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Largest cluster in percolation: Implications for fragmentation studies
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The probability distribution of the largest cluster size is studied within a three-dimensional bond percolation
model on small lattices. Cumulants of the distribution exhibit distinct features near the percolation transition
(pseudocritical point), providing a method for its identification. The location of the critical point in the continuous
limit can be estimated without variation of the system size. This method is remarkably insensitive to finite-
size effects and may be applied even for a very small system. The possibility of using various measurable
quantities for sorting events makes the procedure useful in studying clusterization phenomena, in particular
nuclear multifragmentation. Finite-size scaling and �-scaling relations are examined. The role of surface effects
is evaluated by a comparison of results for free and periodic boundary conditions.
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I. INTRODUCTION

The main motivation of nuclear multifragmentation studies
is probing a liquid-gas coexistence region in the phase diagram
of nuclear matter [1–3]. Many works deduce the occurrence of
a first- or second-order phase transition [4–14]. Although both
transition types can be expected, unambiguous identification
is difficult because of strong finite-size effects in systems with
a small number of constituents. In such systems, for example,
a first-order phase transition may mimic critical behavior
[15,16]. On the other hand, nuclear multifragmentation in-
duced by high-energy collisions shows striking similarities to
percolation processes that are known to contain a second-order
phase transition (critical behavior) [10,17–23]. Percolation-
based models also seem to be successful in describing
fragmentation of atomic clusters [24,25]. These observations
led to the formulation of the hypothesis that percolation could
be a universal fragmentation mechanism for simple fluids
[23]. For better recognizing critical-like behavior observed
in fragmentation processes, the simultaneous application of
various complementary methods is necessary. Percolation
models are often used to construct or verify procedures that
trace critical behavior in fragmenting systems [17–20,26–29].
They provide a simple tool for studying universal aspects of
the critical behavior and the role of finite-size effects.

In this work, the largest cluster size distribution is examined
in the framework of a percolation model. The size of the largest
cluster, as an order parameter in aggregation scenarios of frag-
ment production, is of particular interest in phase-transition
studies [28,29]. The limiting forms of the distribution for
normal phases are predicted by classical limit theorems for
random variables [29–32]. At a second-order phase transition
the system is highly correlated with fluctuations occurring on
all length scales. Properties of the order parameter close to the
critical point can be studied with the renormalization group and
finite-size scaling approaches [28–30,32–34]. Recently, it was
proposed to identify second-order critical behavior in finite
systems by examining universal features of the order parameter
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fluctuations with a �-scaling method [8,28–30]. The method
has been applied to several models and nuclear fragmentation
data [8,14,16,28,29,35–38]. Here, �-scaling behavior of the
largest cluster is investigated in percolation processes.

To compare theoretical predictions with fragmentation data,
all experimental conditions should be carefully considered.
The bulk behavior of the order parameter can be significantly
modified in small fragmenting systems by finite-size and
boundary effects. The control parameter is usually not well
measured and must be substituted by other measurable quanti-
ties in sorting events, leading to additional modifications. The
present work evaluates the significance of such effects.

The calculations were performed with a three-dimensional
bond percolation model on simple cubic lattices [33]. A Monte
Carlo procedure with the Hoshen-Kopelman cluster labeling
algorithm was employed to generate events for a distribution
of the bond probability p being the control parameter. Lattices
of size N = L3 with L = 3, 4, 5, 6 correspond to the range of
system sizes available in nuclear reactions. Free boundary
conditions were applied to account for the presence of a
surface in real systems. To evaluate the role and importance of
finite-size and boundary effects the calculations were extended
to include larger systems and periodic boundary conditions.

We study low-order cumulants (cumulant ratios) as the
mean, variance, skewness, and kurtosis of the largest cluster
size distribution. These standard statistical measures contain
the most significant information, providing a robust identifica-
tion of the percolation transition. To place our results in a wider
context, in the next section some signals of criticality that are
frequently tested in fragmentation studies are briefly discussed.

