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The second random-phase approximation (SRPA) is the simplest and most natural extension of the RPA. It
enlarges the space of the elementary modes introduced to describe the collective states by adding 2 particle -
2 hole excitations to the 1 particle - 1 hole ones of the RPA. In deriving the SRPA equations, use is made, as in
the RPA, of the so-called quasi-boson approximation (QBA) where expectation values in the ground state of the
system are approximated by their values in the uncorrelated reference state. This, however, has been shown to
imply a degree of approximation worse than that in the RPA. It is, therefore, necessary to improve the QBA by
considering a reference state which contains some correlations. Having in mind to perform such calculations for
realistic systems, we consider a simple extension of the SRPA in which the reference state contains 2 particle -
2 hole correlations. The quality of such an extension is tested by applying it to a solvable three-level model and
found to be good.
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I. INTRODUCTION

Collective excitations are one of the most common and
interesting features of many-body systems. Of particular
interest are the collective modes which can be interpreted
in terms of vibrations. Nuclei show a large variety of such
vibrations, both low lying and high lying [1]. In particular, the
giant dipole resonance is due to the coherent motion of protons
against neutrons. The analog of the giant dipole resonance in
metal clusters is the dipole plasmon excitation which is well
known [2,3] and is interpreted as the collective vibration of the
electrons against the ions. The random-phase approximation
(RPA) has been extensively used as a microscopic theory to
study the basic properties of these collective excitations. In this
framework, one introduces a set of phonon operators Q†

ν whose
action on the ground state |0〉, defined as the vacuum of the
Qν operators, creates the collective states |ν〉. The excitation
energies Eν are solutions of a system of equations which can
be derived by using the equations of motion method [4,5].
In the derivation of the standard RPA, use is made of the
quasi-boson approximation (QBA), which entails replacing the
expectation value in the ground state |0〉 of any operators with
the corresponding value in the uncorrelated reference state.
Strictly related to the QBA is the RPA property of predicting a
harmonic spectrum with regularly spaced multiphonon states.
On the other hand, the existence of anharmonicities in the
multiphonon spectra of nuclei and their influence on various
physical processes are well established [1,6–8]. Overcoming
the QBA has been the starting point of many attempts aimed
at improving the RPA.

One line of investigation in such a direction has been
based on the reformulation of the whole theory in a boson
formalism [9,10]. Along this line, an extension of RPA was
presented in Ref. [10] within a three-level Lipkin model [11].
The phonon operators Q†

ν were defined from the beginning in
terms of true boson operators, and all the fermion operators
of interest were replaced by their boson images via a mapping
procedure. The RPA-type equations that one constructs in this

formalism depend on the degree of the expansion of the boson
Hamiltonian. Standard RPA is obtained when the expansion
of the boson image of the Hamiltonian is truncated at the
lowest order, i.e., at the two boson terms only. Considering
higher-order terms provides a natural way to reach a higher
level of approximation and so go beyond the standard RPA. In
Ref. [10], the boson Hamiltonian was diagonalized within the
space containing up to two, three, and four phonon excitations.
An important conclusion of such a study was that in order
to reproduce the energies of states which in the harmonic
limit correspond to two quanta excitations, it is necessary to
diagonalize the Hamiltonian in the space of the states including
up to four phonons. Such a calculation would not be feasible
for a realistic system. Therefore, one has to look for a more
affordable approach.

A natural extension of the RPA for the study of two-phonon
states is the second RPA (SRPA). However, in its derivation,
QBA is still used [12]; and as shown in Refs. [13,14], this
is an even more severe approximation than that in the RPA.
In the present paper, we introduce an extension of the RPA
and SRPA obtained by improving the QBA along the lines
indicated in Refs. [13–15]. The quality of the corresponding
results is studied by performing calculations within the three-
level Lipkin model. We calculate several physical quantities
such as excitation and ground state correlation energies,
occupation numbers, strength functions, and sum rules. From
the comparison of our results with the exact ones, we conclude
that the present approach gives a good description of the
ground state and of those excited states which in the harmonic
limit would correspond to one and two phonon excitations.
This approach does not require a very heavy computational
effort, and we plan to apply it to the study of realistic systems.
Work in this direction is in progress.

