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Reconstruction of the optical potential from scattering data
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We propose a method for reconstructing the optical potential (OP) from scattering data. The algorithm is a
two-step, procedure. In the first step, the real part of the potential is determined analytically via solution of
the Marchenko equation. At this point, we use a rational function fit of the corresponding unitary S matrix. In
the second step, the imaginary part of the potential is determined via the phase equation of the variable phase
approach. We assume that the real and imaginary parts of the OP are proportional (the Lax-type interaction).
We use the phase equation to calculate the proportionality coefficient. A numerical algorithm is developed for
a single and for coupled partial waves. The developed procedure is applied to analyze the 1S0NN,3SD1NN, and
P 31 π−N data. For the NN states, we constructed partial potentials with forbidden states (Moscow potential).
We examine the π−N and NN partial-wave analysis data and demonstrate that the Lax-type interaction may be
valid for these systems at the considered energies.
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I. INTRODUCTION

A lot of developments and applications exist of the classical
approaches of Gel’fand, Levitan [1], and Marchenko [2] for
the solution of the inverse-scattering problem at fixed angular
momentum, and we have several excellent reviews on the
subject [3,4]. The direct application of these approaches to
the construction of local two-body potentials which are phase
equivalent to the effective potentials occurring in theories
describing reactions of composite particles is impossible.
For such potential must be complex in order to reproduce
the loss of flux above the inelastic threshold. But it must
reproduce the real phase shifts below the threshold and
must be real itself. These requirements are incompatible for
potentials being energy independent by construction. For
a very low threshold, these approaches are applicable and
produce energy-independent complex potentials [5,6]. In the
general case, an empirical energy-dependent OP is usually
inferred by fitting the parameters of an assumed analytic
potential [7,8]. This approach has two major shortcomings: the
complexity of fitting many nonlinear parameters and the lack
of correlation of the parameters obtained at various energies.

In this paper, we develop an inversion method that is free
of these shortcomings. The method is based on a fixed-l
inverse scattering theory and on a special parametrization
of the OP. The proposed procedure is a two-step process. In
the first step, the partial-wave analysis (PWA) data are used
to determine a real potential via solution of the Marchenko
equation. At this point, we use a rational function fit of
the corresponding unitary S matrix. In the second step, the
imaginary part of the potential is determined. We assume the
same radial shape for the real and imaginary parts of the OP.
This form of the OP (Lax-type interaction [9]) is the optical
limit of the Glauber approximation (OLGA) [10]. The Glauber
approximation (GA) [11] was considered for high-energy
hadron-hadron scattering [12–15]. The OP with the same radial
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shape for the real and imaginary parts was used for nuclear
systems in phenomenological Woods-Saxon form [16,17] and
for analysis of the NN scattering data up to 6 GeV [18].
Derived within the framework of the multiple scattering theory
[19], this type of interaction provides a very satisfactory
description of nucleon-nucleus [20], nucleus-nucleus [21,22],
and antinucleon-nucleus scattering [23].

Thus, we assume that this approximation is valid for
intermediate-energy hadron-hadron elastic scattering. In this
case, the real and imaginary parts of the OP are proportional.
The value of the proportionality coefficient is dependent on
energy. We calculate this coefficient from the phase equation
of the variable phase approach [24]. The calculated value may
be refined by an iterative algorithm. We develop this method
for a single and for coupled partial waves. The whole procedure
is applied to analyze the 1S0 NN data (up to Elab = 3 GeV),
3SD1 NN data (up to Elab = 1.1 GeV), and the P 31 π−N data
(up to Elab = 2 GeV). We demonstrate that prediction for the
proportionality coefficient from the phase equation is close to a
precise value that reproduces the experimental loss of flux. We
examine the NN and π−N PWA data. Our analysis shows that
at energies above 1.5 GeV (NN) and above 1.2 GeV (π−N ),
the OLGA may be valid.

We do not take into account the Coulomb interaction which
is essential only for low-energy scattering and is a minor part
of the hadron-hadron interaction in the energy range where the
data are analyzed.

We show that the modern PWA data of NN scattering are
compatible with the concept of the Moscow potential (MP)
(regular NN potential with forbidden states in S and P waves)
[18,25]. Thus, our NN analysis is an alternative to inversion
results that produce the repulsive core NN potentials [8].

The plan of the paper is as follows. In Sec. II, we describe the
inverse scattering techniques based on the Marchenko integral
equation. The used rational function fit of the corresponding S
matrix allows an analytical solution of the Marchenko integral
equation [2,4]. For a single partial wave, the general solution
was presented in Refs. [5,26]. We present a solution for coupled
partial waves. These techniques produce real local potentials
from PWA data. In Sec. III, we consider the phase equation.
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We investigate how the S matrix is changing with a certain
change of the potential. This consideration shows that we can
calculate the proportionality coefficient between the real and
imaginary parts of the OP in case of the Lax-type interaction. In
Sec. IV, the feasibility of the method is shown in the examples
of analyses of NN and π−N scattering data.