II. PERCOLATION TRANSITION IN SMALL SYSTEMS

In the strictest sense, the phase transition occurs in
the continuous limit N → ∞. Then, below the percolation
threshold p < pc � 0.2488, only finite clusters are present.
When p > pc there exists an infinite cluster spanning the
whole lattice. The fraction of sites belonging to this cluster
is the order parameter. In finite systems the transition is
smoothed. The probability that at least one cluster connects
the bottom and the top lattice planes changes gradually, as
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FIG. 1. Bond percolation on a lattice of linear size L = 5 with free
boundary conditions. Plotted as a function of the bond probability:
(a) the probability that a lattice is spanned, (b) moments of the average
distribution of cluster sizes, (c) the variance of the largest cluster size
distribution with various normalizations. (d) The average distribution
of cluster sizes.

illustrated in Fig. 1(a). A natural way to locate the transition
is to examine quantities that diverge at the critical point in
the continuous limit. For finite systems, the divergence is
replaced with a maximum located near pc. This can be seen in
Fig. 1(b) for the second moment of the average distribution of
cluster sizes M2, the mean cluster size M2/M1, and the reduced
variance γ2 ≡ M2M0/M

2
1 [20]. Mk denotes the kth moment of

the cluster size distribution, Mk = ∑
s skns , where ns is the

average number of clusters of size s normalized to the system
size (the largest cluster excluded). The mean cluster size is the
analog of the susceptibility and the location of its maximum
value defines the pseudocritical point. Another frequently used
method is a power-law fit to the fragment size distribution
[4,27]. In our example the best fit is obtained for p = 0.33
as shown in Fig. 1(d). The fragment size distribution follows
in some range the asymptotic behavior ns = q0s

−τ , where the
Fisher exponent τ = 2.189 [39]. The normalization constant
q0 = 1/

∑∞
s=1 s(1−τ ) is taken as 0.173 from the summation

computed up to s = 109. Another example is the maximum
fluctuation of the largest cluster size. The size of the largest
cluster, smax, plays the role of an extensive order parameter.
Its fluctuations are usually measured by the variance κ2 or the
normalized variance κ2/〈smax〉 of the probability distribution
P (smax) [20,23,27,40]. The two quantities are peaked in the
transition region, as shown in Fig. 1(c) by the dotted and
dashed curves. When the normalization κ2/〈smax〉2 is used, the
maximum is located remarkably close to the critical point.

The above examples show that various investigated signals
appear at different positions, and in most cases they are shifted
from the critical point toward the ordered phase region. In small
systems the shifts may be significant and should be taken into

account in a criticality analysis. The location of the critical
region in nuclear multifragmentation is often deduced from a
power-law fit to the fragment size distribution. This location,
appearing near the pseudocritical point, would correspond
to a temperature Tpc distinctly lower than the true critical
temperature Tc. For example, converting the bond probability
to the temperature with the prescription of Refs. [22,41], one
obtains Tpc/Tc = 0.64, 0.73, and 0.78 for N = 27, 64, and
125, respectively.

The location of the true critical point pc is of particular
interest. According to the finite-size scaling, the position of
a signal, p(L), is expected to converge to pc with increasing
linear lattice size L as

p(L) − pc ∝ L−1/ν, (1)

where ν is the correlation length exponent. The estimation
of a critical point by such an extrapolation method seems to
be difficult in the case of nuclear multifragmentation. Sizes
of fragmenting systems created in nuclear reactions are not
well controlled because of the preequilibrium emission and
their range is limited. In addition, one may expect large
departures from the scaling relation of expression (1) for very
small systems. Our observation is that, without relying on the
finite-size scaling, the best estimation of the critical point is
given by the position of the maximum of κ2/〈smax〉2. Behavior
of this quantity for different system sizes and various event
sortings is investigated in the following sections.

III. DISTRIBUTION OF THE LARGEST CLUSTER SIZE

A. Cumulants and finite-size scaling

The probability distribution of the largest cluster size
representative for small lattices with open boundaries is shown
in Fig. 2 for various values of p. Far from the transition the
distribution is sharply peaked with an extended tail to the
right (left) in the disordered (ordered) phase and positioned
close to the limiting values. In the transition region the
distribution rapidly evolves passing through a broad, flattened,
and (nearly) symmetrical distribution. This behavior can be
well characterized by use of the skewness K3, which measures
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FIG. 2. Probability distributions of the largest cluster size for a
lattice of size N = 125 with free boundary conditions.