The paper is organized as follows. In Sec. II, the formalism
associated with the RPA and SRPA is shortly reviewed
and the extensions of the two approaches are presented. In
Sec. III, the exact and approximate results are compared
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and in Sec. IV, our conclusions are drawn. In Appendix A,
we show the explicit form of some matrices used in the
calculations.

II. FORMALISM

In this section, we present the derivation of the extensions of
the RPA and SRPA mentioned in the Introduction and obtained
by improving on the QBA. Let us define the operators Q†

ν and
Qν such that

Qν |0〉 = 0, (1)

|ν〉 = Q†
ν |0〉, (2)

where |0〉 and |ν〉 are, respectively, the ground state and a
generic excited state of the Hamiltonian H. It is easy to show
[4,5] that the following equations hold for an arbitrary operator
δQ

〈0|[δQ, [H,Q†
ν]]|0〉 = ων〈0|[δQ,Q†

ν]|0〉, (3)

with ων = Eν − E0.
Let |HF〉 be the Hartree-Fock (HF) ground state of the

system where the hole states below the Fermi energy are filled
and the particle states above are empty. In the following, we
use the indices m, n, p, q and i, j, k, l to indicate, respectively,
particle and hole states. To derive the RPA equations, two
approximations are made. The first one restrics the operators
Q†

ν to the space of 1 particle - 1 hole (1p1h) operators, i.e.,

Q†
ν =

∑
pi

(
X

(ν)
pi a

†
pai − Y

(ν)
pi a

†
i ap

)
. (4)

The second one is the QBA which amounts to substituting
the ground state |0〉 in Eq. (3) with the uncorrelated state
|HF〉. An evident inconsistency is introduced since Eq. (3) is
obtained assuming that |0〉 is the vacuum of Qν . By using the
QBA, the system of Eq. (3), with the elementary excitations
δQε{a†

i ap, a
†
pai}, becomes(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G 0
0 −G∗

)(
X(ν)

Y (ν)

)
, (5)

where X(ν) and Y (ν) is a short-hand notation for the vectors
X

(ν)
pi and Y

(ν)
pi ; the RPA matrices are

Ami,pk = 〈HF|[a†
i am, [H, a†

pak]]|HF〉, (6)

Bmi,pk = −〈HF|[a†
i am, [H, a

†
kap]]|HF〉, (7)

and the elements of the norm matrix G are

Gmi,pk = 〈HF|[a†
i am, a†

pak]|HF〉 = δikδmp. (8)

A well-known feature of the RPA is that it predicts a
harmonic spectrum. It is therefore clear that the RPA is not able
to explain the existence of anharmonicities in multiphonon
spectra.

One way to obtain a better description of the double
excitations of the system is to use the SRPA, where the

excitation operators also contain 2p2h terms

Q†
ν =

∑
pi

(
X

(ν)
pi a

†
pai − Y

(ν)
pi a

†
i ap

)

+
∑
pimj

(
X

(ν)
pimja

†
paia

†
maj − Y

(ν)
pimja

†
i apa

†
j am

)
. (9)

Starting from the equations of motion (3) and using the QBA,
one gets in this case(

A B
B∗ A∗

) (
X (ν)

Y (ν)

)
= ων

(
G 0
0 −G∗

) (
X (ν)

Y (ν)

)
, (10)

where

A =
(

Ami,pk Ami,pqkl

Amnij,pk Amnij,pqkl

)
,

B =
(

Bmi,pk Bmi,pqkl

Bmnij,pk Bmnij,pqkl

)
,

G =
(

Gmi,pk 0
0 Gmnij,pqkl

)
,

and

X (ν) =
(

X
(ν)
mi

X
(ν)
mnij

)
, Y (ν) =

(
Y

(ν)
mi

Y
(ν)
mnij

)
.

