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Neutrino emissivity under neutral kaon condensation
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Neutrino emissivity from neutron star matter with neutral kaon condensate is considered. It is shown that a
new cooling channel is opened and that all previously known channels acquire greater emissivity reaching the
level of the direct URCA cycle in normal matter.
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I. INTRODUCTION

Neutral kaon K̄0 condensation treated jointly with K−
condensation has been considered lately by some authors [1,2].
They paid attention mainly to how the extension to the K̄0

condensate alters the equation of state and the composition of
dense matter. Matter composition is a highly important issue
for neutron star cooling during the first few million years after
the neutron star’s birth. In this period of a star’s life, it is
mainly cooled by neutrino emission from the dense core of
the star. Generally, the presence of negative boson condensate
makes matter more isospin symmetric with the proton fraction
increasing quickly, with density, easily exceeding the threshold
value for the direct URCA cycle [3], which is the most effective
mechanism of cooling in the dense interior of a neutron star.
Thus, in this way, kaon condensation favors fast cooling of
neutron stars. But this conclusion should be taken carefully.
It was shown in [4] that for some classes of nuclear models,
negative kaons become so abundant that a very high proton
fraction is required to maintain the matter neutrality. For a very
high proton fraction, the direct URCA cycle is blocked again.
However, in matter with kaon condensate, besides the direct
URCA cycle, another type of reaction is permissible because
the properties of nucleons in a dense medium change when
kaoncondensate is formed. Nucleons appear to be dressed by
kaons and become linear combinations of vacuum states [5,6],
that is,

ñ = u n + v p, (1)

p̃ = −v̄ n + ū p, (2)

where u and v depend on the condensate amplitude and obey
the usual unitarity condition: uū + vv̄ = 1. When condensate
vanishes 〈K〉 → 0, the coefficients recover the pure nucleons,
i.e., u → 1, v → 0. Such quasiparticles cease to be the
eigenstate of charge. Hence, besides the usual direct URCA
process (dURCA), which corresponds to neutron decay and its
inversion, other reactions are also possible between nucleons
dressed with kaons (kURCA):

dURCA : ñ ↔ p̃ + l + νl. (3)

kURCA :
ñ ↔ ñ + l + νl,

p̃ ↔ p̃ + l + νl.
(4)
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For the kURCA processes, it is easier to fulfill the kinematic
condition (triangle condition) concerning the nucleon and
lepton Fermi momenta. It may be shown that independently of
the value of the proton fraction, even for almost pure neutron
star matter, where x ≈ 0, at least one of the above reactions
takes place. However, the emissivities I of the three channels
are not the same. Roughly speaking, they may be classified by
means of the Cabibbo angle θC [6] as

IdURCA ∼ cos2 θC, IkURCA ∼ sin2 θC. (5)

The emissivity in the dURCA cycle is proportional to cos2 θC ;
whereas that for kURCA, to sin2 θC . This means that the
kURCA branch is about two orders of magnitude less effective
than the dURCA branch. In order to obtain the value of neutrino
emissivity, a concrete model of strong interaction must be used.
As already mentioned, there are models of K− condensation
for which dURCA is switched off, and only less effective
kURCA may cool the matter.

