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Proton radii of 4,6,8He isotopes from high-precision nucleon-nucleon interactions
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Recently, precision laser spectroscopy on 6He atoms determined accurately the isotope shift between 4He and
6He and, consequently, the charge radius of 6He. A similar experiment for 8He is under way. We have performed
large-scale ab initio calculations for 4,6,8He isotopes using high-precision nucleon-nucleon (NN) interactions
within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton
root-mean-square (rms) radii of 4He and 6He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment
and predict the 8He point-proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the
recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates
the charge radii.
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Recent advances in the theory of the atomic structure of
helium [1] as well as in the techniques of isotopic shift
measurement made it possible to determine accurately the
charge radius of 6He [2]. Precision laser spectroscopy on
individual 6He atoms confined and cooled in a magneto-optical
trap was performed and measured the isotope shift between
6He and 4He. With the help of precise quantum mechanical
calculations with relativistic and QED corrections [3] and from
the knowledge of the charge radius of 4He (1.673(1) [4]),
it was possible to determine the charge radius of 6He to be
2.054 ± 0.014 fm [2]. The large difference between the 4He
and 6He charge radii is due to the extra two loosely bound
neutrons in 6He that form a halo [5]. A similar experiment to
determine the charge radius of 8He is under way [6].

It is a challenge for ab initio many-body methods to
calculate the nuclear radii with an accuracy comparable to
current experimental accuracy and test in this way the nuclear
Hamiltonians used as the input of ab initio calculations.
At present, there are two ab initio approaches capable of
describing simultaneously the 4He, 6He, and 8He isotopes
starting from realistic internucleon interactions. One is the
Green’s function Monte Carlo (GFMC) method [7] and the
other is the ab initio no-core shell model (NCSM) [8]. In
this Rapid Communication, we calculate the ground-state
properties of 4He, 6He, and 8He within the NCSM. We test
two vastly different accurate nucleon-nucleon (NN) potentials,
the CD-Bonn [9] and the INOY (Inside Nonlocal Outside
Yukawa) [10,11].

In the NCSM, we consider a system of A point-like
nonrelativistic nucleons that interact by realistic two- or
two-plus-three-nucleon interactions. The calculations are per-
formed using a finite harmonic oscillator (HO) basis. As in
the present application we aim at describing loosely bound
states, it is desirable to include as many terms as possible
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in the expansion of the total wave function. By restricting
our study to two-nucleon (NN) interactions, even though the
NCSM allows for the inclusion of three-body forces [12], we
are able to maximize the model space and to better observe the
convergence of our results. The NCSM theory was outlined in
many papers. Here we only repeat the main points.

We start from the intrinsic two-body Hamiltonian for the
A-nucleon system HA = Trel + V , where Trel is the relative
kinetic energy and V is the sum of two-body nuclear and
Coulomb interactions. Since we solve the many-body problem
in a finite HO basis space, it is necessary that we derive
a model-space dependent effective Hamiltonian. For this
purpose, we perform a unitary transformation [8,13–15]
of the Hamiltonian, which accommodates the short-range
correlations. In general, the transformed Hamiltonian is an
A-body operator. Our simplest, yet nontrivial, approximation
that we employ in this work is to develop a two-particle
cluster effective Hamiltonian, while the next improvement
is to include three-particle clusters, and so on. The effective
interaction is then obtained from the decoupling condition
between the model space and the excluded space for the two-
nucleon transformed Hamiltonian. The resulting two-body
effective Hamiltonian depends on the nucleon number A, the
HO frequency �, and Nmax, the maximum many-body HO
excitation energy defining the model space. It follows that
the effective interaction, which is translationally invariant,
approaches the starting bare interaction for Nmax → ∞.
Consequently, by construction the method is convergent to
the exact solution. At the same time, the NCSM effective
interaction method is not variational as higher-order terms
may contribute with either sign to total binding.

Once the effective interaction is derived, we diagonalize
the effective Hamiltonian in a Slater determinant (SD) HO
basis that spans a complete Nmaxh̄� space. We have reached
model spaces of Nmax = 22, 16, and 12 for 4He, 6He, and
8He, respectively. This is a highly nontrivial problem. The
dimensions are large, e.g., 7 × 108 for 6He, although still
smaller than in standard shell model calculations, e.g., the
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E. CAURIER AND P. NAVRÁTIL PHYSICAL REVIEW C 73, 021302(R) (2006)

FIG. 1. (Color online) The 6He ground-state energy dependence on the HO frequency for different model-spaces sizes from Nmax = 0 to
Nmax = 16 obtained using the CD-Bonn 2000 NN potential. The inset demonstrates how the values at the minima of each curve converge with
increasing Nmax.