II. THE REAL PART OF THE OP

The Marchenko inverse scattering theory is viewed in detail
in Refs. [2–4], so we will only briefly describe this formalism.
The input data of the Marchenko inversion are

{S(q), (0 < q < +∞), q̃j ,Mj , j = 1, . . . , nb}, (1)

where S(q) is the scattering matrix dependant on the relative
momentum q, q2 = Em, q̃2

j = mEj � 0. Ej is the energy of
the j-th bound state so that iq̃j � 0, and m is the reduced
mass. The Mj matrix gives the asymptotic behavior of the
j-th normalized bound state. We proceed from the Marchenko
equation for a single channel

F (x, y) + L(x, y) +
∫ +∞

x

L(x, t)F (t, y) dt = 0, (2)

where the input kernel is given by

F (x, y) = 1

2π

∫ +∞

−∞
h+

l (qx)(I − S(q))h+
l (qy) dq

+
nb∑

j=1

M2
j h+

l (iqjx)h+
j (iqjy), (3)

and h+
l (z) is the Riccati-Hankel function. The output kernel

L(x, y) gives the reconstructed potential

V (r) = −2
dL(r, r)

dr
. (4)

This local energy-independent operator V (r) links the
Marchenko equation (2) and the radial Schrödinger equation
of a fixed angular momentum,[

− d2

dr2
+ l(l + 1)

r2
+ V (r)

]
ψ(r, q) = q2ψ(r, q). (5)

The scattering matrix S(q), matrices Mj , and energies Ej

are the output data of the direct scattering problem associated
with the Schrödinger equation (5).

It has been known for several decades now that S matrices
rational in q (ratio of polynomials) correspond to potentials
known as Bargmann potentials expressible in terms of the
elementary functions [2–4]. Such a fraction may have the same
values at various points as the S matrix it represents. For a
single partial wave, the general solution of the Marchenko
equation via such rational function fit of the S matrix was
presented in Ref. [5] and in Ref. [26]. We shall, therefore, only
present it briefly and then turn to the case of coupled partial
waves.

A rational function fit of the S matrix is given by

S(q) = e2iδ = f2(q) + if1(q)

f2(q) − if1(q)
, (6)

where f1(q) and f2(q) are odd and even polynomials of q,
which do not turn to zero simultaneously. This approximant
leads to the following expression for the phase shifts δ(q):

tan δ(q) = f1 (q)

f2 (q)
. (7)

Approximant (7) leads to a degenerate input kernel F (x, y).
We calculate the integral in Eq. (3) using the residue theorem.
For approximant (6) the result of the integration is

F (x, y) = i

npos∑
i=1

Res[h+
l (qx) (I − S (q))h+

l (qy)]

∣∣∣∣∣
q=βi

+
nb∑
i=1

M2
i h+

l (q̃ix) h+
l (q̃iy) (8)

=
npos∑
i=1

bih
+
l (βix) h+

l (βiy)

+
nb∑
i=1

M2
i h+

l (q̃ix) h+
l (q̃iy)

=
n∑

j=1

bjh
+
l (βjx)h+

l (βjy), (9)

where βi (i = 1, . . . , npos) are all S-matrix poles with
Im [βi] > 0, β = {β1, . . . , βnpos , q̃1, . . . , ˜qnb

}, n = npos + nb.
We assume that all poles are of first order so that

Res[h+
l (qx) (I − S (q))h+

l (qy)]|q=βi

= 2i Res

[
h+

l (qx)
f1 (q)

f2 (q) − if1 (q)
h+

l (qy)

]∣∣∣∣
q=βi

= 2i
f1 (βi)

f ′
2 (βi) − if ′

1 (βi)
h+

l (βix) h+
l (βiy)

= bih
+
l (βix) h+

l (βiy) , (10)

here we denote f ′
i (q) = dfi(q)/dq (i = 1, 2). The input kernel

of Eq. (2) is degenerate

L (x, y) =
n∑

i=1

Pi (x) h+
l (βiy), (11)

where Pi (x) are unknown coefficients. Substitution of (9) and
(11) into (2) yields

n∑
i=1

h+
l (βiy)

(
bih

+
l (βix) + Pi(x)

+ bi

n∑
k=1

Pk (x)
∫ +∞

x

h+
l (βkt) h+

l (βit) dt

)
= 0. (12)
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Linear independence of the h+
l (βiy) implies that

bih
+
l (βix)+Pi(x) + bi

n∑
k=1

Pk(x)

×
∫ +∞

x

h+
l (βkt) h+

l (βit) dt = 0, (13)

or
n∑

k=1

Aik (x) Pk (x) = Di (x) (i = 1, . . . , n), (14)

where Di (x) = −bih
+
l (βix). Applying Riccati-Hankel inte-

gration formulas in (13), we have

Aik =




1 + bix[(h+
l (βix))2 − h+

l−1(βix)h+
l+1(βix)]/2, for i = k,

−bi

βih
+
l−1(βix)h+

l (βkx) − βkh
+
l (βix)h+

l−1(βkx)