024601-2



LARGEST CLUSTER IN PERCOLATION: . . . PHYSICAL REVIEW C 73, 024601 (2006)

0.1

0.2

L = 3

L = 5
L = 16

L = 100

(a)

K
2

(b)

0

0.5

1

1.5

K
3

L = 3
L = 5
L = 16
L = 100

-1

0

1

2

0.25 0.3 0.35 0.4

p

K
4

p c

0 0.5 1

(p - pc) L
1/ν

FIG. 3. The cumulant ratios of Eqs. (2) as functions of (a) the
bond probability and (b) the scaling variable for systems of different
sizes. Calculations are made with free boundary conditions.

the asymmetry of a distribution, and the kurtosis excess K4,
which quantifies the degree of peakedness. The quantities of
interest are defined and expressed in terms of the cumulants as

K2 ≡ µ2/〈smax〉2 = κ2/κ
2
1 ,

K3 ≡ µ3
/
µ

3/2
2 = κ3

/
κ

3/2
2 , (2)

K4 ≡ µ4
/
µ2

2 − 3 = κ4
/
κ2

2 ,

where µi = 〈(smax − 〈smax〉)i〉 is the ith central moment and κi

is the ith cumulant of the P (smax) distribution. They are plotted
as functions of p for different system sizes in Fig. 3(a). In the
vicinity of the critical point and for L → ∞, one expects for
these dimensionless parameters the finite-size scaling relation

Ki = fi[(p − pc)L1/ν]. (3)

If the scaling holds, values of Ki at pc are independent
of the system size, which is approximately observed in our
plots as the crossing of curves for different L near pc. To
verify the scaling in the neighborhood of the critical point the
Ki parameters are replotted in Fig. 3(b) against the scaling
variable (p − pc)L1/ν , where ν = 7/8. The collapse of the
data shows that the scaling relation with no corrections for
finite-size effects is well satisfied even for such small lattices
with open boundaries. As can be estimated from Fig. 3(b), the
asymptotic values of Ki at pc are about K2 = 0.24,K3 = 1.2,
and K4 = 1.5. For small systems they are somewhat smaller,
with largest deviations observed for K2. A prominent feature
of the K2 distribution is the maximum located very close to
pc, irrespective of the system size.

Another characteristic point, corresponding to the broad
transitional distribution shown in Fig. 2, is where K3 = 0 and
simultaneously K4 reaches its minimum value of about −0.9
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FIG. 4. Finite-size scaling plot for values of the bond probability
p at which the conditions indicated on the figure are fulfilled. The
line is the best linear fit to the open circles.

whereas K2 � 0.135. This is observed at some distance from
the critical point, which depends on the system size as
(p − pc) � 0.5L−1/ν . Such a point approximately coincides
with the maximum of the mean cluster size and the power-law
behavior of the fragment size distribution (see Fig. 4), and
may be used as an estimation of the pseudocritical point. The
line in Fig. 4 is a power-law fit of relation (1) to such points
giving ν = 0.878 ± 0.005 in agreement with the expected
value ν = 0.875. Corrections to the scaling are not significant
in this case. Other variables considered in Fig. 4 show much
larger deviations from the asymptotic scaling behavior.

The above characteristics are for free boundary conditions.
The behavior of Ki for periodic boundary conditions when
surface effects are reduced is shown in Fig. 5. Also in this
case the finite-size scaling features are clearly observed. As
expected, the scaling functions fi are compressed now toward
lower bond probabilities, which one can see by comparing
Fig. 5(b) with Fig. 3(b). The pseudocritical point is positioned
very close to the critical point. Thus, the large difference in
locations of these points in the case of free boundary conditions
may be interpreted as a surface effect.

B. Delta scaling

The behavior of the cumulant moments is of interest in
the context of �-scaling proposed for studying criticality in
finite systems [8,28–30]. Probability distributions P (smax) of
the extensive order parameter smax for different “system sizes”
〈smax〉 obey �-scaling if they can be converted to a single
scaling function �(z(�)) by the transformation

〈smax〉�P (smax) = �(z(�)) ≡ �

(
smax − 〈smax〉

〈smax〉�
)

, (4)

where 1/2 � � � 1. Concerning a three-dimensional bond per-
colation model, it was shown that the � = 1 scaling is satisfied
near the percolation threshold, as predicted for a continuous
phase transition point [28,29]. Above the percolation threshold
(at p = 0.35) one observes the � = 1/2 scaling associated
with small fluctuations in the ordered phase. These results were
presented for systems N = 143 − 323 with periodic boundary
conditions. In the following discussion, we examine �-scaling
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FIG. 5. Same as Fig. 3 but for periodic boundary conditions. The
filled circles in (a) indicate the K3 and K4 values for the Gumbel
distribution (see text).

behavior of P (smax) in a wide range of the control parameter,
also for smaller systems with open boundaries.