dimension is 109 for 56Ni in full fp-shell. The first difficulty
is due to the large number of shells. In the Nmax = 22 model
space, there are 276 nlj-shells corresponding to 4600 nljm
individual states. This can be compared to four and 20,
respectively, for 56Ni in full fp-shell. This means that one has
to handle a huge number of operators. Therefore, it has been
necessary to write a specialized version of the shell model code
ANTOINE [16,17], suitable for the NCSM applications, see,
e.g., Refs. [18,19]. The code works in the M scheme for basis
states, and uses the Lanczos algorithm for diagonalization.
Its basic idea is to write the basis states as a product of two
Slater determinants, a proton one and a neutron one. Matrix
elements of operators are calculated separately for proton and
neutron subspaces (one-body for the proton-neutron, two-body
for the proton-proton and neutron-neutron interactions). The
performance of the code is the best when the ratio between
the number of proton plus neutron SD and the dimension
of the matrix is the least. It happens when the number of
proton SD equals the number of neutron SD. To highlight the
differences between the standard and the NCSM calculations,
we note that for example, in 56Ni there are 125970 neutron
SD, while in 6He and 8He there are 19.5 × 106 and 43 × 106

neutron SD, respectively. Further, for example, in the basis of
48Ca the 12022 neutron SD with M = 0 produce 144528484
states in the full basis. In 8He, the 8986408 neutron SD with
M = 0 produce only 56216057 states in the full basis. Another
comment concerning the difficulty of NCSM calculations is
that the matrices become less sparse when the number of
particles decrease. To keep the comparison with the standard
shell model, in 4He we have a dimension 12.5 smaller than in
56Ni but 1.5 times more nonzero matrix elements. For all these
reasons, NCSM calculations with large Nmax model spaces are
difficult but still feasible with a computer with large RAM
memory and disk capacity. As a last example, one Lanczos
iteration in 6He takes 7 h while the same in 56Ni takes 70 min
on an Opteron machine.

We test two different, high-precision (i.e., such that provide
perfect fit to two-nucleon data) NN interactions: the CD-Bonn
2000 [9], and the INOY [10,11] potentials.

The CD-Bonn 2000 potential [9] is a charge-dependent NN
interaction based on one-boson exchange. It is described in
terms of covariant Feynman amplitudes, which are nonlocal.
Consequently, the off-shell behavior of the CD-Bonn interac-
tion differs from local potentials which leads to larger binding
energies in nuclear few-body systems.

A new type of interaction, which respects the local behavior
of traditional NN interactions at longer ranges but exhibits a
nonlocality at shorter distances, was recently proposed by Do-
leschall et al. [10,11]. The authors explore the extent to which
effects of multinucleon forces can be absorbed by nonlocal
terms in the NN interaction. They investigated if it is possible
to introduce nonlocality so that it correctly describes the three-
nucleon bound states, while still reproducing NN scattering
data with high precision. The so called IS version of this inter-
action, introduced in Ref. [10], contains short-range nonlocal
potentials in 1S0 and 3S1 − 3D1 partial waves while higher
partial waves are taken from Argonne v18. We are using the IS-
M version, which includes nonlocal potentials also in the P and
D waves [11]. For this version, the on-shell properties of the
triplet P-wave interactions have been modified in order to im-
prove the description of 3N analyzing powers. Unfortunately,
this gives a slightly worse fit to the Nijmegen 3P phase shifts.

We performed 4He calculations both in the Slater de-
terminant basis using the ANTOINE code and model spaces
up to Nmax = 22 within the two-body effective interaction
approximation and the Jacobi-coordinate HO basis using the
Manyeff code [13] with model spaces up to Nmax = 20 within
either the two-body effective interaction approximation or
the three-body effective interaction approximation (with both
approximations converging to the same result). The ground-
state energy convergence is good for both NN potentials. For
the CD-Bonn 2000, this can be seen in Fig. 1 of Ref. [20].
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TABLE I. Point-proton (rp) and point-neutron (rn) rms radii and
binding energies (EB) of 4,6,8He isotopes. The calculated values were
obtained within the ab initio NCSM. The experimental values are
from Refs. [2,4,5,21–24].

rp [fm] Expt. CD-Bonn 2000 INOY

4He 1.455 (1) 1.45 (1) 1.37 (1)
6He 1.912 (18) 1.89 (4) 1.76 (3)
8He 1.88 (6) 1.74 (6)

rn [fm] Expt. CD-Bonn 2000 INOY

6He 2.59–2.85 2.67 (5) 2.55(10)
8He 2.69 (4) 2.80 (10) 2.60 (10)