An interesting question is to what extent the picture changes
with the inclusion of the K̄0 condensate. Such a component
seems to be exotic, but as shown by Pal et al. [1], it is
quite plausible to consider the matter with both K− and K̄0.
The addition of K̄0 to the model does not require additional
parameters because the form of K̄0N couplings comes from
the symmetry considerations, and we need only to know
the K−N coupling constant. That is important because the
constant is not a well-determined quantity, and we would
like to avoid any further uncertainty. The critical density for
K̄0 condensation is always higher than that for K−. This
comes from the fact that the K̄0 effective mass must drop
to 0, whereas the K− effective mass should drop only to the
electron chemical potential. Pal et al. calculated the critical
density for kaon condensation, which is (2–3.5)n0 for K−
and (3–5)n0 for K̄0, where the uncertainty comes from only
the not-well-known kaon-nucleon coupling strength. After the
K̄0 appearance, both condensates may coexist because such a
state lowers the total energy of the system. This also makes the
equation of state slightly softer than in the pure K− case. The
[1] authors also considered several different parametrizations
of the nuclear models (with different stiffness) and showed that
critical density for K̄0 production is available in the center of a
neutron star with realistic mass. Even if the central part of the
star with K̄0 is very tiny, it could have dramatic consequences
for the cooling scenario. Page and Applegate [7] have shown
that even if the central kernel, where the direct URCA process
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is allowed, occupies only a few percent of the total mass, it
cools the star at the same rate as it would if it comprised
more than half of the total mass. One may say that if only the
central density of a star exceeds the threshold value for direct
URCA, the star is cooled according to the fast scenario in
which it reaches the temperature around 105 K on the scale of
102 years, instead of 106 years for the slow cooling driven by
modified URCA processes. So, it is important to see whether
the K̄0 presence leads to fast neutrino cooling. In this work, we
focus on the details of weak interactions in matter with kaon
condensate and show that the inclusion of K̄0 condensation
leads to such a mixing between quasinucleons that it removes
the difference between the dURCA and the kURCA cycles,
placing them on the same footing.

Now we would like to refer to the issue of the presence of
hyperons in neutron star matter. In general, kaon condensation
should be considered in common with hyperons. Hyperons
appear at lower density than the threshold for K− condensation
and may move it up to higher densities even to completely
block the production of kaons for some sets of model
parameters [8,9]. The same behavior of the threshold density
was observed in the K̄0 case by Banik and Bandyopadhyay [2].
Axial coupling of kaons and hyperons opens the possibil-
ity of p-wave condensation [10] and certainly affects the
URCA cycles by introducing momentum dependence into
the expression for neutrino emissivity, much as in the pion
condensation case [5]. However, the hyperonic star becomes
more arguable in light of the recent observations of massive
neutron stars in x-ray binary systems [11] and lately also
for radio pulsars [12] which suggest masses above 2M�.
Different models, those based on hypernuclear observables
[13,14] or on relativistic mean field theory [9,15], conclude
that maximal mass does not exceed 1.8M�. One may notice
that hyperons make the equation of state (EOS) much softer for
very fundamental reasons. Their production creates additional
baryonic Fermi seas and lowers neutron chemical potential µn

which contributes directly to the pressure P = −ε + µnnB ,
where ε is the energy density and nB is the baryon number
density. Kaons also make the EOS softer, but the scale of this
effect is model dependent and we have some freedom to avoid
an EOS that is too soft. The kaon condensate has zero pressure
and may modify the stiffness of the EOS only indirectly
through effective masses of nucleons or lepton abundance,
so various details of the model are relevant. Nevertheless, the
total effect mainly depends on the kaon-nucleon coupling,
and previous works have shown that matter with charged
kaons [9,16] and with neutral kaons [1] is still able to support
a neutron star mass above 2M�, which is in agreement with
observations.

II. CHIRAL MODEL AND WEAK NUCLEAR CURRENTS

In the context of kaon condensation, the SU (3)L × SU(3)R
chiral model proposed by Kaplan and Nelson [17] is commonly
used. The current algebra is naturally built into this model, so it
may be used to find the form of hadronic currents needed to get
the matrix elements for semileptonic reactions in the presence
of the K− and K̄0 condensates. The chirally symmetric part

takes the form

Lχ = f 2

4
Tr ∂µU∂µU+ + Tr B̄(iγ µDµ − mB)B

+F Tr B̄γ µγ5[Aµ, B] + D TrB̄γ µγ5{Aµ, B}. (6)

Mesons are represented by the matrix

U = ξ 2 = exp

(
i
√

2
M

f

)
, (7)

where M and B include the meson and baryon octet (for
notation details, see [18])

M =




1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 −
√

2
3η8


 ,

(8)

B =




1√
2

0 + 1√

6
� 
+ p


− − 1√
2

0 + 1√

6
� n

�− �0 −
√

2
3�


 .