The elements Ami,pk, Bmi,pk , and Gmi,pk of A,B, and G are
equal to those defined in Eqs. (6), (7), and (8), while the others
are

Ami,pqkl = 〈HF|[a†
i am, [H, a†

pa†
qalak]]|HF〉, (11)

Amnij,pk = 〈HF|[a†
i a

†
j anam, [H, a†

pak]]|HF〉, (12)

Amnij,pqkl = 〈HF|[a†
i a

†
j anam, [H, a†

pa†
qalak]]|HF〉, (13)

Bmi,pqkl = −〈HF|[a†
i am, [H, a

†
ka

†
l aqap]]|HF〉, (14)

Bmnij,pk = −〈HF|[a†
i a

†
j anam, [H, a

†
kap]]|HF〉, (15)

Bmnij,pqkl = −〈HF|[a†
i a

†
j anam, [H, a

†
ka

†
l aqap]]|HF〉, (16)

Gmnij,pqkl = 〈HF|[a†
i a

†
j anam, a†

pa†
qalak]|HF〉. (17)

One can show that

Gmnij,pqkl = U (ij )U (mn)δikδjlδmpδnq, (18)

where U (ij ) is the antisymmetrizer for the indices i, j and

Bmi,pqkl = Bmnij,pk = Bmnij,pqkl = 0. (19)

It has been shown in Refs. [13,14] that QBA is even more
severe in SRPA than in RPA. In this work, in order to improve
on QBA, we have searched for a correlated state to replace
|HF〉 in Eqs. (6), (7), and (11)–(16).

In order to get indications on how to improve the QBA, we
notice that the standard form of the RPA ground state [i.e., the
vacuum of the operators Qν of Eq. (4)] is derived under the
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approximation that the particle-hole operators a
†
mai behave as

ideal boson operators, namely,

[a†
i ap, a†

naj ] ≈ δij δpn, (20)

and has the form

|RPA〉 ∝ exp


1

2

∑
minj

Zminj a
†
maia

†
naj


 |HF〉, (21)

where the coefficients Z are determined by∑
mi

X
(ν)∗
mi Zminj = Y

(ν)∗
nj . (22)

An explicit expression of the vacuum |RPA〉 cannot be
found without resorting to Eq. (20). Wishing to avoid such
a bosonic approximation while keeping the correlated state
simple enough to be used in realistic calculations, we consider
the approximation

|RPA〉 ≈ N


1 + 1

2

∑
minj

Zminj a
†
maia

†
naj


 |HF〉, (23)

where N is a normalization factor, and the operators a
†
mai are

treated without any bosonic approximation of the type (20).
Equation (23) can be viewed as a truncation of Eq. (21). In
such a spirit, we make the ansatz that the coefficients Z in
Eq. (23) are still determined by Eq. (22). The matrices A,B,
and G of both the RPA equations (5) and the SRPA ones (10)
are evaluated, in this approximation, by replacing the |HF〉
state with the |RPA〉 state (23) in Eqs. (6)–(8) and (11)–(17).
We notice that when this is done, Eq. (19) is no longer valid.
Furthermore, since the matrices A,B, and G depend on Z,
i.e., on X and Y, the problem is nonlinear. The procedure we
adopt entails solving self-consistently the RPA equations (5)
and (22), and keeping the so obtained Z coefficients when we
solve the SRPA equations (10).

The present extension of the SRPA shares some similarities
with those discussed in Refs. [13,15]. However, in Ref. [13]
the Z-coefficients were calculated using the X and Y solutions
of the standard RPA, and the matrix elements of A and B con-
necting 1p1h and 2p2h configurations were neglected. Further-
more, bosonic-type approximations were made when evaluat-
ing the matrices A,B, and G. The main difference with respect
to Ref. [15] is, that there the Z coefficients were evaluated
in first-order Rayleigh-Schrödinger perturbation theory, i.e.,

Z
(per)
minj = 〈HF|V̂ a

†
maia

†
naj |HF〉

−Eminj

, (24)

where Eminj are the unperturbed energies of the 2p2h excita-
tions and V̂ is the residual interaction.