EB [MeV] Expt. CD-Bonn 2000 INOY

4He 28.296 26.16 (6) 29.10 (5)
6He 29.269 26.9 (3) 29.38 (10)
8He 31.408 (7) 26.0 (4) 30.30 (30)

Our 4He binding energy and point-proton root-mean-square
(rms) radii results are summarized in Table I. We note
that the point-proton rms radius is related to the proton
charge rms radius as [2]〈r2

p〉 = 〈r2
c 〉 − 〈R2

p〉 − 〈R2
n〉(N/Z),

with (〈R2
p〉)1/2 = 0.895(18) fm [25], the charge radius of the

proton and 〈R2
n〉 = −0.120(5) fm2 [26], the mean-square-

charge radius of the neutron. We observe that the CD-Bonn
2000 underbinds 4He by about 2 MeV, but describes the
point-proton rms radius in agreement with experiment. The
INOY NN potential, on the other hand, overbinds 4He by
800 keV and underestimates the point-proton rms radius. We
note that our INOY 4He results are in perfect agreement with
those obtained by the Faddeev-Yakubovski calculations of
Ref. [27].

Our calculations for 6He and 8He nuclei were performed in
model spaces up to Nmax = 16 and Nmax = 12, respectively,
for a wide range of HO frequencies.

The 6He ground-state energy dependence on the HO
frequency for different model spaces is shown in Fig. 1 for
the CD-Bonn 2000. In Fig. 2, we show the 6He ground-state
energy dependence on the model-space size for different

FIG. 2. (Color online) The 6He ground-state energy dependence
on the model space size for different HO frequencies from h̄� =
11 MeV to h̄� = 16 MeV obtained using the INOY NN potential.

FIG. 3. (Color online) The same as in Fig. 1, but for 8He and
model spaces from Nmax = 0 to Nmax = 12.

HO frequencies obtained using the INOY NN potential. We
observe a quite different convergence trend for the two
potentials. For the INOY, the convergence is very uniform
with respect to the HO frequency with systematic changes
with Nmax. The convergence with increasing Nmax is evident.
We extrapolate, e.g., assuming an exponential dependence on
Nmax as E(Nmax) = E∞ + a exp(−bNmax), that the converged
INOY ground-state energy will slightly overbind 6He. The
ground-state energy convergence for the CD-Bonn 2000 is
quite different with a stronger dependence on the frequency,
with minima shifting to lower frequency with basis size
increase, and an overall weaker dependence on Nmax as seen
in the inset of Fig. 1. Contrary to the INOY, the CD-Bonn
underbinds 6He by more than 2 MeV, which is typical for the
standard high-precision NN potentials [7].

The same ground-state energy dependencies for 8He are
shown in Figs. 3 and 4. Here, the INOY extrapolation is
more difficult as, due to the complexity of the calculations,
we are limited to model spaces up to Nmax = 12. Our binding
energy results are summarized in Table I. The CD-Bonn 2000
and the INOY NN potentials underbind 8He by about 5 and
1 MeV, respectively. Our calculation suggest that the CD-
Bonn 2000 predicts 6He bound but 8He unbound. The INOY
predicts both 6He and 8He bound. The isospin dependence
of the binding energies is wrong for the CD-Bonn. A very
similar situation was found for the Argonne NN potentials in

FIG. 4. (Color online) The same as in Fig. 2, but for 8He and HO
frequencies from h̄� = 12 MeV to h̄� = 17 MeV.
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FIG. 5. (Color online) The 6He point-proton rms radius depen-
dence on the model space size for different HO frequencies from
h̄� = 8 MeV to h̄� = 14 MeV obtained using the CD-Bonn 2000.
The experimental value is from Ref. [2].

Ref. [7]. Those NN potentials, at the same time, predict also
the 6He unbound [7]. The CD-Bonn NN potential must be
augmented by three-nucleon interaction to achieve a correct
description of binding energies. The INOY NN potential
improves on the isospin dependence of binding energies.
As this potential absorbs some three-nucleon effects in its
nonlocal part, it supports the expectation that a three-nucleon
interaction should improve the isospin dependence of binding
energies. At the same time, a three-nucleon interaction can
hardly be added to the INOY NN potential as it was already
fine-tuned to reproduce A = 3 binding energies. Therefore, it
is difficult to see, how to correct its still not quite right binding
energy predictions for the He isotopes.

