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Thermal time scales in a color glass condensate
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In a model of relativistic heavy-ion collisions wherein the unconfined quark-gluon plasma is condensed into
glass, we derive the Vogel-Fulcher-Tammann cooling law. This law is well known to hold true in condensed
matter glasses. The high-energy plasma is initially created in a very hot negative temperature state and cools
down to the Hagedorn glass temperature at an ever decreasing rate. The cooling rate is largely determined by the
QCD string tension derived from hadronic Regge trajectories. The ultimately slow relaxation time is a defining
characteristic of a color glass condensate.
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I. INTRODUCTION

There has been considerable recent interest [1–5] in mea-
surements of a possible quark-gluon plasma whose properties
may be probed by relativistic heavy-ion collisions (RHICs).
Central to the study of a possible unconfined color plasma
is the time scale necessary to form this thermodynamic fluid
phase. The central question concerns how the phase formation
time compares with the collision time of the heavy-ion probes.

The apparent experimentally observed suppression of high
transverse momentum jet production has led to the notion that
thermal formation times may be longer than might be at first
expected. The notion of an unconfined color fluid plasma was,
for some RHIC energies, replaced by the notion of a color glass
condensate [6–13] (CGC). In simple terms, thermal relaxation
times in glasses are much longer than thermal relaxation times
in fluids. If the thermal relaxation times were not much shorter
than the RHIC collision times, then the observed heavy quark
suppression would become understandable.

The thermal relaxation time in condensed matter glasses
follows a well-known and long-established law due to Vogel
[14], Fulcher [15], and Tammann [16] (VFT). The thermal
relaxation time depends on temperature according to the VFT
rule [17]

τ ≈ τ∞ exp

[
�

kB(T − Tg)

]
(T > Tg), (1)

wherein � is a thermal activation energy and Tg is a dynamical
glass temperature. Our purpose is to point out that the VFT
equation (1) is expected to hold true for glass phases obtained
from QCD-inspired models. The derivation of Eq. (1) will be
given, and the method for determining the parameters will
thereby be provided.

The notion that the perturbation theory QCD “vacuum”
is in reality an excited state at a negative temperature [18]
is introduced in Sec. II. In terms of the dynamic dielectric
response function ε, the imaginary part is negative for the
QCD vacuum and positive for the QED vacuum. It is the
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negative temperature feature of the perturbation theory QCD
vacuum that allows for the avoidance of Landau ghosts [19,20].
The color screening ε directly yields a QCD string potential
between interacting quarks. In Sec. III we discuss the QCD
strings whose tension σ is empirically described by hadronic
Regge trajectories; in Sec. IV, the dynamical glass temperature
Tg will be explored via the Hagedorn [21] entropy. We
estimate a glass temperature and an activation energy, respec-
tively, of

kBTg =
√

3h̄cσ

4π
≈ 207 MeV and �≈ 725 MeV. (2)

At its inception, the Hagedorn temperature was viewed as
the largest possible temperature that could be achieved by
smashing hadrons together at very high center-of-mass energy.
Currently the use of QCD perturbation theory for very high
energies implies, for short time scales, unconfined color, i.e.,
almost free quarks and gluons.

For high-energy RHIC events, the almost free initially
produced quarks and gluons constitute a very hot plasma
at negative temperature. The plasma cools at first to even
more negative temperatures reaching T → −∞ and entering
at T → +∞. In other words, it is the negative inverse
temperature β ≡ (kBT )−1 (and not T ) that passes through zero
when you cool a system that starts at a negative temperature.
Now the plasma further quickly cools from ∞ > T � Tg,

heading toward the Hagedorn temperature Tg from above.
But, in accordance with VFT glass asymptotic equation (1),
the cooling relaxation time grows exponentially ever larger,
τ → ∞ as T → Tg + 0+. The collision ends before the
temperature can get below the Hagedorn temperature. The
glass never fully hardens, as discussed in the concluding
Sec. V.