III. MODEL AND RESULTS

In this section, we apply the extensions of the RPA and
SRPA discussed in the previous section to an exactly solvable
three-level model [11,16]. We check the quality of the results
obtained within such extensions by comparing them with the
exact ones. Our main aim is to judge to what extent the

extended SRPA is adequate to reproduce the anharmonicities
present in the two-phonon spectrum. The model consists of
three levels of energy ε0, ε1, and ε2. Each of them is 2�-fold
degenerate, and N = 2� is the total number of fermions in
the system. Therefore, in the absence of interaction, the lowest
level is fully occupied while the others are empty. This lowest
level represents the HF ground state of the system |HF〉. A
single-particle state is denoted by two quantum numbers j and
m, where j labels the shells (j = 0, 1, 2) and m specifies the
2� substates within each shell. Let us define the operators

Kij =
2�∑

m=1

a
†
imajm (i, j = 0, 1, 2), (25)

where a
†
jm and ajm are, respectively, the creation and annihi-

lation operators of a fermion in the state (jm).
The operators K satisfy the relations

[Kij ,Kkl] = δjkKil − δilKkj , (26)

N =
∑

i

Kii, (27)

thus forming an SU(3) algebra.
We introduce the Hamiltonian of the system as

Hf =
∑
i �=0

εiKii + V0

∑
i,j �=0

Ki0K0j

+V1

∑
i,j �=0

(Ki0Kj0 + K0jK0i)

+V2

∑
i,j,k �=0

(Ki0Kjk + KkjK0i)

+V3

∑
i,j,k,l �=0

KijKkl. (28)

The eigenstates and the eigenvalues of the system can be
obtained either by using the properties of the SU(3) algebra or
by diagonalizing H in the space{

|n1n2〉 = 1√
Nn1n2

(K10)n1 (K20)n2 |HF〉
}

0 � n1+n2 � 2�

, (29)

where Nn1n2 are normalization factors.
The results presented in this paper refer to the same set of

parameters used in Ref. [16], that is,

ε0 = 0 ε1 = ε ε2 = 2.5ε

V0 = −χ V1 = χ V2 = −χ/2 (30)

V3 = χ/10 2� = 10.

In this model, the excitation operators of the RPA and SRPA
are, respectively (in all formulas below, i and j are greater than
zero),

Q†
ν =

∑
i

(
X

(ν)
i Ki0 − Y

(ν)
i K0i

)
, (31)

Q†
ν =

∑
i

(
X

(ν)
i Ki0 − Y

(ν)
i K0i

)
+

∑
i� j

(
X

(ν)
ij Ki0Kj0 − Y

(ν)
ij K0iK0j

)
. (32)
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FIG. 1. Excitation energies of the states |ν〉 as functions of the
strength τ for the set of parameters (30). The results obtained within
RPA-SRPA, ERPA, and ESRPA are compared with the exact ones.
Energies are expressed in units of ε. Also shown are the energies of
the state |111〉 discussed in the text.

In the following, we indicate with the RPA and SRPA the
results obtained by using the QBA, namely, by evaluating the
matrices in Eqs. (5) and (10) in the |HF〉 state. In the present
approximation, these matrices are calculated instead in the
state

|RPA〉 = N


1 + 1

2

∑
ij

ZijKi0Kj0


 |HF〉. (33)

The corresponding extensions of the RPA and SRPA that we
introduce in this way will be denoted in the following by ERPA
and ESRPA, respectively.

In Figs. 1 and 2 we show the excitation energies as
functions of the parameter τ = χ/ε, calculated within RPA,
ERPA, SRPA, and ESRPA. They are compared with the exact
excitation energies. It is worth noticing that the exact excitation
spectrum in the range of energy considered in Figs. 1 and 2 is
actually richer than that shown in these figures. For simplicity,
however, with the exception of the state |111〉 defined below,
we only show those states which at τ = 0 are pure 1p1h (|1〉
and |2〉) and 2p2h (|11〉, |12〉, and |22〉). In the following, we
will refer to them just as 1p1h and 2p2h states. The state
|111〉 of Fig. 1 is instead a state which, at τ = 0, is a pure
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τ
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E
ne
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|11>
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FIG. 2. Same as Fig. 1, but for the states |ν1ν2〉. RPA energies
are calculated as the sum of the energies of the states |ν1〉 and |ν2〉,
namely Eν1ν2 = Eν1 + Eν2 .