In order to get proper expressions for β-type transitions for
nucleons in the presence of K− and K̄0, one needs to know
the conserved currents coming from the Lagrangian (6). They
may be found by employing the Noether theorem to the chiral
transformation U → LUR+, ξ → Lξh+ = hξR+, and B →
hBh+, where L,R, and h are SU(3) matrices. It is convenient
to decompose the currents into two parts: purely mesonic and
baryonic, where the latter contains baryons coupled to meson
fields,

V µ = V
µ

M + V
µ

B , Aµ = A
µ

M + A
µ

B, (9)

and

V
µ

M,a = −i
f 2

4
Tr λa(U+∂µU + U∂µU+), (10)

A
µ

M,a = i
f 2

4
Tr λa(U+∂µU − U∂µU+), (11)

V
µ

B,a = 1

4
Tr B̄γ µ[ua

+, B] + F

4
Tr B̄γ µγ5[ua

−, B]

+ D

4
Tr B̄γ µγ5{ua

−, B}, (12)

A
µ

B,a = 1

4
Tr B̄γ µ[ua

−, B] + F

4
Tr B̄γ µγ5[ua

+, B]

+ D

4
Tr B̄γ µγ5{ua

+, B}, (13)

where ua
± = ξ+λaξ ± ξλaξ

+. The expression for axial
mesonic current A

µ

M allows one to identify the parameter f
with the pion decay constant fπ , whereas the baryonic part
is relevant for semileptonic decays of baryons. The above
formulas are similar in their form to the weak nuclear currents
presented in [19] for the SU(2) × SU(2) chiral model.

The ground state of matter with kaon condensate is
described by Fermi seas of baryons and the nonvanishing
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expectation value of kaon fields. According to the Baym
theorem [20], the kaon mean field acquires time dependence

〈K±〉 = f θ√
2

exp(±iµt), 〈K0〉 = 〈K̄0〉 = f φ√
2
, (14)

recalling that for neutral kaons, their mean field is indepen-
dent of time, as the chemical potential for neutral particles
vanishes. The quantities θ, φ are nondimensional condensate
amplitudes, useful in parametrizing the condensate state.
These condensate amplitudes acquire the meaning of rotation
angles in chiral space if instead of the matrix element
〈p̃, θ, φ|O|ñ, θ, φ〉 of any operator O between quasinucleons,
one considers 〈p|U+(θ, φ)OU(θ, φ)|n〉, the matrix element
between normal nucleons but with a rotated O. In this way, for
example, the isospin-raising operator V1+i2, relevant to the β

decay, in the condensate state becomes linear combinations of
all currents from the octet Va , leading to transitions forbidden
in the normal state, as reactions shown in (4). In our approach,
we do not need to know the explicit form of the U(θ, φ)
because any nuclear current may be found directly by putting
expectation values of kaon fields (14) into Eqs. (12) and (13). In
this derivation, the important quantity is the kaon field matrix
ξ , which now takes the form

ξ = 1

χ2




φ2 + θ2 cos χ

2 −2 eitµθφ sin2 χ

4 ieitµθχ sin χ

2

−2 e−itµθφ sin2 χ

4 θ 2 + φ2 cos χ

2 iφχ sin χ

2

ie−itµθχ sin χ

2 iφχ sin χ

2 χ 2 cos χ

2


,

(15)

where χ2 = θ2 + φ2. The weak hadronic current Jµ has
the usual V −A structure; but for the strange particle case,
besides the isospin-raising part V1+i2−A1+i2, one must include
the strangeness-changing part coming from the SU(3) octet.
Following the Cabibbo theory, the hadronic current is

Jµ = cos θC(V1+i2 − A1+i2)µ + sin θC(V4+i5 − A4+i5)µ. (16)

The rates of the reactions which operate in the URCA cycles
is described by the baryonic part VB,AB of the total SU(3)
current (9). Knowing the form of the kaon field matrix ξ , we
may calculate the full octet of currents. Putting them into (16),
one gets the weak hadronic current Jµ in the presence of the
K− and K̄0 condensates, that is,

Jµ = cos θC

χ4

{
p̄ �µ

pn n

[
(θ4 + φ4) cos

χ

2
+ θ2φ2

2

(
3 + cos

χ

2

)]

+ (
n̄ �µ

nn n + p̄ �µ
pp p

)
2θφ e−iµt sin2 χ

4

+ n̄ �µ
np p

(
2θφ e−iµt sin2 χ

4

)2
}

+ i sin θC

χ3
sin

χ

2

{
p̄ �̃µ

pn n
(
φ2 + θ2 cos

χ

2

)
φ

+ (
n̄ �̃µ

nn n + p̄ �̃µ
pp p

)
θ e−iµt

+ n̄ �̃µ
np p 2e−2iµt θ2φ sin2 χ

4

}
, (17)

where the matrices �ij and �̃ij are linear combinations of the
Dirac matrices, which are explicitly given in the appendix.