β2
i − β2

k

, for i �= k.
(15)

The functional coefficients Pk (x) are defined by (14) as

Pk (x) = (A−1D)k. (16)

Finally we derive V (r) from (11) and (4).
In the case of two coupled channels, we present only sketchy

derivations because of their awkwardness. In this case, the
system of the partial Schrödinger equations is(

d2

dr2
+ V (r) +

(
l1(l1+1)

r2 0

0 l2(l2+1)
r2

))(
χ1(r)

χ2(r)

)
= q2

(
χ1(r)

χ2(r)

)
,

(17)

V (r) =
(

V1 (r) VT (r)

VT (r) V2 (r)

)
, (18)

where V1 (r) , V2 (r) are potentials in channels 1 and 2, VT (r)
is the potential coupling the two channels, and χ1(r) and χ2(r)
are channel wave functions.

By analogy with (6), we approximate the S matrix by the
expression

S(x) =
(

exp(2iδ̃1) cos 2ε̃ i exp(i(δ̃1 + δ̃2)) sin 2ε̃

i exp(i(δ̃1 + δ̃2)) sin 2ε̃ exp(2iδ̃2) cos 2ε̃

)

=




(
f

(1)
2 (q) + if

(1)
1 (q)

f
(1)
2 (q) − if

(1)
1 (q)

)2 (
f

(12)
2 (q)

)2 − (
f

(12)
1 (q)

)2(
f

(12)
2 (q)

)2 + (
f

(12)
1 (q)

)2 −2i
f

(12)
2 (x) f

(12)
1 (x)(

f
(12)
2 (q)

)2 + (
f

(12)
1 (q)

)2

∏
j=1,2

f
(j )
2 (q) + if

(j )
1 (q)

f
(j )
2 (q) − if

(j )
1 (q)

−2i
f

(12)
2 (q) f

(12)
1 (q)(

f
(12)
2 (q)

)2 + (
f

(12)
1 (q)

)2

∏
j=1,2

f
(j )
2 (q) + if

(j )
1 (q)

f
(j )
2 (q) − if

(j )
1 (q)

(
f

(2)
2 (q) + if

(2)
1 (q)

f
(2)
2 (q) − if

(2)
1 (q)

)2 (
f

(12)
2 (q)

)2 − (
f

(12)
1 (q)

)2(
f

(12)
2 (q)

)2 + (
f

(12)
1 (q)

)2




.

(19)

This is again the most rational function fit for the S matrix.
It was used in Ref. [27] in another form, but an analytical
solution of the inverse scattering problem was not presented.

The coefficients of this rational function fit are determined
from equations

tan
δ̃i (q)

2
= f

(i)
1 (q)

f
(i)
2 (q)

, i = 1, 2 (20)

tan ε̃ (q) = f1 (q)

f2 (q)
. (21)

The Marchenko equation for coupled channels formally has

the former view [28]

L (x, y) + F (x, y) +
∫ +∞

x

L (x, t) F (t, y) dt = 0, (22)

but functions involved are matrices (2 × 2)

F (x, y) = 1

2π

∫ +∞

−∞
H (qx) [I − S (q)] H (qy) dq

+
nb∑
i=1

H (βix) MiH (βiy), (23)
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where

H (x) =
(

h+
l1

(x) 0

0 h+
l2

(x)

)
, I =

(
1 0

0 1

)
. (24)

Inserting (19) into (23) and applying the residue theorem yields

F (x, y) = i

npos∑
i=1

Res[H (qx)(I − S(q))H (qy)]|q=βi

+
nb∑
i=1

H (βix) M2
i H (βiy)

(25)

=
n∑

i=1

H (βix)Q1
i H (βiy) +

n
(2)
pos∑

i=1

xH ′(βix) Q2
i H (βiy)

+
n

(2)
pos∑

i=1

H (βix) Q2
i H

′ (βiy) y,

where βi (i = 1, . . . , npos) are all S-matrix poles with
Im [βi] > 0, βi (i = 1, . . . , n(2)

pos) are poles of the second
order, β = {β1, . . . , βn

(2)
pos

, . . . , βnpos , q̃1, . . . , q̃nb
}, n = npos +

nb, and

H ′ (x) =
(

dh+
l1

(x)/dx 0

0 dh+
l2

(x)/dx

)
.

We note that poles of both the first and second orders are in
the diagonal matrix elements, and poles of only the first order
are in the off-diagonal matrix elements. Poles of the second
order in the diagonal elements are poles of the first order in
the off-diagonal matrix elements, and they are enumerated
twice. Qj

i (j = 1, 2) are constant matrices. They are trivial but
cumbersome; therefore, we do not give them.