3p3h state. For increasing values of τ , this state gets closer
and closer to the 1p1h state |2〉 up to almost crossing it at
τ ∼ 0.025. Although not shown in Fig. 2 in order not to make
the figure too confusing, several other states lie quite close in
energy to the 2p2h states |11〉, |12〉, and |22〉. The presence
of these extra states of a more complex nature “perturbs”
these 2p2h states by leading, for large values of τ , to a more
relevant contribution of higher-order ph components. This
makes the theoretical description of these states in a RPA-like
or SRPA-like formalism more difficult.

As a first result, we notice that going from RPA to SRPA,
the energies of the 1p1h states change very little. In Fig. 2,
these energies are indistinguishable, and we have plotted them
by using the same symbol. Both RPA and SRPA, therefore, are
seen to collapse at τ ∼ 0.026; but already for τ > 0.02, the
energies predicted for the lowest 1p1h state |1〉 start to deviate
significantly from the exact values. A better agreement is found
instead in the case of the state |2〉. As far as the 2p2h states are
concerned, we have evaluated the RPA energies of the states
|ν1ν2〉 as the sum of the energies of the states |ν1〉 and |ν2〉,
namely Eν1ν2 = Eν1 + Eν2 . In these cases, RPA and SRPA
show marked differences, the latter approximation leading to
a better agreement with the exact results.

Turning now to the extended versions of RPA and SRPA
discussed in Sec. II, we notice that both ERPA and ESRPA
improve significantly the quality of the approximated results.
In particular, the collapse point 16 now shifted to a consider-
ably larger value of τ (0.047 for ERPA and 0.039 for ESRPA),
and the energy of the first excited state is reproduced much
better than in RPA (SRPA). With reference to this state, we
show in Fig. 3 a comparison with the results obtained by the
perturbative approach of Ref. [15], both in the case of RPA-like
(ERPA-PER) and SRPA-like (ESRPA-PER) calculations. In
this approximation, the Z coefficients are evaluated using
(24). Similar to what was found in the case of standard RPA
and SRPA calculations, the difference between ERPA-PER
and ESRPA-PER results for the state |1〉 is very small and
cannot be appreciated in the figure (where we explicitly show
only the ERPA-PER results). One observes in this case that
the perturbative calculation improves upon RPA (SRPA) by

0 0.01 0.02 0.03 0.04 0.05
τ

1

E
ne

rg
y

Exact
RPA (SRPA)
ERPA
ESRPA
ERPA-PER

|1>

FIG. 3. Excitation energies of the |1〉 state as functions of the
strength τ for the set of parameters (30). The results obtained within
RPA (SRPA), ERPA, ESRPA, and ERPA-PER are compared with the
exact ones. Energies are expressed in units of ε.
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exhibiting, in particular, a collapse point at τ ∼ 0.028 without
reaching, however, the quality of our results. As far as the
remaining 1p1h and 2p2h states are concerned, the difference
between our approach and the perturbative one is less evident
(it is well understood that our calculations extend over a wider
range of τ ).

It is of interest to look also at the energy weighted sum rules
(EWSR). Let us recall that if |ν〉 and |0〉 are exact eigenstates
of the Hamiltonian H with energies Eν and E0, then for any
one-body operator F the following identity holds:∑

ν

(Eν − E0)|〈ν|F |0〉|2 = 1

2
〈0|[F †, [H,F ]]|0〉. (34)

The well-known Thouless theorem [17] states that the above
equality is satisfied if one evaluates the l.h.s. within the RPA
and the mean value of the double commutator in the r.h.s. in
the |HF〉 state. In this sense, the RPA preserves the EWSR. The
same is true for the SRPA (Ref. [12]). One can easily show
that the identity (34) is exactly satisfied in our approximation if
one keeps only the particle-hole components of the operator F.
Vice versa, when one uses its complete expression

F =
∑
αβ

fαβKαβ (35)

with α and β running over all single-particle states (below and
above the Fermi level), some violations are present. In Fig. 4,
we show, as a function of τ , the r.h.s. of Eq. (34) calculated
in the correlated state (33) and the l.h.s. in ERPA and ESRPA.
The calculations are done by assuming that all fαβ = 1.