II. PERTURBATION THEORETICAL QCD

Recall the running coupling constant in QED, i.e.,

α(Q2) = e2

4πh̄cε(Q2)
, (3)
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wherein the dielectric response of the vacuum obeys the
dispersion relation

ε(Q2) = 1 − Q2

π

∫ ∞

0

[
Im ε(−ν − i0+)

ν + Q2

]
dν

ν
. (4)

For timelike wave vectors, the vacuum is dissipative:

Im ε(−ν − i0+) � 0 if ν = − Q2 > 0. (5)

Among the processes contributing to the dissipative vacuum
equation (5) are the creation out of the vacuum of charged
particle-antiparticle pairs produced by incident electromag-
netic radiation. From Eqs. (4) and (5), it follows that for
some spacelike Q2 > 0, the real dielectric response will
vanish. This constitutes the Landau ghost problem of QED.
In particlular, the potential energy between two static charges,
z1e and z2e, is determined by the dielectric screening function
e2 → e2/ε(Q2) as discussed in standard works on quantum
electrodynamics [22]:

V (r) =
(

z1z2e
2

4πr

)
χ (r),

(6)

χ (r) = 2

π

∫ ∞

0
sin(Qr)

[
dQ

Qε(Q2)

]
.

Note that limr→∞ χ (r) = 1.
For the QCD case, the running coupling constant

αs(Q
2) = g2

4πh̄cεs(Q2)
, (7)

wherein

εs(Q
2) = −Q2

π

∫ ∞

0

[
Im εs(−ν − i0+)

ν + Q2

]
dν

ν
. (8)

To one loop order in perturbation theory, one finds

Im εs(−ν − i0+)

π
= − g2

4πh̄c
(β0 + · · ·)

(9)

β0 = 1

4π

(
11

3
Nc − 2

3
nf

)
,

wherein Nc is the number of colors and nf is the number of
flavors.

Note the condition

Im εs(−ν − i0+) � 0 (color amplifier), (10)

which implies that the perturbation theory vacuum is in
reality an excited QCD state that decays into the true vacuum
[18]. Unlike the perturbation theory QED vacuum, which
requires external radiation energy to produce particle pairs,
the perturbation theory QCD vacuum spontaneously decays
into true vacuum, radiating bursts of hadrons. The excited
state QCD perturbation theory vacuum is similar to an excited
amplifying laser material with inverted excitation energy
levels. The laser material spontaneously decays into the true
ground state, radiating a photon pulse. Amplifying media may
be described by a negative temperature. Initial high-energy
particles blast the true vacuum into a QCD perturbation
theory vacuum at a negative temperature. The resulting system

then cools to true vacuum, radiating hadrons. When a very
hot negative temperature cools down, the temperature keeps
going down. The temperature goes down through T = −∞,
then appears at T = +∞, further cooling through decreasing
positive temperatures. From Eqs. (8) and (10) it follows for
spacelike wave vectors that εs(Q2) > 0, so there are no QCD
Landau ghosts.

The quark potentials are described in terms of the color
screening function

Vs(r) = ηabt1at2b

(
g2

4πr

)
χs(r),

(11)

χs(r) = 2

π

∫ ∞

0
sin(Qr)

[
dQ

Qεs(Q2)

]
,

where the color matrices for the two quarks are t1a and t2b

Taking two derivatives of Eq. (11) with respect to r yields

χ ′′
s (r) = − 2

π

∫ ∞

0
sin(Qr)

[
QdQ

εs(Q2)

]
. (12)

From the small wave-number dependence of the color dielec-
tric response,

L2

2
= lim

Q→0

εs(Q2)

Q2
= − 1

π

∫ ∞

0
Im εs(−ν − i0+)

dν

ν2
, (13)

one finds via Eqs.(12) and (13) that

lim
r→∞ χ ′′

s (r) = −
(

2

L2

)
= lim

r→∞
χs(r)

2r2
. (14)

The central result of this section is a confining linear potential

Vs(r) = −ηabt1at2bσ r as r → ∞, (15)

with a string tension

σ = g2

4πL2
. (16)

Let us now consider in more detail the nature of the QCD
string.