III. NEUTRINO EMISSIVITY

At this point, we are ready to derive the transition rate for
β processes in matter with the K−, K̄0 condensates. Because
the energy of nucleons and leptons is much smaller than the
mass of W± particles, it is sufficient to use the Fermi theory of
weak interactions, for which the Hamiltonian takes the usual
form

Hweak = GF√
2
Jµlµ. (18)

Where Jµ is hadronic and lµ is leptonic weak current. In the
case of charged-kaon (K−) condensate only, Jµ derived in the
previous section reduces to the simpler form

J
µ

φ=0 = cos θC p̄γ µ(1 − gAγ5)n cos
θ

2
+ sin θC

× [n̄γ µ(1 + �g γ5)n + 2p̄γ µ(1−Fγ5)p]
i

2
sin θ,

(19)

where gA =D + F and �g=D − F , and which is equivalent
to the results already presented in [21]. Comparing (19) and
(17), note that the extension to neutral kaons introduces an
additional term ∼n̄γ µp, which is absent in the pure K−
condensate case. This term opens a new URCA channel, let us
call it k0URCA.

k0URCA : p̃ ↔ ñ + e + ν̄e. (20)

Although slightly exotic, this kind of “proton decay” is possi-
ble in dense matter, as one must remember that quasinucleons
represent mixed states of normal nucleons and do not possess
a well-determined charge. Moreover, the kURCA transitions,
i.e., transitions between the same type of quasinucleons (4),
are now also present in the cos θC-dependent part of the
weak current. This means that for the dense matter state,
where the two kinds of condensates are simultaneously present
(φ 
= 0, θ 
= 0), both the kURCA and dURCA cycles will take
place at the same rate. This is an important result as it is
easier to fulfill the triangle condition for the Fermi momenta
of nucleons in the case of the kURCA channel.

The energy per unit volume and time released in one cycle
due to neutrino emission is equal to the product of the neutrino
energy and the doubled β-decay rate for a given quasiparticle
i = p̃, or ñ, that is,

IURCA = 2

(2π )12

∫
d3pid

3pf d3ped
3pνfi

× (1 − ff )(1 − fe)Wif εν. (21)

The decay rate Wij for a transition i → j + e + νe is given by
the expression

Wif = (2π )4δ(εf − εi − εe − εν)δ( pf − pi − pe − pν)

× |〈f e νe|Hweak|i〉|2. (22)

The squared matrix element may be factorized in a standard
manner

|〈f e νe|Hweak|i 〉|2 = HµνLµν, (23)
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where the leptonic tensor is

Lµν = 1

εeεν

(
pµ

e pν
ν̄ + pν

e p
µ
ν̄ − pe ·pν̄ gµν + iεµνρσpeρpν̄σ

)
,

(24)
and the hadronic tensor includes the hadronic weak current Jµ

with summation over the nucleon spin states

Hµν =
∑
s,s ′

〈pf , s ′|Jµ|pi, s〉〈pi, s|J+ν |pf , s ′〉. (25)

For nonrelativistic nucleons, the hadronic tensor becomes
momentum independent Hµν = 2(|v|2δ0µδ0ν + |a|2δiµδiν),
where a, v are the axial and vector parts of the hadronic
current (17). The neutrino momentum | pν | is of the order
of thermal energy T, which means it is much smaller than the
momenta of nucleons and electrons, and may be neglected
in the δ function in (22). Finally, the matrix element (23)
may be treated as a constant, being independent of particle
momenta. The phase space in (21) is weighted only by
the three Fermi-Dirac distribution functions fi for p̃, ñ, e,
because the neutrino leaves the matter freely. In order to
calculate the emissivity integral, one may use the so-called
phase-space decomposition, a very useful technique to obtain
the reaction rate for strongly degenerated systems [22,23].
After this calculation, neutrino emissivity may be finally
written as

