, and 1728 MeV [10–12]. The four used
to check the interpolation were 544 MeV [9], 587 MeV [9],
788 MeV [13], and 1050 MeV [14].

Table I shows the parameters we found that gave our best
fit.

Figure 1 shows the scalar and vector global optical
potentials we have obtained for p + 4He for five different
incident proton energies: 200, 350, 800, 1240, and 1728 MeV.
Figures 2–4 show the fits to the p + 4He elastic cross section
(σ ), analyzing power (Ay), and Wolfenstein (R) parameter. At
800 MeV the cross section and analyzing power data were used
in the fit, but the R-parameter data were found only afterward
so this is actually a prediction for the R-parameter data. The
prediction is excellent.

Figure 6 shows the prediction for the cross section at
788 MeV, where data exist but were left out of the fitting
process. The fit is good out to the same momentum transfer as
was fit at 800 MeV, then it drifts away from the data. We have
also checked that the reproduction of the analyzing power
data at 544 MeV and the cross section data at 587 MeV is
satisfactory despite those data sets also not being included in
the search. There is a picture of analyzing power data taken
at 560 MeV in Ref. [11] that differs from that at 544 MeV by
having sharper maxima and minima; our prediction for these
data appears to agree even better than for the 544-MeV data,
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TABLE II. Reaction cross sections.

ELab (MeV) σR (fm2)

156.0 15.058
200.0 10.230
350.0 7.311
500.0 7.759
544.0 7.746
587.0 7.903
561.0 7.807
650.0 8.143
788.0 8.688
800.0 8.735

1029.0 9.449
1050.0 9.488
1240.0 9.584
1728.0 8.736

which is reassuring since the newer data from Ref. [11] were
taken with detectors that had a smaller angular resolution. The
shape of the cross section data at 1050 MeV is well reproduced;
however, the normalization of the data appears inconsistent
with that of the other data sets used.

Table II shows the reaction cross sections obtained from
fitting the elastic data. We note that the reaction cross section

at 156 MeV seems unrealistically high. However, at all the
other energies we have used, all our somewhat-decent fits
tend to produce the same reaction cross section prediction.
Presumably the problem at 156 MeV comes about because
not only is it at the end of the energy range, but also the
cross section data used at 156 MeV has very little structure
up to 110 degrees, and there are no spin observables. We,
therefore, caution the user about using this global fit for
reaction calculations below 200 MeV.

V. CONCLUSION

In this paper we have presented a global Dirac p + 4He op-
tical potential in the range from 156 to 1728 MeV. The quality
of the fits is good, and the interpolation (prediction) properties
are good. However, we had to constrain the potentials to
resemble those we would expect from fits to heavier nuclei. The
fit presented here is available from bcc@mps.ohio-state.edu,
coopert@ucfv.ca, and sn-hama@hue.ac.jp.
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