One sees that the violations increase with τ . At the ERPA
level, they reach quite large values, for instance, ∼35% at
τ = 0.035. A significant improvement is obtained within the
ESRPA, the violation being ∼10% at the same interaction
strength. This is very satisfactory in view of the fact that within
other extensions of the RPA, the violations are more severe
[16]. The large violations of the EWSR found in the ERPA
can be traced back to the fact that, as discussed in Ref. [16], all
components of F enter in the r.h.s. of Eq. (34), while when the
excitation operators Q†

ν are of the RPA type, only 1p1h terms
of F contribute to the l.h.s. This is no longer true when Q†

ν is
of the SRPA type. The approach proposed in Ref. [16] entailed
considering RPA-type operators Q†

ν which also included Kαβ
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FIG. 4. R.h.s. of Eq. (34) calculated in the correlated state (33)
and the l.h.s. evaluated in ERPA and ESRPA.

0

0.5

1

St
re

ng
th

 f
un

ct
io

ns
 (

ar
b.

 u
ni

ts
)

Exact
RPA (SRPA)
ERPA
ESRPA

0 0.01 0.02 0.03 0.04 0.05
τ

0.5

|1>

|2>

FIG. 5. Strength functions, as functions of the strength τ for the
set of parameters (30), for the states |1〉 and |2〉. Results obtained
within the RPA-SRPA, ERPA, and ESRPA are compared with the
exact ones.

terms. It was found that the EWSR were exactly satisfied, but
one could not avoid the appearance of a spurious state.

In Figs. 5 and 6, we show the strength functions |〈ν|F |0〉|2.
As far as the 1p1h states are concerned (Fig. 5), the RPA
(SRPA) results show large deviations from the exact ones only
for τ approaching the collapse point. In the case of 2p2h states
(Fig. 6), the SRPA predictions are instead very poor already
for values of τ well below the collapse point. The agreement
within the ERPA and ESRPA is considerably better although
significant deviations are observed also in this case for large τ .
As already noticed, however, in this region the structure of
these 1p1h and 2p2h states is influenced by the presence of
other states of a more complex nature which lie quite close in
energy. This could also explain the “odd” behavior exhibited
by the exact results relative to the states |2〉, |12〉, and |22〉 for
large τ . A more appropriate treatment of these high-lying states
would involve diagonalizing the Hamiltonian in a multiphonon
space. In Ref. [10], an approach of this kind was attempted,
although in a bosonic formalism, within the same model. The
conclusion was that in order to reproduce the energies of states
which in the harmonic limit would correspond to two quanta
excitations, it was necessary to perform a diagonalization in a
space which included up to four phonons. Calculations of this
kind would be quite difficult in a realistic case, so we did not
perform them in the present work.
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FIG. 6. Same as Fig. 5, but for states |11〉, |12〉, and |22〉.
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FIG. 7. Exact occupation numbers compared with the RPA and
ERPA ones.

Further information on the quality of our approach can be
obtained by looking at the occupation numbers. In Fig. 7, we
compare the exact values with the RPA and ERPA ones. For
the RPA occupation numbers, we used the expressions

n0 = 1 − 1

2

∑
ν,i

∣∣Y (ν)
i

∣∣2
(36)

and

ni = 1

2

∑
ν

∣∣Y (ν)
i

∣∣2
, (37)

where the factor 1
2 , not present in the standard RPA expression,

has been introduced following the suggestion of Refs. [18,19].
Within the ERPA, they have been evaluated as the expectation
values of Kαα in the ground state (33) with the Z coefficients
determined using Eq. (22). We notice that the RPA results
deviate greatly from the exact ones already for τ well below
the collapse point. Within the ERPA, the quality of the
agreement improves considerably. It is worthy remarking that
while the RPA strongly overestimates the correlations in the
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FIG. 8. Exact ground state correlation energy compared with the
RPA and the ERPA ones. Energies are in units of ε.

ground state, the ERPA underestimates them but to a much
less extent.

This is also evident in Fig. 8, where we plot the RPA ground
state correlation energy [4] together with the ERPA and exact
ones.