In the case of �-scaling, the normalized cumulants κi/κ
i�
1

are independent of the “system size” κ1 ≡ 〈smax〉. Therefore,
for a set of P (smax) distributions, K3 = const and K4 =
const are necessary conditions for a �-scaling. Additionally,
K2 = const for � = 1 and κ2/κ1 = const for � = 1/2. The
conditions for the � = 1 scaling are fulfilled only in the
vicinity of the critical point. The crossing points seen in
Figs. 3(a) and 5(a) indicate the system size independence of Ki

near pc. The conditions are also satisfied around the critical
point when both the system size and the control parameter
are varied so that (p − pc)L1/ν = const accordingly to the
finite-size scaling. Since the conditions are necessary but not
sufficient, we have checked that indeed the scaling relation
of Eq. (4) is approximately satisfied. Observing the � = 1
scaling requires then a variation of the system size without or
with a very specific change of the control parameter. It cannot
be observed when the system size is fixed. A similar conclusion
has been reached in Ref. [38] for a lattice gas model.

Figure 5(a) shows no evidence for the presence of
�-scaling in the subcritical region p < pc (disordered phase).
The largest cluster size in subcritical percolation has been
extensively studied in Ref. [31]. As predicted by the theory of
extremes of independent random variables, P (smax) converges
to the Fisher-Tippett (Gumbel) distribution when N → ∞.
The mean grows logarithmically with the system size while
the variance is bounded. Such a behavior cannot be described
by �-scaling. For the Gumbel distribution, K3 � 1.14 and
K4 = 2.4, indicated in Fig. 5(a) by the filled circles. As can be
seen, the small systems show significant deviations from these
asymptotic values even for periodic boundary conditions.
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FIG. 6. The normalized variance of P (smax) versus the bond
probability for (a) free boundary conditions and (b) periodic boundary
conditions.

The limiting behavior of the largest cluster size in the
supercritical region p > pc (ordered phase) is governed by
the central limit theorem [29,32]. The asymptotic distribution
is Gaussian, K3 = K4 = 0, with the mean and variance
both increasing linearly with the system size, κ2/κ1 = const,
satisfying the � = 1/2 scaling relation. Such characteristics
are seen in Figs. 5(a) and 6(b) away from the critical point
for larger systems with periodic boundary conditions. Since
the normalized variance κ2/κ1, which is the same for all N,
systematically decreases with p, the scaling can be observed
only for fixed p and different N. Considering very small
systems L = 3–6 with free boundary conditions as appropriate
for nuclear applications, Fig. 6(a) shows that κ2/κ1 at fixed
p strongly depends on the system size. This indicates the
violation of the scaling as a consequence of surface effects.

Investigations of the largest fragment charge distribution,
P (Zmax), observed in heavy-ion central collisions at bom-
barding energies between 25A and 150A MeV, have shown
that κ2/κ1 � const at lower energies while K2 � const in
a high-energy range [8,35,36]. The two regimes appear on
the ln(κ2) versus ln(κ2

1 ) plot along two lines with the slope
of 1/2 and 1. This observation has been interpreted as the
presence of the two limiting �-scaling laws corresponding to
the ordered and disordered phases (in the case of �-scaling,
the slope is equal to �). Figure 7 shows such a plot when
experimental events are sorted according to the estimated
source excitation energy. These data, taken from Ref. [35],
include quasi-projectiles from Ta + Au collisions which allow
us to observe a strong suppression of the fluctuations at lowest
energies. Assuming the percolation pattern of the cumulants,
interpretation of the high-energy branch in terms of the � = 1
scaling would require that for different excitation energies all
fragmenting systems are created with nearly the same value of
a control parameter close to a critical point. More realistically,
the control parameter varies with the excitation energy while
changes of the system size are less significant. The dashed
and dotted curves in Fig. 7 show percolation results for fixed
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FIG. 7. Log-log plot of the variance versus the squared mean
value of the largest fragment size (charge) distribution. The points
are experimental data for events sorted according to the excitation
energy [35]. The curves are percolation results for N = 64 when
events are sorted by the bond probability (dashed curve) and by the
fraction of open bonds (dotted curve).