We solve Eq. (22) using substitution

L (x, y) =
n∑

i=1

Pi (x)H (βiy) +
n∑

i=1

Ni (x)yH ′ (βiy) , (26)

where Pi (x) , Ni (x) are unknown functional (2 × 2) ma-
trix coefficients. Linear independence of the H (βiy) and
yH ′ (βiy) implies that∑

i

Pi(x)Q3
ij (x) +

∑
i

Ni(x)Q5
ij (x)

= H (βjx)Q1
j + xH ′(βjx)Q2

j ,

(27)∑
i

Ni(x)Q6
ij (x) +

∑
i

Pi(x)Q4
ij (x)

= H (βjx)Q2
j ,

where

Q3
ij (x) = Iδij +

∫ +∞

x

H (βit)H (βj t) dtQ1
j

+
∫ +∞

x

tH (βit)H
′(βj t) dtQ2

j ,

Q4
ij (x) =

∫ +∞

x

H (βit)H (βj t) dtQ2
j ,

Q5
ij (x) =

∫ +∞

x

tH ′(βit)H (βj t) dtQ1
j

+
∫ +∞

x

t2H ′(βit)H
′(βj t) dtQ2

j ,

Q6
ij (x) = Iδij +

∫ +∞

x

tH ′(βit)H (βj t) dtQ2
j . (28)

Integrals of expressions (28) can be derived from the recursion
relations for the Riccati-Hankel functions and from known
integrals. Matrix equations (27) are reducible to scalar linear
equations. We solve this linear equation system and get the
sought-for potential from (26) and (4).

The multichannel generalization is trivial.

III. THE IMAGINARY PART OF THE OP

The concept from the Lax-type interaction of using similar
shapes for the real and imaginary parts of the OP motivated
us to consider changes of the S matrix that are induced by a
certain transformation of the real potential.

First we consider the one-channel problem.
The phase equation [24] for the initial potential V (0) (r)

obtained by some inversion procedure (from the Marchenko
equation in our calculations) is

δ
(0)
l = − 1

q

∫ ∞

0
V (0) (r) D̂2

l (qr) sin2(δ̂l(qr) + δ(0)(r)) dr,

(29)
where D̂l (z) and δ̂l (z) are a Riccati-Bessel amplitude and
phase, correspondingly [24],

D̂l(x) =
√

j 2
l (x) + n2

l (x),

δ̂l(x) = − arctan(jl(x)/nl(x)).

Let us consider the complex-valued potential V (1) (r)
obtained from V 0 (r) by transformation

V (1)(r) = (1 + iα)V (0)(r), (30)

where α is some real parameter. Such parametrization was
used in Ref. [18] but without analysis (α was fitted). Evidently
the phase equation for this potential is

δ(1) = − 1

q
(1 + iα)

∫ ∞

0
V (0) (r) D̂2

l (qr)

× sin2(δ̂l(qr) + δ(1)(r)) dr. (31)

From Eqs. (29) and (31) we get

δ(1) − (1 + iα)δ(0) = −1 + iα

q

∫ ∞

0
V (0)(r)D̂2

l (qr)

× sin(2δ̂l(qr) + δ(1)(r) + δ(0)(r))

× sin(δ(1)(r) − δ(0)(r)) dr. (32)

For smooth enough potentials, the right side of Eq. (32)
rapidly decreases comparing with δ(0) and δ(1), because there
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is a rapidly oscillating around zero function under the integral
in (32) (underlined). Its frequency behaves as 2q for big q [see
(30)]. Then as the first approximation, we may take

δ(1) ≈ (1 + iα) δ(0) = Re δ + i Im δ. (33)

For inelastic scattering, the S matrix is expressed through
the real inelasticity parameter ρ and the real phase shift δ as

S = cos2(ρ)e2iδ = exp 2i(Re δ + i Im δ), (34)

so we easily arrive at

Re δ(1) ≈ δ(0), cos2 ρ ≈ e−2αδ(0)
, (35)

from whence it follows that αδ � 0. Equation (35) allows us
to calculate the parameter α from the known values ρ and
δ(0) ≈ δ.

Consideration of the coupled partial waves is more compli-
cated. The initial real potential is

V (0) (r) =
(

V
(0)

1 V
(0)
T

V
(0)
T V

(0)
2

)
. (36)

The equations for eigenphases and mixing parameters of
potential (36) are [24]

δ
(1)
1 = I

(0)
11 + I

(0)
12 + I

(0)
13 , (37)

δ
(1)
2 = I

(0)
21 + I

(0)
22 + I

(0)
23 , (38)

ε(1) = I
(0)
31 + I

(0)
32 + I

(0)
33 , (39)

where

I
(0)
11 =− 1

q

∫ ∞

0
drV

(0)
1 (r) cos2 ε(0)(r)D̂2

l1
(qr)

× sin2
(
δ̂l1 (qr) + δ

(0)
1 (r)

)
,

I
(0)
12 =− 1

q

∫ ∞

0
drV

(0)
2 (r) sin2 ε(0)(r)D̂2

l2
(qr)

× sin2
(
δ̂l2 (qr) + δ

(0)
1 (r)

)
, (40)