IV. SUMMARY AND CONCLUSIONS

In this work, we have discussed an extension of the RPA
and SRPA. The key point of such an extension has been the
overcoming of the QBA by replacing the (uncorrelated) |HF〉
state with a correlated one in the derivation of the RPA and
SRPA equations. The latter state has been assumed to contain
up to 2p-2h configurations, whose amplitudes have been
determined by self-consistently solving new extended RPA-
type equations. In this sense, the correlated state so introduced
can be viewed as a truncation of the RPA ground state. Unlike
the RPA case, however, no bosonic-type approximations have
been introduced when handling particle-hole operators. We
have investigated, both in the RPA and SRPA, the effects of
releasing the QBA in the way just described. As a testing
ground, we have taken the three-level Lipkin model and
compared exact calculations with those performed within
the RPA, SRPA, and their extensions ERPA and ESRPA,
respectively. The comparison has concerned ground state
correlation energies, excitation energies, strength functions,
and occupation numbers.

Furthermore, we have also examined sum rules. As a
general result, we have observed that the ERPA considerably
improves the RPA by leading, in particular, to a relevant shift
of the collapse point to higher values of the interaction strength
as well as to a better description of the spectrum. ESRPA calcu-
lations are characterized by a collapse point close to the ERPA
one but exhibit a much richer spectrum, being able, in partic-
ular, to reproduce also those states which, in the standard RPA
formalism, would correspond to double phonon excitations. A
significant improvement of the ESRPA over the ERPA has also
been observed at the level of the EWSR. As far as the ground
state (identical by construction in the ERPA and ESRPA) is
concerned, the exact occupation numbers are much better
reproduced in the ERPA than in the RPA. One observes, in
particular, a tendency of the present approximation to underes-
timate the ground state correlations (differently from the RPA,
which severely overestimates them). This is also evidenced in
the behavior of the correlation energies. In conclusion, all the
results emerging from the present analysis testify to the good
quality of the extension of the SRPA that we have discussed
and, thanks to the not very heavy computational effort that it
requires, encourage its application to more realistic systems.

APPENDIX A

As discussed in Sec. II, the extension proposed in this paper
entails the evaluation of the matrices A,B, and G in the |RPA〉
state (33). Of course, the new expressions of these matrices
become more involved. As an example, in the following we
report the explicit expression of the norm matrix G in the
case of the three-level Lipkin model. In the standard RPA and
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SRPA, we have

Gi,j = 1

2�
〈HF|[K0i , Kj0]|HF〉 = δij , (A1)

and

Gij,kl = 1

2�(2� − 1)
〈HF|[K0iK0j , Kk0Kl0]|HF〉

= J(ij )δlj δik, (A2)

where J(ij ) is the symmetrizer for the indices i, j .
In the ERPA and ESRPA, we evaluate the above matrices

by replacing |HF〉 with the |RPA〉 state (33)and obtain

Gi,j = 1

2�
〈RPA|[K0i , Kj0]|RPA〉

= 1

2�
(δijN00 − Nij ), (A3)

and

Gij,kl = 1

2�(2� − 1)
〈RPA|[K0iK0j , Kk0Kl0]|RPA〉

= 1

2�(2� − 1)
J(ij )J(kl)(δlj (N0ik000 + Nki00) − N0ik0lj

− 1

2
(δliδkj (N0000 + N00) + Nkjli − δliNkj )), (A4)

where

Nαβ = 〈RPA|Kαβ |RPA〉,

Nαβγ δ = 〈RPA|KαβKγδ|RPA〉,

Nαβγ δσν = 〈RPA|KαβKγδKσν |RPA〉,
with α, β, γ, δ, σ, ν = 0, 1, 2, . . . .

For example, we have

N00 = 〈RPA|K00|RPA〉

= 2�N 2

(
1 + �

2� − 1

∑
kl

|Zkl|2
)

,

Nij = 〈RPA|Kij |RPA〉

= 2�

2� − 1
N 2

∑
kl

Z∗
ilZkj ,

Nij00 = 〈RPA|KijK00|RPA〉

= 4�(� − 1)

2� − 1
N 2

∑
k

Z∗
ikZkj ,

where i, j = 1, 2.
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