N = 64 when events are binned by the bond probability and
by the fraction of open bonds. Given the mean, the variance
depends not only on the system size but also on the choice
of binning variable. For a quantitative comparison with the
data, one would have to determine appropriate system sizes
and a sorting variable equivalent to the excitation energy.
Nevertheless, the qualitative behavior of the curves shows
similarity to the experimental data. In the model the slope
changes continuously and, as shown in Fig. 8, the point
with slope of 1 corresponds to the maximum of K2 (locally
K2 � const), whereas the slope of 1/2 reflects the maximum
of κ2/κ1. These features are not related to �-scaling. The
rise-and-fall behavior of the correlation in Fig. 7 is a simple
consequence of the mass conservation constraint. Some points
on this line may have a particular meaning, depending on
the assumed model. In the present model, the point of slope
1 approximately corresponds to the critical point. Within the
canonical lattice gas model, the point of maximum variance oc-
curs close to the critical point at the critical density. For subcri-
tical densities it is located inside the coexistence region [38].

C. Event sorting effects

The cumulant properties of the largest cluster size distribu-
tion presented above are for an ideal situation, which assumes
that generated events are sorted according to precisely known
values of the control parameter. In experimental studies such
a selection is difficult to realize. Usually the sorting parameter
is a measurable quantity (e.g., multiplicity, excitation energy
per nucleon) that is correlated with the control parameter
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FIG. 8. Percolation lattice of 64 sites with open boundaries:
(a) the normalized variance of P (smax) as a function of the bond
probability, (b) the variance versus the squared mean in log-log
representation for events binned by p.

with a significant dispersion. Even if an attempt is made to
estimate a control parameter such as the temperature in nuclear
multifragmentation, some dispersion is unavoidable. This can
be simulated by use of the fraction of open bonds q for sorting
events. On average, the relation between p and q is linear, q �
1 − p, for all system sizes. Figure 9 presents Ki as a function
of q for small lattices of L = 3–6 with open boundaries
that are relevant for nuclear multifragmentation studies. The
top diagram shows the correspondence between q and 〈p〉.
Comparing Ki(q) with Ki(p) in corresponding intervals shows
that absolute values may change significantly; however, some
characteristic features are approximately preserved. The K2(q)
distributions exhibit maxima near the “critical” value qc �
0.75, corresponding to pc. The zeros of K3(q) coincide with
the minima of K4(q), reflecting the behavior near the pseudo-
critical point. However, at the “critical” point qc, the cumulant
values are now much smaller and differ with the lattice size.
The crossing points appear shifted from qc toward the ordered
phase. These intersection points are spread out over some range
of q and are expected to converge to qc with increasing N. The
relation between p and the number of open bonds is governed
by a binomial distribution. This implies that, for a given q,
the dispersion of p vanishes as ∼N−1/2 with N → ∞. On the
other hand, according to the finite-size scaling, Ki(p) follows
the same pattern irrespective of N within a fixed interval of the
scaling variable (p − pc)L1/ν . Thus the corresponding interval
of p vanishes with increasing N as ∼ N−1/3ν � N−1/2.625.
Since the dispersion vanishes faster, the limiting distributions
Ki(q) and Ki(p) will be equivalent: Ki(q) → Ki(p = 1 − q)
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when N → ∞. Significant differences between the sortings
are observed in small systems.
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Particularly interesting are event sortings according to
directly measurable quantities. We have examined the Ki

dependencies on the overall multiplicity m (Fig. 10) and the
total size of all clusters of size greater than 1 denoted by Sbound

(Fig. 11). The parameters are normalized to the system size
N. In both cases the average correspondence to the control
parameter depends on the system size, which is shown in
the top diagrams where the solid line is for L = 6 and the
dotted one is for L = 3. The K2 distributions exhibit maxima
whose positions correspond to the critical value of the control
parameter pc. For such “near-critical” events, values of the
sorting variables and the cumulant ratios depend on the system
size, as shown in Fig. 12. They all can be well described by the
equation

X = a − c

N + b
, (5)

with coefficients a, b, and c listed in Table I. In practice, when
the system size in not well known, one can examine Ki as a
function of m (and/or Sbound). One can find the system size N
by solving Eq. (5) with X = m/N for m = mc at which the
maximum of K2 is observed. Then the values of K2,K3, and
K4 calculated from Eq. (5) can be verified with those observed
at m = mc.