I
(0)
13 =− 1

q

∫ ∞

0
drV

(0)
T (r) sin 2ε(0)(r)D̂l2 (qr)

× sin
(
δ̂l2 (qr) + δ

(0)
1 (r)

)
D̂l1 (qr) sin

(
δ̂l1 (qr) + δ

(0)
1 (r)

)
,

I
(0)
21 = − 1

q

∫ ∞

0
drV

(0)
1 (r) sin2 ε(0)(r)D̂2

l1
(qr)

× sin2
(
δ̂l1 (qr) + δ

(0)
2 (r)

)
,

I
(0)
22 = − 1

q

∫ ∞

0
drV

(0)
2 (r) cos2 ε(0)(r)D̂2

l2
(qr)

× sin2
(
δ̂l2 (qr) + δ

(0)
2 (r)

)
, (41)

I
(0)
23 = − 1

q

∫ ∞

0
drV

(0)
T (r) sin 2ε(0)(r)D̂l2 (qr)

× sin
(
δ̂l2 (qr) + δ

(0)
2 (r)

)
D̂l1 (qr) sin

(
δ̂l1 (qr) + δ

(0)
2 (r)

)
,

I
(0)
31 = 1

2q

∫ ∞

0

sin 2ε(0)(r) dr

sin
(
δ

(0)
1 (r) − δ

(0)
2 (r)

)V
(0)

1 (r)

× D̂2
l1

(qr) sin
(
δ̂l1 (qr) + δ

(0)
1 (r)

)
sin

(
δ̂l1 (qr) + δ

(0)
2 (r)

)
,

I
(0)
32 = − 1

2q

∫ ∞

0

sin 2ε(0)(r) dr

sin
(
δ

(0)
1 (r) − δ

(0)
2 (r)

)V
(0)

2 (r)

× D̂2
l2

(qr) sin
(
δ̂l2 (qr) + δ

(0)
1 (r)

)
sin

(
δ̂l2 (qr) + δ

(0)
1 (r)

)
,

I
(0)
33 = − 1

2q

∫ ∞

0

V
(0)
T (r)D̂l1 (qr)D̂l2 (qr) dr

sin
(
δ

(0)
1 (r) − δ

(0)
2 (r)

)
×

[
cos 2ε(0)(r) sin

(
δ̂l1 (qr) + δ

(0)
1 (r)

)
sin

(
δ̂l2 (qr)

+ δ
(0)
2 (r)

) −1

2
(cos 2ε(0)(r) − 1) sin

(
δ

(0)
1 (r)

− δ
(0)
2 (r)

)
sin(δ̂l1 (qr) − δ̂l2 (qr))

]
. (42)

By analogy with the one-channel case, the following general-
ization for the OP is derived:

V (1)(r) =
(

(1 + iα1)V (0)
1 (1 + iα3) V

(0)
T

(1 + iα3)V (0)
T (1 + iα2)V (0)

2

)
. (43)

Evidently, the phase equations for this potential are

δ
(1)
1 = (1 + iα1)I (1)

11 + (1 + iα2)I (1)
12 + (1 + iα3)I (1)

13 , (44)

δ
(1)
2 = (1 + iα1)I (1)

21 + (1 + iα2)I (1)
22 + (1 + iα3)I (1)

23 , (45)

ε(1) = (1 + iα1)I (1)
31 + (1 + iα2)I (1)

32 + (1 + iα3)I (1)
33 . (46)

Integrals I
(1)
ij are defined as I

(0)
ij in (40)–(42) but through

δ
(1)
1 (r), δ(1)

2 (r), and ε(1)(r) instead of δ
(0)
1 (r), δ(0)

2 (r), and ε(0)(r).
We consider (37)–(46) in a manner like (32) and come to

the following equations:


(1) + X(1) ≈ (1 + iα1)(
(0) + X(0)), (47)


(1) − X(1) ≈ (1 + iα2)(
(0) − X(0)), (48)

Y (1) ≈ (1 + iα3)Y (0), (49)

where

�(i) = δ
(i)
1 − δ

(i)
2 , 
(i) = δ

(i)
1 + δ

(i)
2 , (50)

X(i) = (tan �(i) + �(i)) cos 2ε(i)∗ − tan �(i) cos 2ε(i), (51)

Y (i) = (tan �(i) + �(i)) sin 2ε(i)∗∗ − tan �(i) sin 2ε(i), (52)

cos2ε(i)∗ =
∫ ∞

0 cos2ε(i)(r)(1 + cos−2�(i)(r)) d�(i)(r)
dr

dr

�(i) + tan�(i)
, (53)

sin 2ε(i)∗∗ =
∫ ∞

0 sin 2ε(i)(r)(1 + cos−2 �(i)(r)) d�(i)(r)
dr

dr

�(i) + tan �(i)
,

for i = 0, 1. (54)

Eigenphases δ̂
(0)
i , i = 1, 2, and mixing parameter ε̂(0) are real,

and they define a unitary S(0) matrix,
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S(0) = S
(
δ