III. QCD STRINGS

The QCD string may be physically pictured as follows [23]:
(i) Between two quarks with color charges t1ag and t2bg is a
string. (ii) Inside the string is a gluon condensate electric field

E =
√

ηab 〈Ea · Eb − Ba · Bb〉 = g

4πL2
. (17)

(iii) The tension in the string is

σ = gE = h̄cQ2
s , (18)

wherein h̄cQs is the saturation [2,3,5–10] energy scale.
(iv) Let us suppose that two virtually zero mass quarks
move with light speed c on the ends of a linear string that
extends along the straight line segment −a < r < a. In rigid
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body rotation,

|v|
c

= |r|
a

(speed),

Mc2 =
∫ a

−a

σdr√
1 − |v/c|2

= πσa,

(19)

J = 1

c2

∫ a

−a

σ r|v|dr√
1 − |v/c|2

= πσa2

2c
,

J = M2c3

2πσ
(classical).

The quantum relationship between angular momentum J and
mass M is taken to be

J = h̄α0 + M2c3

2πσ
. (20)

From experimental linear Regge trajectories

h̄cσ ≈ 0.18 GeV2. (21)

The question arises as to the nature of quark-antiquark pair
creation, i.e., jet production, in a scattering experiment wherein
the incoming particles supply the energy to create the gluon
condensate within the string as well as supplying the quark
pair energy (mc2 per quark). Quark motion along the string
obeys Newton’s law for the rate of change of momentum,

dp

dt
= gE = σ. (22)

The quark energy-momentum relation in a 1+1 dimensional
QCD string follows from the partitioned Hamiltonian matrix

H =
(

cp mc2

mc2 −cp

)
, (23)

where (from the quark-pair creation viewpoint) the transition
rate per unit time to create a quark is determined by Fermi’s
golden rule,

ν̄ = 2π

h̄
|mc2|2δ(2cp). (24)

From the viewpoint of QCD string fragmentation, the proba-
bility that the string dissociates may be written as

d2P = dpdr

2πh̄
exp

(
−

∫
ν̄dt

)
,

(25)
d2P

drdt
= gE

2πh̄
exp

(
−

∫
ν̄

dp

gE

)
,

where Eq. (22) has been invoked. The transition rate per unit
time per unit string length for fragmentation follows from
Eqs. (24) and (25); it is

γ = gE
2πh̄

e−m2c3/h̄gE = σ

2πh̄
e−m2c3/h̄σ . (26)

From the above results, it appears that strings connecting high-
mass quarks are less likely to fragment than strings connecting
low-mass quarks. The QCD system starts out very hot, so that
critical glass temperatures are approached from above. It is
here that the notion of a string glassy state appears most useful.

IV. HAGEDORN GLASS TEMPERATURE

We have shown in Eq. (19) for a classical QCD string model
that the energy and angular momentum are related by

E2

2πcσ
= J. (27)

In the quantum theory of the Boson (gluon) string, J has the
spectrum

J = h̄N where N = 0, 1, 2, 3, . . . . (28)

If there are nk,j = 0, 1, 2, 3, . . . string excitations with po-
larization j, each carrying angular momentum h̄k with k =
1, 2, 3, . . . , then

N =
2∑

j=1

∞∑
k=1

knkj . (29)

Equation (29) gives rise to a statistical mechanical entropy
problem that involves analytical number theory. How many
different ways  can you form the integer N out of the smaller
integers {nkj }? From the asymptotic solution [24] of an earlier
and similar partitioning problem, the solution to the QCD
excitation string partitioning problem was found [25]. In the
large N → ∞ limit,

ln (N ) ≈ 2π

√
2N

3
+ ln[(6N )−7/4

√
3]. (30)

From the general definition of degeneracy and entropy,

S = kB ln , (31)

along with Eqs. (27), (28), and (30), we find the Hagedorn
string entropy

S

kB

=
(

E

kBTg

)
− 7

2
ln

(
E

kBTg

)
+ S̃

kB

,

(32)
S̃

kB

= 1

2

[
ln(3) + 7 ln

(
2π

3

)]
.