For all the considered sortings, K3 = 0 occurs at the same
position as the minimum of K4, near the maximum of the
mean cluster size and a point where the best power-law fit
to the fragment size distribution is observed. Therefore such
a point may be used as an alternative or complementary
indication of the pseudocritical point. The minimum value
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of K4 is close to −1 for all the sorting parameters and system
sizes.

Figures 10 and 11 show that the crossing points, as for the
sorting by q, are shifted from the “critical” point corresponding
to pc toward the ordered phase region. For Sbound/N they
are well localized near the pseudocritical point. In this case
the pseudocritical point can be additionally characterized by
K2 � 0.15 and the position Sbound/N � 0.84.

In our simulations events have been generated for uniformly
distributed values of the bond probability p and then grouped
in bins of a sorting variable. Using a different distribution
of p changes the spectrum of events in a bin. Consequently,
quantities such as Ki calculated for events within a bin
may also change their values. Calculations performed for a

TABLE I. The coefficients of Eq. (5) for events grouped in bins
of the multiplicity (upper part) and Sbound (lower part).

X a b c

m/N 0.352 28.0 −9.6
K2 0.187 44.0 6.8
K3 1.03 19.0 15.0
K4 0.91 26.0 47.0

Sbound/N 0.777 23.0 6.0
K2 0.27 7.0 2.6
K3 1.27 8.0 10.0
K4 1.74 16.0 53.0

Gaussian distribution of p that might simulate experimental
conditions have shown that this effect is of minor importance.

IV. CONCLUSIONS

The largest cluster size distributions have been examined
within a percolation model on small lattices with open
boundaries. The dimensionless cumulant ratios as the nor-
malized variance K2, the skewness K3, and the kurtosis K4

of the distribution satisfy with a good accuracy the finite-size
scaling in the critical region. In particular, Ki are independent
of the system size near the critical point (crossing points).
This feature has been explored in phase-transition studies as
the cumulant crossing method, particularly for the kurtosis in
the form of the Binder cumulant [34]. To my knowledge this
method has not been applied in analyzing multifragmentation
data. However, it would require a wide range of system sizes,
which is difficult to realize in nuclear reactions. Moreover, the
presence of crossing points has an unambiguous interpretation
when events are sorted according to the control parameter.
In practice, events are grouped with an inevitable dispersion
over the control parameter. This blurs the scaling behavior;
the crossing points may appear in a wide range of the sorting
parameter away from the “critical” point. These remarks apply
also for the � = 1 scaling law, since the occurrence of finite-
size scaling for the cumulant ratios is a necessary condition
for this scaling law. The largest cluster size fluctuations in the
disordered phase cannot be described by a �-scaling, whereas
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the limiting � = 1/2 scaling in the ordered phase is violated
in small systems with open boundaries.

The percolation transition in such systems can be identified
by examination of some distinct features of the finite-size
scaling functions of Ki , which are not significantly affected
by corrections to scaling in small systems and by a dis-
persion of the control parameter when events are sorted
according to various measurable quantities. The maximum
of K2 approximately corresponds to the location of the true
critical point. The absolute values of Ki at this point have
been determined for sortings by the control parameter, the
multiplicity, and Sbound, providing complementary character-
istics. Coincidentally with the maximum of the mean cluster
size (pseudocritical point) and the power-law behavior of
the fragment size distribution, one observes K3 = 0 and a
minimum value of K4 � −1. If the quantity Sbound is used for
sorting events, this point can be additionally characterized
by K2 � 0.15, and its location is related to the system
size as Sbound � 0.84N . The analysis does not require the

knowledge or variation of the system size, which is not well
controlled in nuclear multifragmentation. It allows us to esti-
mate the system size at the critical and pseudocritical
points.

It will be interesting to confront these predictions with
multifragmentation data, in particular with the Aladin data,
in which the sorting parameter Zbound and the charge of the
largest fragment are well determined in a wide range of the
excitation energy. It would also be instructive to perform a
similar analysis with other models that are known to contain
or not contain a phase transition or critical behavior. Using
appropriate system sizes, boundary conditions and event
sortings in model simulations is an important requirement.
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