IURCA = 457 π

20 160
T 6m∗

pm∗
nm

∗
e |Mij |2�ife, (26)

where �ife is a step function corresponding to the triangle
condition. It is equal to 1 if vectors pf , pi , pe form a
closed triangle, and 0 otherwise. Mij is the momentum-
independent matrix element (23) corresponding to different
types of reactions, and m∗

i are effective masses of nucleons
and electrons. In the case of the K− and K̄0 condensation,
there are four channels for different URCA cycles: one in
(3), two in (4), and one in (20). The last one is typical of
the presence of neutral kaons, whereas the reactions (4) are
connected with the charged-kaon condensate. Of course, the
first one, i.e., the dURCA cycle, is possible in normal npe
matter as well as in matter with kaons. All of them belong
to the class of direct URCA processes, where only three
degenerated fermions take part in the cycle, which can be seen
in the temperature dependence ∼T 6. So, the four different
channels are only distinguished by means of their matrix
elements |Mij |2, which now depend on the amplitudes of the
two condensates θ and φ:

dURCA : |Mnp|2 = 2 G2
F

(
1 + 3g2

A

)(
φ2 + θ2 cos χ

2

)2

χ8

×
[(

θ2 + φ2 cos
χ

2

)2
cos2 θC

+φ2χ2 sin2 χ

2
sin2 θC

]
. (27)

kURCA : |Mnn|2 = 8 G2
F cos2 θC

θ2φ2 sin4 χ

4

χ8

×
{[

θ2 + χ2 + (φ2 + χ2) cos
χ

2

]2

+ 3
[
2 �g χ2 cos2 χ

4

− gA

(
θ2 + φ2 cos

χ

2

)]2
}

+ 2 G2
F sin2 θC

θ2 sin2 χ

2

χ6

×
{[

φ2 − (φ2 + χ2) cos
χ

2

]2

+3
[
�g χ2 cos

χ

2
+ 2gAφ2 sin2 χ

4

]2
}

(28)

kURCA : |Mpp|2 = 8 G2
F cos2 θC

θ2φ2 sin4 χ

4

χ8

×
{[

φ2 + χ2 + (θ2 + χ2) cos
χ

2

]2

+ 3
[
2 �g χ2 cos2 χ

4
− gA

×
(
φ2 + θ2 cos

χ

2

)]2
}

+ 2 G2
F sin2 θC

× θ2 sin2 χ

2

χ6

{[
φ2 + (θ2 + χ2) cos

χ

2

]2

+ 3
[
�g χ2 cos

χ

2

− gA

(
φ2 + θ2 cos

χ

2

)]2
}

(29)

k0URCA : |Mpn|2 = 32 G2
F

(
1 + 3 g2

A

)θ4φ2 sin6 χ

2

χ8

×
(
φ2 sin2 χ

4
cos2 θC

+χ2 cos2 χ

4
sin2 θC

)
. (30)

As shown in [21], for the case of the K− condensate only
(φ → 0), these matrix elements take a much simpler form

|Mnp|2 = 2 G2
F

(
1 + 3 g2

A

)
cos2 θC cos2 θ

2
, (31)

|Mnn|2 = 1

2
G2

F (1 + 3 �g 2) sin2 θC sin2 θ, (32)

|Mpp|2 = 2 G2
F (1 + 3 F 2) sin2 θC sin2 θ, (33)

|Mpn|2 = 0, (34)

where, for the transition p̃ → ñ + e + ν̄, which is not possible
in the pure K− condensate, the corresponding matrix element
vanishes. By comparing expressions (28), (29) and (32),
(33), one may see how the inclusion of K̄0 introduces the
terms proportional to cos2 θC and, in this way, makes the
kaon-induced URCA processes at the same level of intensity
as the direct URCA cycle in normal matter. This was already
noted in the discussion of the weak hadronic current (17).
The matrix elements Mif are also highly θ and φ dependent.