The Hagedorn glass temperature is

kBTg =
√

3h̄cσ

4π
=

√
3

4π
h̄cQs ≈ 207 MeV, (33)

where Eq. (21) has been invoked. The thermal equations of
state for a hot string now follow from

1

T
= ∂S

∂E
= 1

Tg

− 7kB

2E
. (34)

Thus, the entropy as a function of temperature reads as

S

kB

= 7

2

(
Tg

T − Tg

)
−

(
7

2

)
ln

[
T

(T − Tg)

]
+ S∞,

(35)
S∞
kB

= 7

2

[
1 + ln

(
2π

3

)
− ln

(
7

2

)]
+ 1

2
ln 3.

The role of the entropy in determining transition rates
follows from the rule of averaging over initial states and
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summing over final states. Since the ratio of the number of
final states to the number of initial states is given by

f

i

= exp

(
Sf − Si

kB

)
, (36)

the transition rates may be phase space dominated by the
exponential entropy factors. The dominant entropy arises from
bosonic gluon excitations of the QCD string. The Fermi
or Bose nature of physical particles depends only on the
number, respectively odd or even, of quarks tied together (in
a polymerlike fashion) by the string. The thermal relaxation
time for very hot T → ∞ color unconfined states is related to
the thermal relation times for finite temperature T unconfined
states via

τ∞ = τ exp

(
S∞ − S

kB

)
(T > Tg),

(37)

τ = τ∞

(
T − Tg

T

)7/2

exp

[
�

kB(T − Tg)

]
.

Equation (37) is consistent with the VFT asymptotic
equation (1) with

� = 7kBTg

2
≈ 725 MeV. (38)

In Eq. (37) the dynamical prefactor attempt frequency τ−1
∞ ∼

cQs ∼ 6.43 × 1023 Hz, as defined in Eqs. (18) and (21).
Equation (37) is the central result of this work.

V. CONCLUSION

The true vacuum of QCD is completely nonperturba-
tive owing to a currently poorly understood quark-gluon

confinement mechanism. The success of perturbative QCD
is due to a “vacuum” that is (in reality) an excited negative
temperature state. The energy required for creating this excited
state arises from the incident energy of colliding particles.
Perturbative QCD is presumed at very short times after
particle collisions. QCD perturbation theory describes almost
free quarks and gluons. This viewpoint leads naturally toward
the possibility of a weakly coupled quark-gluon plasma phase
in high-energy heavy-ion collisions (RHICs). Our analysis of
quark-gluon plasma formation devolves around a postcollision
vacuum as an unstable state. The negative temperature feature
of the perturbative vacuum is responsible for the avoidance of
the Landau ghost [18,20]. The metastable plasma state goes
into a glassy state wherein the temperature settles into positive,
more stable value.

RHIC experiments regarding high transverse momentum
jets led to the conjecture that the thermal quark-gluon plasma
formation times may be longer than the collision times and
hence to the notion of a color glass condensate. The glass
relaxation times are long, and a collision ends before the glass
fully hardens. We have thus demonstrated in the hadronic
QCD string model that the unconfined quark-gluon plasma
condenses into glass. Our computation invokes the fact that
the hot plasma begins at a negative temperature. We have
derived the VFT cooling equation (1) for glass with a glass
transition temperature Tg ≈ 207 MeV and an activation energy
of � ≈ 725 MeV. We have interpreted the glass transition
temperature as the Hagedorn temperature (approached from
above) at which collisions cease as a result of rapidly growing
thermal relaxation times. It appears quite satisfactory that
asymptotic freedom from perturbative QCD, in concert with
a hadronic string with its condensed color electric fields and
a highly degenerate Regge spectrum, suffices to produce the
VFT cooling law.
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