(0)
1 , δ

(0)
2 , ε(0)

) =
(

cos2 ε(0)e2 iδ1
(0) + sin2 ε(0)e2 iδ2

(0)
cos ε(0) sin ε(0)

(
e2 iδ1

(0) − e2 iδ2
(0))

cos ε(0) sin ε(0)
(
e2 iδ1

(0) − e2 iδ2
(0))

sin2 ε(0)e2 iδ1
(0) + cos2 ε(0)e2 iδ2

(0)

)
. (55)

Eigenphases δ̂
(1)
i and mixing parameter ε̂(1) are complex, but

they define the S(1) matrix in the regular way

S(1) = S
(
δ

(1)
1 , δ

(1)
2 , ε(1)). (56)

The complex eigenphases δ
(1)
i and mixing parameter ε(1)

are defined by the experimental S matrix (S ≡ S(1)). For
|Im ε(1)| � |Re ε(1)| � 1,

Re δ
(1)
i ≈ δ

(0)
i , i = 1, 2; Re ε(1) ≈ ε(0). (57)

Im δ
(1)
i ≈ αiδ

(0)
i , i = 1, 2;

Im ε(1) ≈
(

α1δ
(0)
1

δ
(0)
2 − δ

(0)
1

− α2δ
(0)
2

δ
(0)
2 − δ

(0)
1

+ α3

)
ε(0). (58)

We calculate αi, i = 1, 2, 3 from (57) and (58) and thereafter
improve them using (47)–(54).

The above derivation can be easily extended to the general
Lax-type interaction. Suppose that the scattering composite
particles consist of some q particles. The Lax OP is the zero-
range double-folding (DF) potential,

VLax(r) = −v

2
(ξ + i)σqq

T

∫
ρT (�r ′)ρP (�r − �r ′)d �r ′, (59)

where v is the relative velocity between two scattering
composite particles, σ

qq

T is a total qq cross section averaged
over possible q states of the target qT and over possible q states
of the projectile qP . ρP and ρT are the projectile and target
densities, and ξ = Re [f ] /Im [f ]. f = f qq(E, 0) is the qT qP

forward elastic amplitude evaluated at the same velocity. In the
case of hadron-hadron scattering, the q particles are quarks.
Therefore, values of σ

qq

T and ξ cannot be experimentally
measured. Then the Lax OP is

V (r) = (β + iγ ) V0(r), (60)

where both coefficients β and γ are energy dependent. It is
generally assumed that at low energies the elastic scattering is
described by a local energy-independent potential. Therefore,
we suppose that β ≡ 1 and calculate γ ≡ α from (35).

The simple Lax interaction (59) may be complicated
for q particles with spin [19,20]. It may contain all terms
corresponding to the possible terms of the averaged qT qP

amplitude. At the considered energies, the q particles (partons)
for hadron are the constituent quarks. The average includes
averages over spins, colors, and flavors of qT and over spins,
colors, and flavors of qP separately. Then we approximate
the amplitude by setting equal to zero all terms linear in
color operators of qT and linear in color operators of qP .
Thus the confinement term vanishes for a hadron-hadron
scattering. Similarly, we set equal to zero all terms linear
in target (projectile) spin operator for target (projectile) with
zero spin. The OLGA interaction may include the central
VC and spin-orbit VSL terms in case of π−N scattering. The

DF nucleon-nucleus interactions [29] and deuteron-nucleus
interactions [30] usually include these terms. There are tensor
VT and other possible terms in the case of NN interaction.
Therefore, the DF potential may appear as

VDF(Elab, L, S, J, r)=AvC(r) + Bvss(r)(s1 · s2)

+ CvSL(r)(S ·L) + DvT (r)Ŝ12 + · · · .
(61)

The multipliers A,B,C, . . . are proportional to sums of
various qT qP amplitudes. The radial dependence of all terms
is determined by the central part

vss(r) ∼ vC(r), vSL(r) ∼ 1

p2

dvC(r)

rdr
, . . . . (62)

The first two terms are of uniform radial dependence in (61),
other terms may spoil the proportionality of the real and
imaginary parts of the DF potential. All noncentral terms
decrease with increase of the energy, and the L independence of
the Lax interaction is a result of the zero-range approximation
of the qT qP interaction, in which the angular dependence of
the fqq(�q) is neglected [31].

The commonly accepted model of the low-energy NN
interaction is a “minimal” nonlocality, i.e., L, S, J dependent
and energy-independent real r-space potential V (L, S, J, r).
This concept is applicable to other hadron-hadron interactions.
Therefore, the following model combines the low-energy,

0.5 1.0 1.5

r (fm)

-3000

-2000

-1000

0

V
(r

) 
 (

M
eV

)

NN 3S1
NN 3D1
NN VT
NN 1S0 Old fit
NN 1S0 New fit
0.1V(r)  π− N S31

FIG. 1. Real parts of NN and π−N potentials. 1S0 NN: thick solid
line, inversion from new fit of Fig. 2; thin solid line, inversion from
old fit of Fig. 2. 3SD1 NN: long dashed line, VCS(r) (3S1); short dashed
line, VCD(r) (3D1); dotted line, Vtens(r) potential. π−N S31 potential:
dashed-three-points, line.
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TABLE I. Deuteron properties.