Our point-nucleon rms results are presented in Figs. 5–9
and summarized in Table I. In the figures, we show the
model-space size dependence of the rms radii for different
HO frequencies. A general feature is a decrease of the
HO frequency dependence with increasing model-space size
defined by Nmax. In all cases, the rms radii exhibit convergence.
The 6He point-proton rms radius experimental value is shown
as a dashed line in Figs. 5 and 7 with the dotted lines
indicating the experimental error. The CD-Bonn 2000 6He
point-proton rms radius, Fig. 5, stabilizes at Nmax = 16 for

FIG. 6. (Color online) The 6He point-neutron rms radius depen-
dence on the model space size for different HO frequencies from
h̄� = 8 MeV to h̄� = 14 MeV obtained using the CD-Bonn 2000
NN potential.

FIG. 7. (Color online) The same as in Fig. 5, but for the INOY
NN potential and HO frequencies from h̄� = 11 MeV to h̄� =
16 MeV.

the HO frequencies of h̄� = 9 and 10 MeV, while it is still
decreasing for h̄� = 8 MeV and it is increasing for the HO
frequencies higher than h̄� = 10 MeV. Clearly, the stable
result is very close to the experimental value. We estimate the
error of our calculation at Nmax = 16 from the HO frequency
dependence. We note that we published the 6He CD-Bonn
point-proton rms radii in Ref. [28]. Those results were obtained
using the HO frequency of h̄� = 13 MeV in Nmax = 6, 8, and
10 model spaces. Our Nmax = 10 value, 1.763 fm, was then
compared to experiment in Ref. [2]. We can see from Fig. 5 that
the radius is still increasing with Nmax for that frequency and
reaches, e.g., 1.819 fm at Nmax = 16. From our present results
obtained up to Nmax = 16 for a wide range of HO frequencies
we arrive at the CD-Bonn 2000 point-proton rms radius of
1.89(4) fm that, taken into account the error bars, agrees with
the experimental value of 1.912(18) fm. The point-neutron rms
radius shows a stronger dependence on the HO frequency and
a slower convergence as seen in Fig. 6. This is to be expected
as the neutron halo is extended and a large HO basis is needed
to describe it properly. Nevertheless, we observe a reasonable
stability of the neutron rms radius at lower HO frequencies
that allows us to estimate its CD-Bonn 2000 value to be
2.67(5) fm.

FIG. 8. (Color online) The 8He point-proton rms radius depen-
dence on the model space size for different HO frequencies from
h̄� = 10 MeV to h̄� = 15 MeV obtained using the CD-Bonn 2000
NN potential.
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FIG. 9. (Color online) The same as in Fig. 8, but for the INOY
NN potential and HO frequencies from h̄� = 12 MeV to h̄� =
17 MeV.

We observe a better convergence for the INOY NN potential
not only for the binding energies but also for the radii.
This is apparent from Fig. 7. For this NN potential, we find
the 6He point-proton rms radius to be 1.76(3) fm. This is
significantly less than in experiment. Clearly, the INOY NN
potential underpredicts both the 4He and 6He point-proton rms
radii.

Our 8He point-proton rms radius results are shown in Figs. 8
and 9 for the CD-Bonn 2000 and INOY potentials, respectively.
Based on the basis size and the HO frequency dependence,
we predict the 8He point-proton rms radius to be 1.88(6) fm
based on our CD-Bonn results. The INOY NN potential gives
a smaller value, 1.74(6) fm, consistently with the smaller 4He

and 6He results. In both cases, the 8He point-proton radius
is slightly smaller then the corresponding one in 6He. Taking
into account the uncertainties, however, the differences are
insignificant.

In conclusion, we performed large-scale ab initio NCSM
calculations for 4He, 6He, and 8He isotopes. We used the
high-precision CD-Bonn 2000 and the INOY NN potentials
and obtained results for binding energies and point-nucleon
rms radii. Using the CD-Bonn 2000, we obtained the point-
proton rms radii of 4He and 6He in agreement with experiment
and predict the 8He point-proton rms radius to be 1.88(6) fm.
The INOY NN potential, on the other hand, underestimates
both 4He and 6He experimental point-proton rms radii. The
CD-Bonn 2000 underbinds the He isotopes as is typical for the
standard high-precision NN interactions. It must be augmented
by a three-nucleon interaction. It is conceivable that this can be
done in a way that will not change the charge radii. The INOY
NN potential gives binding energies closer to experiment.
However, it is not obvious, how the charge radii results can
be brought to agreement with experiment when using this
potential. It can hardly be augmented by a three-nucleon
interaction as it was already fine-tuned to describe the A =
3 system.
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