015805-4



NEUTRINO EMISSIVITY UNDER NEUTRAL KAON . . . PHYSICAL REVIEW C 73, 015805 (2006)

0

2 π
θ 0

2 π

φ
0

1

Mpn

0

θ

k0URCA

0

2 π
θ 0

2 π

φ
0

1

Mpp

0

θ

kURCA

0

2 π
θ 0

2 π

φ
0

1

Mnp

0

θ

dURCA

0

2 π
θ 0

2 π

φ
0

1

Mnn

0

θ

kURCA

FIG. 1. Normalized matrix element for different URCA channels
as a function of condensate amplitudes θ and φ.

This dependence is shown in Fig. 1, where the values of
matrix elements were normalized to the maximal value for the
dURCA cycle, which is Mmax

np = 2G2
F (1 + 3g2

A) cos2 θC . The
behavior of θ and φ with matter density depends on the model
of strong interactions used for dense matter description [4,24].
Both the unknown strength of the kaon-nucleon coupling and
the details of interactions in the nonstrange sector affect the
condensate behavior. However, roughly speaking, these papers
showed that the typical value of the K− condensate amplitude
θ is around 1, and in some cases it may be somewhat greater
than π/2. Therefore, one may suspect that the amplitude of
the K̄0 condensate takes similar values. A careful look at
the plots in Fig. 1 reveals that different cycles reach their
maxima in different regions of the θ -φ plane, so one may
conclude that almost independently of the concrete values of
the K− and K̄0 amplitudes, there always exists one cycle with
emissivity approximately equal to the maximal value of Mif ,
i.e., 2G2

F (1 + 3g2
A) cos2 θC . The given cycle works in neutron

star matter when the corresponding triangle condition is
satisfied:

dURCA and k0URCA : |kp − kn| < ke < kp + kn, (35)

kURCA for ñ : 2kn > ke, (36)

kURCA for p̃ : 2kp > ke. (37)

These inequalities show that independently of the proton and
lepton abundances, at least one of the URCA channels is
opened. Thus, the final conclusion is that the simultaneous
presence of the K− and K̄0 condensates leads to matter cooled
very fast with the intensity of the fastest direct URCA cycle.

IV. CONCLUSIONS

The extension of the charged kaon to the neutral kaon
condensate leads to such mixing between the components of
currents from the SU(3) octet that two new features emerge.
First, the K̄0 condensate opens an additional channel for the
URCA process (quasiproton decay). Second, the K̄0 presence
results in emissivity for the kaon-induced URCA processes
scaling no longer with sin2 θC but obtaining a contribution that
scales as cos2 θC . This puts the kaon-induced URCA at the
same level of importance as the normal direct URCA cycle.
Moreover, the triangle condition says that different cycles are
opened in different matter compositions, covering the whole
range from pure neutron to pure proton matter (0 < x < 1).
Therefore, one may finally conclude that matter with the K−
and K̄0 condensates is cooled at the level of the most effective
(direct) URCA cycle, regardless of its detailed composition.
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APPENDIX

Below are matrices �ij and �̃ij , which appear in the
expression for the hadronic current (17), for the cos θC-
dependent part

�µ
pn = γ µ(1 − gAγ5)

�µ
pp = γ µ

{
−(φ2+χ2) − (θ2+χ2) cos

χ

2

+ γ5

[
gA

(
φ2+θ2 cos

χ

2

)
− 2 �g χ2 cos2 χ

4

]}

�µ
nn = �µ

pp(φ ↔ θ )

�µ
np = γ µ(1 − gAγ5)

and for the sin θC-dependent part

�̃µ
pn = −γ µ(1 − gAγ5)

�̃µ
pp = γ µ

{
−φ2 − (θ2 + χ2) cos

χ

2
+ γ5

[
gA

(
φ2+θ2 cos

χ

2

)

− �g χ2 cos
χ

2

]}

�̃µ
nn = γ µ

[
φ2 − (φ2+χ2) cos

χ

2

+ γ5(2gAφ2 sin2 χ

4
+ �g χ2 cos

χ

2
)
]

�̃µ
np = γ µ(1 − gAγ5).
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