Exp.a Calculation with MP

Energy (MeV) 2.22458900(22) 2.2246b

Q (fm2) 0.2859(3) 0.277c

AS (fm−1/2) 0.8802(20) 0.8802
rd (fm) 1.9627(38) 1.956
ηd/s 0.02714 0.02714
µd 0.857406(1) 0.859c

aFrom Ref. [37].
bRelativistic correction included.
cMeson exchange currents are not included.

general DF model (61) and simplest DF model (59):

V =



V (L, S, J, r), for Elab < Elocal

VDF(Elab, L, S, J, r), for EDF < Elab < ELax

VLax(Elab, r), for ELax < Elab.

(63)

Is there a gap between Elocal and EDF? It depends on the
required precision of the description. The continuity of qT qP

amplitudes demands independence of Re VDF(L, S, J, r) on
the energy Elab in the case when there is no gap.

We apply the developed method of inversion to the analysis
of NN and π−N data up to energies at which relativistic effects
are essential. We take into account these effects in the frames
of the relativistic quantum mechanics of systems with a fixed
number of particles [32]. A system of two particles is described
by the wave function, which is an eigenfunction of the mass
operator. In this case, we may represent this wave function as
a product of the external and internal wave functions [33,34].
The internal wave function χ is also an eigenfunction of the
mass operator and satisfies the equation[√

q̂2 + m2
1 +

√
q̂2 + m2

2 + Vint

]
χ = Mχ, (64)

where Vint is some interaction operator acting only through
internal variables (spins and relative momentum), and q̂ is a
momentum operator of one of the particles in the center of mass
frame (relative momentum). Rearrangement of (64) gives

[q̂2 + 2mV ]χ = q2χ, (65)

where

q2 = M2

4
− m2

1 + m2
2

2
+

(
m2

1 − m2
2

)2

4M2
, (66)
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FIG. 2. Phase shifts and mixing parameter. Results for optical potentials are indistinguishable from results for real potentials. PWA data
are from Refs. [35,36]. For S waves, the original data set from Refs. [35,36] is raised 180◦. To leave the S matrix unchanged, we change the
sign of the mixing parameter ε1 for the MP. The SP00 and SP04 data are from Ref. [36].
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FIG. 3. Left: Inelasticity parameters ρ for 1S0 NN wave. PWA data are from [35]. Right: Parameter α for the same wave.

m is taken as a nonrelativistic reduced mass

m = m1m2

m1 + m2
, (67)

and V is an operator acting like Vint only through internal
variables. In the case of two particles with equal masses m1 =
m2 ≡ 2m,

q2 = M2

4
− 2m2. (68)

Equation (65) is identical in form to the Schrôdinger
equation. The quasicoordinate representation corresponds to
the realization q = −i ∂

∂r , V = V (r). This formal coincidence
allows us to apply our inversion algorithm.

IV. RESULTS AND DISCUSSION

We applied the described algorithm of inversion to recon-
struction of the nucleon-nucleon potential. We chose for our
analysis the singlet 1S0 wave that must be described by simplest
DF potentials in the Lax form and the coupled 3SD1 waves
where only D-wave potential may contain more complex terms

with different radial dependence of the real and imaginary
parts. As input data for this reconstruction, we used modern
phase shift analysis data (single-energy solutions) up to
1100 MeV for the 3SD1 state and up to 3 GeV for the
1S0 state of the NN system [35,36]. The deuteron properties
were taken from Ref. [37]. These data allow us to construct
Moscow-type NN partial potentials sustaining forbidden bound
states. In this way, we constructed the NN optical potentials
for 1S0 and 3SD1 partial waves. These potentials describe
part of the deuteron properties and the phase shift analysis
data by the construction. The 1S0 phase shifts of MP begin
from π . Parameters of the forbidden bound state for the 1S0

partial MP were fitted to make this potential close to the
3S1 potential. The 3S0 phase shifts of the MP begin from
2π . The mixing parameter ε1 of the MP differs from that
of the traditional repulsive core potential by sign. The real
parts of the constructed partial potentials are presented in
Fig. 1. The calculated values of the deuteron properties are
compared with the experimental data [37] in Table I. Three
parameters are fixed as input data of inversion problem for
the 3SD1 state. These parameters are energy, AS , and ηd/s .
The last two define elements of the M1 matrix. This matrix
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FIG. 4. Same as Fig. 3, but for 3SD1 waves; PWA data are from Ref. [36].
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FIG. 5. T matrix and α for S31 π−N ; data are from [36]. Phase
shift begins from 180◦ (potential with forbidden state).

corresponds to the deuteron state. We have two independent
elements of the M2 matrix. This matrix corresponds to the
forbidden state, and its elements as well as energy of the
forbidden state are free. One of the elements and energy of
the forbidden state were fitted to make the 3S1 potential close
to the 1S0 potential. The second independent element of M2

was fitted to make the potential matrix (18) regular at r = 0.
Our numerical experiments show that such regularization is
always possible. This possibility is a direct consequence of
the Marchenko transformation method [2] which converts
an SS matrix potential into an SD matrix potential (there
is a family of phase equivalent SD matrix potentials with
different behavior at r = 0). Figures 1 and 2 demonstrate
how changes of δ influence the partial potential for the 1S0

wave.
As another example of application, we analyzed the modern

S31 π−N data up to 2 GeV [36]. This S wave must be described
by the Lax potential. Because resonances occur in this wave,
we extracted the potential phase shifts and constructed the
corresponding OP. Its real part is presented in Fig. 1. This

potential sustains a forbidden state. Energy and asymptotic
constant of the state were fitted to make the potential close to
a Gaussian (quark model motivated).

From (35) and (47)–(54), we calculate α and αi(i = 1, 2, 3)
which define the imaginary parts of potentials. α’s predicted
by (35) and (47)–(54) may be improved by a simple numerical
method. Predicted and improved values of α are shown in
Figs. 3–5. “Calc. I” means calculations from predicted values
of (35); “Calc. II” means calculations from refined values.

We calculated the energy dependence of α from the PWA
data [36] for some NN and π−N partial waves. Parameter
α = 1/ξ = Im [f ] /Re [f ] is an averaged characteristic of the
qT qP scattering. Therefore, it must not be equal for various
hadron-hadron systems at equal relative velocities. But in the
OLGA, this parameter must be independent of the orbital
momentum.

Figure 6 shows values of α calculated for single S and P NN
partial waves from the PWA data of Ref. [36]. We calculated
these parameters for two different models. First model is the
repulsive core NN partial potentials (RCP), and second model
is the MP (phase shifts of Ref. [36] are raised by 180◦). Results
of Fig. 6 are not conclusive. α’s for 1S0 and 3P0 waves coincide
within the accuracy of the PWA beginning from Elab ≈
1.5 GeV for RCP as well as for MP. Why do α values for the 3P1

wave presented in Fig. 6 differ from the results for the other two
waves? There are two conceivable reasons: (i) the dependance
of α on angular momentum J and (ii) wrong single energy
values for the 3P1 wave. The last reason we consider as the most
likely one. In Refs. [38,39], multiple solutions were found at
most energy-angle points. There are substantial differences
between PWA results of Refs. [36,39] and of Ref. [38] for
isovector partial waves above 1 GeV [39]. But the results for
two isovector partial waves, 1S0 and 3P0, are very close.

We examine the π−N PWA data of Ref. [36] in Fig. 7.
We consider two possible cases which are compatible with
the PWA data. In the first case, the phase shifts for J = 1/2
partial waves begin from 0◦. In the second case, the phase
shifts begin from 180◦. This assumes forbidden states in these
partial waves. The results favor the last concept. In this case,
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FIG. 6. Parameter α for NN waves predicted by Eq. (35). Left: from data of Ref. [36] (RCP in S and P waves). Right: from data of Ref. [36],
but with phase shifts raised up by 180◦ (MP in S and P waves).
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FIG. 7. Parameter α for π−N waves predicted by Eq. (35). Left: from data of [36]. Right: from data of [36] but with phase shifts raised up
by 180◦ (forbidden state, FS, in S and P waves).

the calculated α for all waves is independent on S, L, J from
Elab ≈ 1.3 GeV.

Our analysis shows that at energies above 1.5 GeV (NN) and
above 1.2 GeV (π−N ), the Lax OP may be valid. Therefore,
the general DF potential (61) may be valid at lower energies.

Equation (59) implies that the real and imaginary parts of
the Lax interaction do not change sign. Thus, the imaginary
part is absorptive everywhere. In our calculations, the imag-
inary parts of the OP are absorptive from 0 to 1.6 fm
at least. The NN D wave is suppressed in this region.
Small virtual creation at distances r > 1.6 fm is a result of
small oscillations of the potentials. These oscillations are
characteristic of hadron-hadron inversion potentials [8] (see
also NN, π−N , and K+N inversion potentials of this group

in numeric form [40]). Funk, von Geramb, and Amos [8]
point out that “the quantum inversion of the SM94 solution
(NN) does not give in low partial waves OPEP except on
average that might be interpreted as signaling the importance
of nonlocality.” We may only confirm this statement. On the
other hand, the oscillations are inessential for energies above
the corresponding thresholds due to uncertainties in PWA.
Therefore, the oscillating tails may be cut for these energies
without any deterioration of the data description.

Extension of our model to the general case of the DF (61)
is model dependent. In this case, we have free parameters that
may be calculated in a microscopical quark model of hadrons
only. All potentials and inelasticity multipliers (α’s) can be
accessed via a link to the website [41].
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